Essential oils: As Potential Larvicides
Abstract
Multiple synthetic products are used against mosquitoes to kill them and inhibit the transmission of these vector-borne diseases. The continuous use of these products produces detrimental effects on the environment and non-target organisms, which also develops resistance in the mosquito. In the last few decades, there has been a continuous exploration of herbal extract-based insecticides. These plants extract essential oils that have emerged as a potential eco-friendly alternative for the killing of larvae, the immature form of adult mosquitoes. In this review article, we focused on the larvicidal activity (LC50 values) of plant extracts obtained from various parts of plants. We evaluated results obtained from numerous essential oil larvicidal activities against prominent vectors belonging to the genera Anopheles, Aedes, and Culex, among others, that had been reported in various scientific data bases. The mode of action of these plant extracts are also discussed with reference to insecticidal activity. The major limitation of essential oils with their overcome solutions through formulation development is also highlighted. This review article reported that essential oils are potential substitutes for the development of larvicides, which may be employed in vector-borne illness control programmes. Overall, this remarkable summary and organization of data may be used to design, develop, and optimise herbal-based formulations with potential larvicidal efficacy.
Keywords: Essential oils; Larvicidal Activity; Herbal extract; Vector born-diseases.
Keywords:
Essential oils, Larvicidal Activity, Herbal extract, Vector born-diseasesDOI
https://doi.org/10.22270/jddt.v12i3.5313References
Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod, 2015; 15(76):174-87. DOI: https://doi.org/10.1016/j.indcrop.2015.06.050.
Tandina F, Doumbo O, Traoré SF, Parola P, Robert V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasites & vectors. 2018; 11(1):1-2. DOI: https://doi.org/10.1186/s13071-018-3045-8 .
Hari I, Mathew N. Larvicidal activity of selected plant extracts and their combination against the mosquito vectors Culex quinquefasciatus and Aedes aegypti. Environ. Sci. Pollut. Res, 2018; 5(9):9176-9185. DOI: https://doi.org/10.1007/s11356-018-1515-3
Luz TR, de Mesquita LS, do Amaral FM, Coutinho DF. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Tropica, 2020; 1(212):105705. Doi: https://doi.org/10.1016/j.actatropica.2020.105705
Monath T.P, Vasconcelos P.F, Yellow fever. J. Clin. Virol. 2018;64:106-13. Doi. https://doi.org/10.1590/1806-9282.64.02.106
Tolle M.A, Mosquito-borne diseases. Curr. Probl. Pediatr. Adolesc. Health Care, 2009; 39(4):97-140. Doi: https://doi.org/10.1016/j.cppeds.2009.01.001
da Silva MR, Ricci-Júnior E, An approach to natural insect repellent formulations: From basic research to technological development. Acta tropica, 2020; 1(212):105419. Doi: https://doi.org/10.1016/j.actatropica.2020.105419
Ashwini U, Asha S, Larvicidal activity of natural products against mosquito species. Int J Chemtech Res, 2017; 10(5):875-878.
Walshe DP, Garner P, Adeel AA, Pyke GH, Burkot TR. Larvivorous fish for preventing malaria transmission. Cochrane Database Syst. Rev, 2017; 12. Doi: https://doi.org/10.1002/14651858.CD008090
Chung HN, Rodriguez SD, Gonzales KK, Vulcan J, Cordova JJ, Mitra S, et al., Toward Implementation of Mosquito Sterile Insect Technique: The Effect of Storage Conditions on Survival of Male Aedes aegypti Mosquitoes (Diptera: Culicidae) During Transport. J. Insect Sci, 2018; 18(6). Doi: https://doi.org/10.1093/jisesa/iey103
Bourtzis K, Lees RS, Hendrichs J, Vreysen MJ. More than one rabbit out of the hat: radiation, transgenic and symbiont- based approaches for sustainable management of mosquito and tsetse fly populations. Acta Tropica 2016; 157:115-130. Doi: https://doi.org/10.1016/j.actatropica.2016.01.009
Bravo A, Gill SS, Soberon M, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007; 49:423-435. Doi: https://doi.org/10.1016/j.toxicon.2006.11.022
Bonin A, Paris M, Frérot H, Bianco E, Tetreau G, Després L, The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti. Infect. Genet. Evol, 2015; 35:204-213.Doi: https://doi.org/10.1016/j.meegid.2015.07.034
Tikar SN, Mendki MJ, Chandel K, Parashar BD, Prakash S. Susceptibility of immature stages of Aedes (Stegomyia) aegypti ; vector of dengue and chikungunya to insecticides from India. Parasitol. Res. 2008. Doi: https://doi.org/10.1007/s00436-007-0848-5
Geetha RV, Roy A, Essential oil repellents-a short review. Int. J. Drug Dev. Res, 2014; 6(2):20-27.
Bakkali F, Averbeck S, Averbeck D, Idaomar M, Biological effects of essential oils–a review.Food Chem. Toxicol, 2008; 46(2):446-75. https://doi.org/10.1016/j.fct.2007.09.106
El Asbahani A, Miladi K, Badri W, Sala M, Addi EA, Casabianca H, et al. Essential oils: from extraction to encapsulation. Int. J. Pharm. Doi: https://doi.org/10.1016/j.ijpharm.2014.12.069
Pichersky E, Noel JP, Dudareva N. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science, 2006; 311(5762):808–811. DOI: 10.1126/science.1118510
CFR- Code of Federal Regulations Title 21. Website. http://www.accessdata.fda.gov/ (9 December 2014).
Ait-Ouazzou A, Cherrat L, Espina L, Lorán S, Rota C, Pagán R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. IFSET, 2011; 12:320–329.Doi: https://doi.org/10.1016/j.ifset.2011.04.004
Burt S, Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol, 2004;94(3):223-53.Doi: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Ghosh A, Chowdhury N, Chandra G, Plant extracts as potential mosquito larvicides. Indian J. Med. Res, 2012; 135(5):581–598.
Mathew N, Anitha MG, Bala TS, Sivakumar SM, Narmadha R, Kalyanasundaram M. Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol. Res. 2009; 104(5):1017-25 Doi: https://doi.org/10.1007/s00436-008-1284
Babu M, Ashok K, Larvicidal activity of onion (Allium cepa) peel extracts against Anopheles stephensi. Int J Zool Invest 2021; 7(2). DOI:10.33745/ijzi.2021.v07i02.042
Rahuman AA, Venkatesan P, Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol. Res, 2008; 103(1):133-9 https://doi.org/10.1007/s00436-008-0940-5
Manh HD, Hue DT, Hieu NT, Tuyen DT, Tuyet OT, The Mosquito larvicidal activity of essential oils from Cymbopogon and Eucalyptus Species in Vietnam. Insects. 2020; 11(2):128. Doi: https://doi.org/10.3390/insects11020128
Muturi EJ, Ramirez JL, Zilkowski B, Flor-Weiler LB, Rooney AP, Ovicidal and larvicidal effects of garlic and asafoetida essential oils against West Nile virus vectors. J. Insect Sci, 2018;18(2):43.Doi: https://doi.org/10.1093/jisesa/iey036
Kumar G, Karthik L, Rao KB, Kirthi AV, Rahuman AA, Larvicidal, repellent and ovicidal activity of Calotropis gigantea against Culex gelidus, Culex tritaeniorhynchus (Diptera: Culicidae). Int. J. Agric. Technol. 2012; 8(3):869-80. Doi:
Firooziyan S, Amani A, Osanloo M, Moosa-Kazemi SH, Basseri HR, Hajipirloo HM, et al., Preparation of nanoemulsion of Cinnamomum zeylanicum oil and evaluation of its larvicidal activity against a main malaria vector Anopheles stephensi. J. Environ. Health Sci. Eng. 2021; 29:1.Doi: https://doi.org/10.1007/s40201-021-00667-0
Rojas-Olivos A, Solano-Gómez R, Granados-Echegoyen C, Santiago-Santiago LA, García-Dávila J, Pérez-Pacheco R, Lagunez-Rivera L, Larvicidal effect of Clinopodium macrostemum essential oil extracted by microwave-assisted hydrodistillation against Culex quinquefasciatus (Diptera: Culicidae). Revista da Sociedade Brasileira de Medicina Tropical. 2018; 51:291-6. Doi: https://doi.org/10.1590/0037-8682-0284-2017
Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K, Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp. Parasitol, 2013; 134(1):7-11.Doi: https://doi.org/10.1016/j.exppara.2013.01.018
Kovendan K, Murugan K, Kumar AN, Vincent S, Hwang JS, Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2012; 110(2):669-78. Doi: https://doi.org/10.1007/s00436-011-2540-z
Pavela R, Maggi F, Cianfaglione K, Bruno M, Benelli G, Larvicidal activity of essential oils of five apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodivers. 2018; 15(1). Doi: https://doi.org/10.1002/cbdv.201800148
Dharmagadda VSS, Naik SN, Mittal PK, Vasudevan P, Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour. Technol. 2005; 96(11), 1235–1240. Doi: https://doi.org/10.1016/j.biortech.2004.10.020
Pavela R, Vrchotová N, Tříska J, Larvicidal activity of extracts from Ammi visnaga Linn.(Apiaceae) seeds against Culex quinquefasciatus Say.(Diptera: Culicidae). Exp. Parasitol, 2016; 1(165):51-7. Doi: https://doi.org/10.1016/j.exppara.2016.03.016
Granados-Echegoyen CA, Chan-Bacab MJ, Ortega-Morales BO, Vásquez-López A, Lagunez-Rivera L, Diego-Nava F, et al., Argemone mexicana (Papaverales: Papavaraceae) as an alternative for mosquito control: First report of larvicidal activity of flower extract. J. Med. Entomol. 2019; 56(1):261-7. Doi: https://doi.org/10.1093/jme/tjy159
Kim SI, Ahn YJ. Larvicidal activity of lignans and alkaloid identified in Zanthoxylum piperitum bark toward insecticide-susceptible and wild Culex pipiens pallens and Aedes aegypti. Parasites Vectors, 2017; 10(1).Doi: https://doi.org/10.1186/s13071-017-2154-0
Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K, Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res. 2012; 110(5):2023–2032. Doi: https://doi.org/10.1007/s00436-011-2731-7
Vatandoost H, Rustaie A, Talaeian Z, Abai MR, Moradkhani F, Vazirian M, et al., Larvicidal Activity of Bunium persicum essential oil and extract against Malaria Vector, Anopheles stephensi. J Arthropod Borne Dis, 2018; 12(1):85. Doi:
Balasubramani S, Sabapathi G, Moola AK, Solomon RV, Venuvanalingam P, Bollipo Diana RK. Evaluation of the Leaf Essential Oil from Artemisia vulgaris and Its Larvicidal and Repellent Activity against Dengue Fever Vector Aedes aegypti—An Experimental and Molecular Docking Investigation. ACS Omega, 2018; 3(11):15657-65. Doi:https://doi.org/10.1021/acsomega.8b01597
Gomes DR, Dos Santos DL, Alencar LJ, Dos Santos CL, Pereira LJ, Dos Santos LA, Evaluation of larvicidal, adulticidal, and anticholinesterase activities of essential oils of Illicium verum Hook. f., Pimenta dioica (L.) Merr., and Myristica fragrans Houtt. against Zika virus vectors. Environ. Sci. Pollut. Res. 2018; 25(23):22541. Doi: https://doi.org/10.1007/s11356-018-2362-y
Zoubiri S, Baaliouamer A, Seba N, Chamouni N. Chemical composition and larvicidal activity of Algerian Foeniculum vulgare seed essential oil. Arab. J. Chem. 2014; 7(4):480-5.Doi: https://doi.org/10.1016/j.arabjc.2010.11.006
Anees AM, Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitol. Res., 2008; 103(6):1451-3. Doi: https://doi.org/10.1007/s00436-008-0991-7
Govindarajan M, Jebanesan A, Pushpanathan T, Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol. Res, 2008; 102(2):289-92. Doi: https://doi.org/10.1007/s00436-007-0761-y
Singh RK, Dhiman RC, Mittal PK. Mosquito larvicidal properties of Momordica charantia Linn (family: Cucurbitaceae). J. Vector Borne Dis. 2006; 43(2):88.
Senthilkumar N, Varma P, Gurusubramanian G. Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol. Res. 2009; 104(2):237-44. Doi: https://doi.org/10.1007/s00436-008-1180-4
Moon HI, Cho SB, Kim SK, Composition and immunotoxicity activity ofessential oils from leaves of Zingiber officinale Roscoe against Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2011; 33:201–204. Doi: https://doi.org/10.3109/08923973.2010.495393
Arriaga AMC, Rodrigues FEA, Lemos TLG, Oliveira MCF, Lima JQ, Santiago GMP. Composition and larvicidal activity ofessential oil from Stemodia maritima L. Nat. Prod. Commun, 2007; 2:1237–1239. Doi: https://doi.org/10.1177/1934578X0700201209
Jiraungkoorskul W. Efficiency of Tinospora crispa against Culex quinquefasciatus larva. Environ. Sci. Pollut. Res., 2019; 26(15):14712-6. Doi: https://doi.org/10.1007/s11356-018-2429-9
Srinivasan PV, Thanigaivel A, Edwin ES, Ponsankar A, Nathan SS, Rani SS, et al., Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Environ. Sci. Pollut. Res., 2018; 25(11):10434-46. Doi: https://doi.org/10.1007/s11356-017-9714-x
Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K, Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp. Parasitol. 2013; 134(1):7-11. Doi: https://doi.org/10.1016/j.exppara.2013.01.018
Huong LT, Huong TT, Huong NT, Hung NH, Dat PT, Luong NX. Mosquito larvicidal activity of the essential oil of Zingiber collinsii against Aedes albopictus and Culex quinquefasciatus.J. Oleo Sci. 2020; 69(2):153-60.Doi: https://doi.org/10.5650/jos.ess19175
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017; 11(7):1-20. Doi: https://doi.org/10.1590/0037-8682-0489-2019
Scotti L, Scotti MT, Silva VB, Santos SRL, Cavalcanti SCH, Mendonc JB. Chemometric studies on potential larvicidal compounds against Aedes aegypti. Med. Chem., 2014; 10(2):201-10.
Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Melec G. et al., Study of technical CNSL and its main components as new green larvicides. Curr. Green Chem, 2009; 11(1):31-3. Doi: https://doi.org/10.1039/B811504D
Rattan RS, Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010; 29:913–920. Doi: https://doi.org/10.1016/j.cropro.2010.05.008
Miresmailli S, Isman MB, Botanical insecticides inspired by plant–herbivore chemical interactions.Trends Plant Sci, 2014; 19(1):29-35. Doi: https://doi.org/10.1016/j.tplants.2013.10.002
Walker K, Lynch M, Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Medical and veterinary entomology. 2007; 21(1):2-1.Doi: https://doi.org/10.1111/j.1365-2915.2007.00674.x
Dias CN, Moraes DF, Essential oils and their compounds as Aedes aegypti L.(Diptera: Culicidae)larvicides. Parasitol. Res. 2014; 113(2):565-92. Doi: https://doi.org/10.1007/s00436-013-3687-6
Isman MB, Grieneisen ML. Botanical insecticide research: many publications, limited useful data. Trends Plant Sci, 2014; 19(3):140-5. Doi: https://doi.org/10.1016/j.tplants.2013.11.005
Turek C, Stintzing FC. Stability of essential oils: a review. Compr. Rev. Food Sci. Food Saf. 2013; 12(1):40-53. Doi: https://doi.org/10.1111/1541-4337.12006
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res, 2016; 17(1):17-28. Doi: https://doi.org/10.1016/j.jare.2015.02.007
Li Y, Zheng J, Xiao H., McClements DJ, Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocoll, 2012; 27(2):517-28. Doi: https://doi.org/10.1016/j.foodhyd.2011.08.017
Oliveira AE, Duarte JL, Cruz RA, Souto RN, Ferreira RM, Peniche T, et al., Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. J. Nanobiotechnology. 2017; 15(1):1-1.Doi: https://doi.org/10.1186/s12951-016-0234-5
Pant M, Dubey S, Raza SK, Patanjali PK, Encapsulation of neem and karanja oil mixture for synergistic as well as larvicidal activity for mosquito control. J Sci Ind Res. 2012. http://hdl.handle.net/123456789/13992
Benelli G, Rajeswary M, Govindarajan M, Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ. Sci. Pollut. Res., 2018; 25(11):10218-27. Doi: https://doi.org/10.1007/s11356-016-8146-3
Silva LL, Garlet QI, Koakoski G, Oliveira TA, Barcellos LJ, Baldisserotto B. Effects of anesthesia with the essential oil of Ocimum gratissimum L. in parameters of fish stress. Rev. Bras. de Plantas Medicinais, 2015; 17:215-23.
Sundararajan B, Moola AK, Vivek K, Kumari BDR, Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus), Microb. Pathog. 2018; 125:475-85. Doi: https://doi.org/10.1016/j.micpath.2018.10.017
Ghosh V, Ranjha R, Gupta AK, Formulation of anti-larval nanoemulsion: Impact of droplet size on larvicidal activity against malaria vectors in Chhattisgarh, India. Indian J. Biochem. Biophys. 2021; 58(2):178-86.
Paula HC, Sombra FM, Abreu FO, Paul R. Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. J. Braz. Chem. Soc, 2010; 21:2359-66.
Essa EE, Mo'men SA, Rady MH, Ma'moun SA, Barakat EM, Salama MS. Eucalyptus oil nano-emulsion encapsulated in chitosan beads as a new approach in control of Culex pipiens larvae. Int. J. Mosq. Res., 2019; 6(5):63-9.
González JO, Jesser EN, Yeguerman CA, Ferrero AA, Band BF. Polymer nanoparticles containing essential oils: new options for mosquito control. Environ. Sci. Pollut. Res. 2017; 24(20):17006-15. Doi: https://doi.org/10.1007/s11356-017-9327-4
Pandiyan GN, Mathew N, Munusamy S. Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicol. Environ. Saf. 2019; 15(174):549-56. Doi: https://doi.org/10.1016/j.ecoenv.2019.03.019
Chandrasekaran R, Seetharaman P, Krishnan M, Gnanasekar S, Sivaperumal S. Carica papaya (Papaya) latex: a new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Biotechnol. 2018; 8(2):1. . Doi: https://doi.org/10.1007/s13205-018-1105-6
Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci., 2012; 68(2):158-63. Doi: https://doi.org/10.1002/ps.2233
Mohafrash SM, Fallatah SA, Farag SM, Mossa AT. Mentha spicata essential oil nanoformulation and its larvicidal application against Culex pipiens and Musca domestica. Ind Crops Prod, 2020; 1:157. Doi: https://doi.org/10.1016/j.indcrop.2020.112944
Azmy MR, Gohary EG, Mahmoud M, Salem AM, Abdou AM, Salama S. Assessment of larvicidal activity of nanoemulsion from Citrus sinensis essential oil on Culex pipiens L. (Diptera: Culicidae). Egypt. J. Aquat. Biol. Fish. 2019; 23(3):61-7. Doi:10.21608/ejabf.2019.35100
Duarte JL, Amado JR, Oliveira AE, Cruz RA, Ferreira AM, Souto RN, et al., Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev. bras. farmacogn. 2015; 25:189-92.Doi: https://doi.org/10.1016/j.bjp.2015
Published
Abstract Display: 805
PDF Downloads: 740
PDF Downloads: 140 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.