Momordica foetida (Cucurbitaceae) prevents behavioral impairment, motor incoordination and brain oxidative stress induced by subchronic exposure to Parastar pesticide formulation

Abstract

Background: Parastar is an agricultural insecticide formulation composed of two active ingredients; a pyrethroid lambda-cyhalothrin and a neonicotinoid imidachloprid used in Cameroon for vegetable protection. Previous studies showed reprotoxicity and neurotoxicity of this pesticide formulation. Momordica foetida Schumach. Et Thonn is a medicinal plant with potent antioxidant properties used traditionally in Cameroon for the treatment of several aliments. As farmers are currently exposed to Parastar pesticide formulation, this study was designed to evaluate the protective effect of M. foetida on behavioral impairment, motor incoordination and brain oxidative stress induced by subchronic administration of Parastar. Methods: The study was carried out using 40 Wistar male rats, divided into 5 groups of 8 rats each. The groups received a vehicle (distilled water; 10 mL/kg), Parastar alone (6.23 mg/kg), or concomitantly with M. foetida methanol extract (50, 100 and 200 mg/kg) for 60 days. The animals were submitted to behavioural tests including, beam walking test, open field test and forced swimming test. At end of the treatment, oxidative stress parameters and acetylcholinesterase activity were assessed in brain of each animal. Results: Parastar induced motor dysfunctions, anxiogenic like and depressive-like behaviours in the animals. The Parastar -induced alterations in behavior were all prevented by M. foetida extract. The plant extract alleviated Parstar-induced oxidative stress and alteration of cholinesterase activity, especially at the dose 100mk/kg. Conclusion: Results from this study suggest that, M. feotida methanol extract may prevent anxiety-like behavior, depressive-like behavior, motor incoordination induced by Parastar, possibly through it antioxidant properties and the preservation of acetylcholinesterase activity.


Keywords: acetylcholinesterase,  Momordica foetida, neurotoxicity, oxidative stress, Parastar, rats

Keywords: acetylcholinesterase, Momordica foetida, neurotoxicity, oxidative stress, Parastar, rats

Downloads

Download data is not yet available.

Author Biographies

Antoine Sanda Kada, Department of Biological Sciences, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

Department of Biological Sciences, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

Edouard Akono Nantia, Department of Biochemistry, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

Department of Biochemistry, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

Fondzeyuf Joseph Chin, Department of Biochemistry, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

Department of Biochemistry, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

Faustin Pascal Tsague Manfo, Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, POBox 63, Buea, Cameroon

Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, POBox 63, Buea, Cameroon

Natesan Vijayakumar, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram-608002, Tamilnadu, India

Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram-608002, Tamilnadu, India

Jones Tatah Nchinda, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, POBox 812, Yaoundé, Cameroon

Department of Biochemistry, Faculty of Science, University of Yaoundé 1, POBox 812, Yaoundé, Cameroon

Albert Donatien Atsamo, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, POBox 812, Yaoundé, Cameroon

Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, POBox 812, Yaoundé, Cameroon

References

1. Sharma RK, Setia PSA, Sharma AK. Insecticides and Ovarian Functions. Environ Mol Mutagen. 2020; 61(3):369-392. https://doi:10.1002/em.22355. (2020).
2. Jayaraj R, Megha P, Sreedev P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscipl Toxicol. 2016; 9(3-4):90–100. https://doi:10.1515/intox-2016-0012.
3. Kada SA, Nantia AE, Pascal Manfo TFP, Toboh RT, Essame AR, Adaibum S Moundipa FP, Kamtchouing Pierre. Subchronic administration of Parastar insecticide induced behavioral changes and impaired motor coordination in male Wistar rats. Drug Chem Toxicol. 2022; 45(1):426-434. https://doi.org/10.1080/01480545.2019.1709491.
4. Yadav H, Kumar R, Sankhla MS. Residues of Pesticides and Heavy Metals in Crops Resulting in Toxic Effects on Living Organism. J Seybold rep. 2020; 15(7):1527-1541. https://doi:10.13140/RG.2.2.24806.65609.
5. Manfo FPT, Mboe SA, Nantia EA, Ngoula F, Telefo PB, Moundipa PF, Cho-Ngwa F. Evaluation of the effects of agropesticides exposure on the liver and kidney function in farmers from Buea, Cameroon. J Toxicol. 2020; Article ID 2305764. https://doi.org/10.1155/2020/2305764.
6. Manfo FPT, Suh CF, Nantia EA, Moundipa PF, Cho-Ngwa F. Occupational use of agrochemicals results into inhibited cholinesterase activity and altered reproductive hormone levels in male farmers from Buea, Cameroon. Toxicol Res (Camb). 2021; 10(2):232-248., https://DOI: 10.1093/toxres/tfaa113.
7. Monat-Descamps C., Frederic Deschamps F. Nervous system disorders induced by occupational and environmental toxic exposure. Open J Prev Med. 2012; 2(3):272-278. https://doi:10.4236/ojpm.2012.23039.
8. Ghasemi E, Azad NG, Tondar M, Parirokh P, Aval SF. Tracking the footprint of pesticides in Alzheimer’s disease. JSIN. 2015; 1(1):14-19. https://doi: 10.15761/JSIN.1000104.
9. Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(3):676–692. https://doi: 10.1016/j.pnpbp.2010.05.004. Epub 2010 May 12.
10. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011; 14(1):123–130. https://doi: 10.1017/S1461145710000805.
11. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017; 360(1):201-205. https://doi:10.1124/jpet.116.237503.
12. Nantia EA, Manfo TFP, Sonchieu J, Choumessi TA, Bopuwouo RH, Kakwang FI, Fru LD, Kenfack A. Effect of agrochemicals use on total phenolic compounds and flavonoid content in aromatic fresh herbs from Santa (Cameroon). Acad J Agric Res. 2017; 5:018-027.
13. Sonchieu J, Ngassoum MB, Nantia AE, Laxman PS. Pesticide applications on some vegetables cultivated and health implications in Santa, North West-Cameroon. SSRG-IJAES. 2017; 4(2):39-46. https://Doi:10.14445/23942568/IJAES-V4I2P108.
14. Nantia EA, Kada SA, Manfo FPT, Nehemiah NT, Kaghou MM, Mbouobda DH, Kenfack A. Parastar insecticide induced changes in reproductive parameters and testicular oxidative stress biomarkers in Wistar male rats. Toxicol Ind Health. 2018a; 34(7):499-506. https://doi:10.1177/0748233718761699. Epub 2018 May 7.
15. Oloyede OI, Aluko OM. Deterrmination of of antioxidant potential of Momordica foetida leaf extract on tissue homogenate . Sci. Med. Clin. Trials. 2012; Article ID sjmct-225. https://doi: 10.7237/sjmct/225.
16. Jeffrey C. Cucurbitaceae. In: Milne-Redhead, E. & Polhill, R.M. (Editors). Flora of Tropical East Africa. Crown Agents for Oversea Governments and Administrations, London, United Kingdom. 1967; 157 pp.
17. Froelich S, Onegi B, Kakooko A, Siems K, Schubert C, Jennet-Siems K. Plant traditionally used against malaria: phytochemical and pharmacological investigation of Momordica foetida. Rev Bras Farmacogn. 2007; 17(1):01-07. https://doi.org/10.1590/S0102-695X2007000100002.
18. Acquaviva RL, Diacmo C, Vanella L, Sandangelo R, Sorrienti V, Barbagallo L, Genovese C, Mastrojeni S, Ragusa S, Iauk L. Antioxidant activity of extracts of Momordica foetida schumach et Thonn. Molecules. 2013; 18(3):3241-3249. https://doi: 10.3390/molecules18033241.
19. Nantia AE, Soh D, Choumessi TA, Ngum NNM, Chi HAN, Kenfack A. In vitro antioxidant properties of the methanol extracts of the whole plant and fruit of Momordica foetida (Cucurbitaceae). Pharm Chem J. 2018b; 5:117-125.
20. Gonzalez-Usano A, Cauli O, Agusti A, Felipo V. Pregnenolone sulphate restores the glutamate-nitric oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci. 2014; 5(2): 100–105. https://doi:10.1021/cn400168y.
21. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003; 463(1-3):3-33. https://doi:10.1016/s0014-2999(03)01272-x.
22. Brown RE, Corey SC, Moore AK. Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H2K mice. Behav Genet. 1999; 29(4):263-271. https://doi: 10.1023/a:1021694307672.
23. Mota VG, Carvalho FL, Morais LCSL, Bhattacharyya J, Almeida RN, Alencar JL. Antinociceptive activity of the chloroform fraction of Dioclea virgate (Rich.) Amshoff (Fabaceae) in mice. Biomed Res Int. 2011; Article ID 342816. https://doi: 10.1155/2011/342816.
24. Blanchard DC, Griebel G, Blanchard RJ. Mouse defensive behaviors: Pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev. 2001; 25(3):205-218. https://doi:10.1016/s0149-7634(01)00009-4.
25. Wagnat WW, Omar AE, Gamal EA. Screening for antidepressant, sedative and analgesic activities of novel fused thiophene derivatives. Acta Pharm. 2008; 58:1–14. https://doi: 10.2478/v10007-007-0041-5.
26. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977; 229(2):327–336. PMID: 596982.
27. Bhattacharya SK, Satyan KS, Ramanathan M. Experimental methods for evaluation of psychotropic agents in rodents: II-Antidepressants. Indian J Exp Biol. 1999; 37(2):117 23. PMID: 9357158.
28. Ellman GL. Tissue sulfhydryl groups. Archives of .Biochemistry. Biophysics. 1959; 82(1):70-77. https://doi: 10.1016/0003-9861(59)90090-6.
29. Sinha K. Colorimetric assay of catalase. Anal Biochem. 1972; 47(2):389-394. https://doi: 10.1016/0003-2697(72)90132-7.
30. Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972; 247(21):6960–6962. PMID: 4673289.
31. Gornal AG, Bardawil GS, David MM. Determination of serum proteins by the mean of the buiret reactions. Journal of Biology and Chemistry. 1949; 177:751-766.
32. Tinh NL, Holly JC, Amber S, Paul HP. Assessment of Motor Balance and Coordination in Mice using the Balance Beam. J Vis Exp. 2011; 49:2376. https://doi:10.3791/2376.
33. Abdel-Tawab HM, Faten MI, Samia MMM, Doha HAB, Souad ElG. Protective Effect of Ethanolic Extract of Grape Pomace against the Adverse Effects of Cypermethrin on Weanling Female Rats. Evid.-based Complement. Altern. 2015; Article ID 381919, 10 pages. https://doi.org/10.1155/2015/381919.
34. Kaddour T, Omar K, Oussama AT, Nouria H, Iméne B, Abdelkader A. Aluminium-induced acute neurotoxicity in rats: Treatment with aqueous extract of Arthrophytum (Hammadascoparia). J Acute Dis. 2016; 5(6):470-482. https://doi.org/10.1016/j.joad.2016.08.028.
35. Abdelrahman IA, Ahmed N, Hussien A, Mohamed MA. Neuroprotective mechanisms of plant extracts against MPTP induced neurotoxicity: Future applications in Parkinson’s disease. Biomed Pharmacother. 2017; 85:635-645. https://doi: 10.1016/j.biopha.2016.11.074.
36. Doukkali Z, Taghzouti K, Kamal R, Jemeli ME, Bouidida EH, Zellou A et al. Anti-Anxiety Effects of Mercuria lisannua Aqueous Extract in the Elevated Plus Maze Test. Pharmaceutical Bioprocessing. 2016; 4(4):1-5.
37. Zouhra D, Rabie K, Meryem EJ, Mohamed N, Amina Z, Yahya C et al. Anti-Anxiety Effects of Mercurialis annua Aqueous Extract in the Elevated Plus Maze Test. Pharm Bioprecess. 2016; 4(4):56-61.
38. Hirano T, Yanai S, Takada T, Yoneda N, Omotehara T, Kubota N et al. NOAEL-dose of a neonicotinoid pesticide, clothianidin, acutely induce anxiety-related behavior with human-audible vocalizations in male mice in a novel environment. Toxicol Lett. 2018; 282:57–63. https://doi: 10.1016/j.toxlet.2017.10.010.
39. De Souza SH, Silva YM, Nicolau AA, Bernardi MM, Lucisano A. Possible anxiogenic effects of fenvalerate, a type II pyrethroid pesticide, in rats. Physiol Behav. 1999; 67(4):611–615. https://doi: 10.1016/s0031-9384(99)00106-7.
40. Santosh P, Venugopl R, Nilakash AS, Kunjbihari S, Mangala LDR. Antidepressant activity of methanolic extract of Passiflora foetida leaves in mice. Int J Pharm Pharm. 2011; 3(1):112–115.
41. Foyet HS, Hritcu L, Ciobica A, Stefan M, Kamtchouing P, Cojocaru D. Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J Ethnopharmacol. 2011; 133(2):773–779. https://doi: 10.1016/j.jep.2010.11.011. Epub 2010 Nov 9.
42. Aldridge JE, Levin ED, Seidler FJ, Slotkin TA. Developmental Exposure of Rats to Chlorpyrifos Leads to Behavioral Alterations in Adulthood, Involving Serotonergic Mechanisms and Resembling Animal Models of Depression. Environ. Health Perspect. 2005; 113(5):527–531. https://doi:10.1289/ehp.7867.
43. Emerit J, Edeas, M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004; 58(1): 39–46. https://doi: 10.1016/j.biopha.2003.11.004.
44. Migliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Muta Rese. 2009; 674(1-2):73–84. https://doi:10.1016/j.mrgentox.2008.09.013.
45. Tahereh F, Omid M, Fatemeh F, Babak R, Saeed S. Oxidative stress and mitochondrial dysfunction in organophosphatepesticide-induced neurotoxicity and its amelioration: a review. Environ Sci Pollut Res Int. 2020; 27(20):24799–24814. https://doi:10.1007/s11356-020-09045-z.
46. Ana MF, Ionara S, Lucia MVA, Ana CT, Cíntia B, Susana TW et al.. Brain Glutathione Content and Glutamate Uptake Are Reduced in Rats Exposed to Pre- and Postnatal Protein Malnutrition. J Nutr. 2006; 136(9):2357–2361. doi: https://10.1093/jn/136.9.2357.
47. Ighodaro, OM, Akinloy OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2017; 54(4):287-293. https://doi.org/10.1016/j.ajme.2017.09.001.
48. Taskiran D, KutayFZ, Sozmen E, Pogun S. Sex differences in nitrite/nitrate levels and antioxidant defense in rat brain. Neuroreport. 1997; 8(4):881–884. https://doi:10.1097/00001756-199703030-00013.
49. Bouet MC, Naldi M, Bartolini M, Pérez B, Servent D, Jean L, Aráoz R et al. Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor. Biochemi Pharmacol. 2020; 177:114010. https://doi:10.1016/j.bcp.2020.114010. Epub 2020 Apr 30.
50. Calabrese EJ, Baldwin LA. Hormesis: The Dose-Response Revolution. Annu Rev Pharmacol Toxicol. 2003; 43:175-197. https://doi: 10.1146/annurev.pharmtox.43.100901.140223. Epub 2002 Jan 10.
51. Kada SA, Mieugeu P, Dzeufiet DPD, Faleu NNM, Watcho P, Dimo T et al. Effect of aqueous extract of Allanblackia floribunda (Oliver) stem bark on sexual behaviour in adult male rats. WJPPS. 2012; 1(2):585–600.
Statistics
47 Views | 3 Downloads
How to Cite
1.
Kada AS, Nantia EA, Chin FJ, Manfo FPT, Vijayakumar N, Nchinda JT, Atsamo AD. Momordica foetida (Cucurbitaceae) prevents behavioral impairment, motor incoordination and brain oxidative stress induced by subchronic exposure to Parastar pesticide formulation. JDDT [Internet]. 15Jun.2022 [cited 1Jul.2022];12(3-S):44-0. Available from: https://jddtonline.info/index.php/jddt/article/view/5368