Systematic Review on the Effectiveness of Strategies for Increasing Insulin Bioavailability in Oral Route Delivery Systems Based on Manufacturing Techniques and Materials Used

  • ADIVA PUJA KRISNA Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia https://orcid.org/0000-0002-4960-4978
  • Hendri Wahyu Ningrum Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia https://orcid.org/0000-0002-5938-6118
  • Tamara Laily Fimannuha Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia
  • Oktavia Eka Puspita Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia https://orcid.org/0000-0001-6107-1089

Abstract

Diabetes is a metabolic disease characterized by hyperglycemia due to impaired insulin secretion, insulin action, or both. All patients with type 1 diabetes and many type 2 diabetes require insulin therapy to achieve reasonable glycemic control. During this time, insulin is given through the subcutaneous injection route because it can be destroyed by gastric acid when given orally. Until now, many studies have developed oral insulin therapy using various delivery system strategies. This systematic literature review aims to answer several questions about the effect of technique and material on increasing oral insulin bioavailability and the best technique and type of material that can produce the best oral insulin bioavailability. We searched for published articles regarding the development of oral route insulin. Bioavailability parameters were assessed based on plasma insulin levels for relative bioavailability values and/or plasma glucose levels for pharmacological bioavailability values. Conclusion: The manufacturing technique in the delivery system affects insulin stability in maintaining its conformation to provide a therapeutic effect. The type of substance affects insulin bioavailability through its properties in paving the way for insulin across various barriers in the digestive tract. To date, the best results in the development of oral insulin have obtained oral insulin bioavailability of 73.10% achieved by mesoporous silica nanoparticles (MSN) delivery system with layer-by-layer technique coated with [poly (methacrylic acid-co-vinyl triethoxylsilane)] (PMV)].


Keywords: bioavailability, diabetes, insulin, nanoparticles, oral delivery system.

Keywords: bioavailability, diabetes, insulin, nanoparticles, oral delivery system

Downloads

Download data is not yet available.

Author Biographies

ADIVA PUJA KRISNA, Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

Hendri Wahyu Ningrum, Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

Tamara Laily Fimannuha, Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

Oktavia Eka Puspita, Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, East Java, Indonesia

References

1. WHO; Diabetes, 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition". Diabetes Res Clin Pract, 2019; 157:107843. https://doi.org/10.1016/j.diabres.2019.107843
2 (a). Kementerian Kesehatan RI. CEGAH, CEGAH, DAN CEGAH: SUARA DUNIA PERANGI DIABETES. Indonesia; 2018. Available at: https://www.kemkes.go.id/article/print/18121200001/cegah-cegah-dan-cegah-suara-dunia-perangi-diabetes.html. Accessed February 8, 2021.
3. Shah RB, Patel M, Maahs DM, Shah VN, "Insulin delivery methods: Past, present and future" Int J Pharm Investig, 2016; 6(1):1–9. Available from: https://pubmed.ncbi.nlm.nih.gov/27014614 https://doi.org/10.4103/2230-973X.176456
4. Freeland B, Farber MS. "A Review of Insulin for the Treatment of Diabetes Mellitus" Home Healthc now, 2016 Sep; 34(8):416–23. https://doi.org/10.1097/NHH.0000000000000446
5. Wong CY, Martinez J, Dass CR, "Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities" J Pharm Pharmacol, 2016 Sep; 68(9):1093–108. Available from: https://doi.org/10.1111/jphp.12607
6. Krishnaiah Y. "Pharmaceutical Technologies for Enhancing Oral Bioavailability of Poorly Soluble Drugs" J Bioequiv Availab, 2010 Jan; 1(2). https://doi.org/10.4172/jbb.1000027
7. Bhosle VK, Altit G, Autmizguine J, Chemtob S, "18 - Basic Pharmacologic Principles. In: Polin RA, Abman SH, Rowitch DH, Benitz WE, Fox WWBT-F and NP (Fifth E, editors" Elsevier, 2017; 187-201. DOI: https://www.sciencedirect.com/science/article/pii/B9780323352147000184
8. Savjani KT, Gajjar AK, Savjani JK, "Drug Solubility: Importance and Enhancement Techniques" Aktay G, Du Y-Z, Torrado J, editors, ISRN Pharm [Internet], 2012; 2012:195727. DOI: https://doi.org/10.5402/2012/195727
9. Fonte P, Araújo F, Reis S, Sarmento B, "Oral insulin delivery: How far are we?" J Diabetes Sci Technol, 2013; 7(2):520–31. https://doi.org/10.1177/193229681300700228
10. Singh AP, Guo Y, Singh A, Xie W, Jiang P, "Developments in encapsulation of insulin: Is oral delivery now possible?" J Pharm Biopharm Res, 2019; 1(2):74–93. https://doi.org/10.25082/JPBR.2019.02.005
11. Wong CY, Al-Salami H, Dass CR, "Fabrication techniques for the preparation of orally administered insulin nanoparticles" J Drug Target, 2021 Apr 21; 29(4):365–86. DOI: https://doi.org/10.1080/1061186X.2020.1817042
12. Rowley J, Slack F, "Conducting a literature review" Manag Res News, 2004; 27(6):31–9. https://doi.org/10.1108/01409170410784185
13. Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, "The PRISMA 2020 statement: an updated guideline for reporting systematic reviews" BMJ, 2021; 372(71). https://doi.org/10.1136/bmj.n71
14. Han X, Lu Y, Xie J, Zhang E, Zhu H, Du H, et al, "Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions" Nat Nanotechnol, 2020; 15(7):605–14. DOI: http://dx.doi.org/10.1038/s41565-020-0693-6
15. Jaafar MHM, Hamid KA, "Chitosan-Coated Alginate Nanoparticles Enhanced Absorption Profile of Insulin Via Oral Administration" Curr Drug Deliv, 2019; 16(7):672–86. https://doi.org/10.2174/1567201816666190620110748
16. Iqbal M, Zafar N, Fessi H, Elaissari A, "Double emulsion solvent evaporation techniques used for drug encapsulation" Int J Pharm, 2015 Dec; 496(2):173–90. https://doi.org/10.1016/j.ijpharm.2015.10.057
17. Chen T, Li S, Zhu W, Liang Z, Zeng Q, "Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin" J Microencapsul [Internet], 2019; 36(1):96–107. DOI: https://doi.org/10.1080/02652048.2019.1604846
18. Liu L, Zhou C, Xia X, Liu Y, "Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation" Int J Nanomedicine, 2016; 11:761–9. https://doi.org/10.2147/IJN.S96146
19. Guha A, Biswas N, Bhattacharjee K, Sahoo N, Kuotsu K, "pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation" Drug Deliv, 2016; 23(9):3552–61. https://doi.org/10.1016/j.biomaterials.2017.03.028
20. He Z, Santos JL, Tian H, Huang H, Hu Y, Liu L, et al, "Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin" Biomaterials, 2017; 130:28–41. DOI: http://dx.doi.org/10.1016/j.biomaterials.2017.03.028
21. Malathi S, Nandhakumar P, Pandiyan V, Webster TJ, Balasubramanian S, "Novel PLGA-based nanoparticles for the oral delivery of insulin" Int J Nanomedicine, 2015; 10:2207–18. https://doi.org/10.2147/IJN.S67947
22. Wu S, Bin W, Tu B, Li X, Wang W, Liao S, et al, "A Delivery System for Oral Administration of Proteins/Peptides Through Bile Acid Transport Channels" J Pharm Sci, 2019; 108(6):2143–52. DOI: https://doi.org/10.1016/j.xphs.2019.01.027
23. Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong J, et al, "Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery" J Control Release, 2016; 222:67–77. DOI: http://dx.doi.org/10.1016/j.jconrel.2015.12.008
24. Wu L, Liu M, Shan W, Zhu X, Li L, Zhang Z, et al, "Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs" J Control Release, 2017; 262(July):273–83. DOI: http://dx.doi.org/10.1016/j.jconrel.2017.07.045
25. Alsulays BB, Anwer MK, Soliman GA, Alshehri SM, Khafagy ES, "Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles" Int J Nanomedicine, 2019; 14:9127–38. https://doi.org/10.2147/IJN.S225086
26. Wang A, Yang T, Fan W, Yang Y, Zhu Q, Guo S, et al, "Protein Corona Liposomes Achieve Efficient Oral Insulin Delivery by Overcoming Mucus and Epithelial Barriers" Adv Healthc Mater, 2019; 8(12):1–11. https://doi.org/10.1002/adhm.201801123
27. Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C, "Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo" J Control Release, 2019; 313(July):1–13. https://doi.org/10.1016/j.jconrel.2019.10.006
28. Agrawal AK, Urimi D, Harde H, Kushwah V, Jain S, "Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration" RSC Adv, 2015; 5(127):105179–93. https://doi.org/10.1039/C5RA19115G
29. Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, et al, "Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery" Biomaterials, 2018; 151:13–23. DOI: https://doi.org/10.1016/j.biomaterials.2017.10.022
30. Jafary Omid N, Bahari Javan N, Dehpour AR, Partoazar A, Rafiee Tehrani M, Dorkoosh F, "In-vitro and in-vivo cytotoxicity and efficacy evaluation of novel glycyl-glycine and alanyl-alanine conjugates of chitosan and trimethyl chitosan nano-particles as carriers for oral insulin delivery" Int J Pharm, 2018; 535(1–2):293–307. https://doi.org/10.1016/j.ijpharm.2017.11.020
31. Zhang L, Zhang YX, Qiu JN, Li J, Chen W, Guan YQ, "Preparation and Characterization of Hypoglycemic Nanoparticles for Oral Insulin Delivery" Biomacromolecules, 2017; 18(12):4281–91. https://doi.org/10.1021/acs.biomac.7b01322
32. Mumuni MA, Kenechukwu FC, Ofokansi KC, Attama AA, Díaz DD, "Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment" Carbohydr Polym, 2020; 229(June 2019):115506. DOI: https://doi.org/10.1016/j.carbpol.2019.115506
33. Ukai H, Iwasa K, Deguchi T, Morishita M, Katsumi H, Yamamoto A, "Enhanced intestinal absorption of insulin by capryol 90, a novel absorption enhancer in rats: Implications in oral insulin delivery" Pharmaceutics, 2020; 12(5):1–16. https://doi.org/10.3390/pharmaceutics12050462
34. Fang Y, Wang Q, Lin X, Jin X, Yang D, Gao S, et al, "Gastrointestinal Responsive Polymeric Nanoparticles for Oral Delivery of Insulin: Optimized Preparation, Characterization, and In Vivo Evaluation" J Pharm Sci, 2019; 108(9):2994–3002. DOI: https://doi.org/10.1016/j.xphs.2019.04.020
35. Zhang P, Xu Y, Zhu X, Huang Y, "Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin" Int J Pharm, 2015; 496(2):993–1005. https://doi.org/10.1016/j.ijpharm.2015.10.078
36. Sun L, Liu Z, Tian H, Le Z, Liu L, Leong KW, et al, "Scalable Manufacturing of Enteric Encapsulation Systems for Site-Specific Oral Insulin Delivery" Biomacromolecules, 2019; 20(1):528–38. https://doi.org/10.1021/acs.biomac.8b01530
37. Li L, Jiang G, Yu W, Liu D, Chen H, Liu Y, et al, "Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin" Mater Sci Eng C, 2017; 70(Part 2):278–86. DOI: http://dx.doi.org/10.1016/j.msec.2016.08.083
38. Liu C, Shan W, Liu M, Zhu X, Xu J, Xu Y, et al, "A novel ligand conjugated nanoparticles for oral insulin delivery" Drug Deliv, 2016; 23(6):2015–25. https://doi.org/10.3109/10717544.2015.1058433
39. Sahoo P, Leong KH, Nyamathulla S, Onuki Y, Takayama K, Chung LY, "Chitosan complexed carboxymethylated iota-carrageenan oral insulin particles: Stability, permeability and in vivo evaluation" Mater Today Commun, 2019; 20(June):100557. DOI: https://doi.org/10.1016/j.mtcomm.2019.100557
40. Sheng J, He H, Han L, Qin J, Chen S, Ru G, et al, "Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates" J Control Release, 2016; 233:181–90. https://doi.org/10.1016/j.jconrel.2016.05.015
41. Sun S, Liang N, Yamamoto H, Kawashima Y, Cui F, Yan P, "pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin" Int J Nanomedicine, 2015; 10:3489–98. https://doi.org/10.2147/IJN.S81715
42. Bravo-Alfaro DA, Muñoz-Correa MOF, Santos-Luna D, Toro-Vazquez JF, Cano-Sarmiento C, García-Varela R, et al, "Encapsulation of an insulin-modified phosphatidylcholine complex in a self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin delivery" J Drug Deliv Sci Technol, 2020; 57(January):101622. DOI: https://doi.org/10.1016/j.jddst.2020.101622
43. Sheng J, Han L, Qin J, Ru G, Li R, Wu L, et al, "N -Trimethyl Chitosan Chloride-Coated PLGA Nanoparticles Overcoming Multiple Barriers to Oral Insulin Absorption" ACS Appl Mater Interfaces, 2015; 7(28):15430–41. https://doi.org/10.1021/acsami.5b03555
44. Wang X, Cheng D, Liu L, Li X, "Development of poly(hydroxyethyl methacrylate) nanogel for effective oral insulin delivery" Pharm Dev Technol, 2018; 23(4):351–7. DOI: https://doi.org/10.1080/10837450.2017.1295064
45. Wu J, Zheng Y, Liu M, Shan W, Zhang Z, Huang Y, "Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery" ACS Appl Mater Interfaces, 2018; 10(12):9916–28. https://doi.org/10.1021/acsami.7b16524
46. Yazdi JR, Tafaghodi M, Sadri K, Mashreghi M, Nikpoor AR, Nikoofal-Sahlabadi S, et al, “Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies” Colloids Surfaces B Biointerfaces, 2020; 194:111203. DOI: https://doi.org/10.1016/j.colsurfb.2020.111203
47. Hu X Bin, Tang TT, Li YJ, Wu JY, Wang JM, Liu XY, et al, “Phospholipid complex based nanoemulsion system for oral insulin delivery: Preparation, in vitro, and in vivo evaluations” Int J Nanomedicine, 2019; 14:3055–67. https://doi.org/10.2147/IJN.S198108
48. Liu C, Kou Y, Zhang X, Dong W, Cheng H, Mao S, “Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex” Int J Pharm, 2019; 554:36–47. DOI: https://doi.org/10.1016/j.ijpharm.2018.10.068
49. Liu J, Werner U, Funke M, Besenius M, Saaby L, Fanø M, et al, “SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats” Int J Pharm, 2019; 560:377–84. DOI: https://doi.org/10.1016/j.ijpharm.2019.02.014
50. Boushra M, Tous S, Fetih G, Xue HY, Wong HL, “Development of bi-polymer lipid hybrid nanocarrier (BLN) to improve the entrapment and stability of insulin for efficient oral delivery” J Drug Deliv Sci Technol, 2019; 49:632–41. DOI: https://doi.org/10.1016/j.jddst.2019.01.007
51. Shan W, Zhu X, Tao W, Cui Y, Liu M, Wu L, et al, “Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers” ACS Appl Mater Interfaces, 2016; 8(38):25444–53.
52. Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C, “Binary and Tertiary Complex Based on Short-Chain Glucan and Proanthocyanidins for Oral Insulin Delivery” J Agric Food Chem, 2017; 65(40):8866–74. https://doi.org/10.1021/acs.jafc.7b03465
53. Xie S, Gong YC, Xiong XY, Li ZL, Luo YY, Li YP, “Targeted folate-conjugated pluronic for the oral delivery of insulin” 2018.
54. Tian H, He Z, Sun C, Yang C, Zhao P, Liu L, et al, “Uniform Core–Shell Nanoparticles with Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin” Adv Healthc Mater, 2018; 7(17):1–12. https://doi.org/10.1002/adhm.201800285
55. Guo F, Zhang M, Gao Y, Zhu S, Chen S, Liu W, et al, “Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation” Drug Deliv, 2016; 23(6):2003–14. https://doi.org/10.3109/10717544.2015.1048489
56. Zhang Y, Xiong GM, Ali Y, Boehm BO, Huang YY, Venkatraman S, “Layer-by-layer coated nanoliposomes for oral delivery of insulin” Nanoscale, 2021; 13(2):776–89. https://doi.org/10.1039/D0NR06104B
57. Alibolandi M, Alabdollah F, Sadeghi F, Mohammadi M, Abnous K, Ramezani M, et al, “Dextran-b-poly (lactide-co-glycolide) polymersome for oral delivery of insulin: In vitro and in vivo evaluation” J Control Release, 2016; 227:58–70. DOI: http://dx.doi.org/10.1016/j.jconrel.2016.02.031
58. Kim KS, Kwag DS, Hwang HS, Lee ES, Bae YH, “Immense Insulin Intestinal Uptake and Lymphatic Transport using Bile Acid Conjugated Partially Uncapped Liposome” Mol Pharm, 2018; 176(1):139–48.
59. Zhang L, Qin H, Li J, Qiu JN, Huang JM, Li MC, et al, “Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery” J Mater Chem B, 2018; 6(45):7451–61. https://doi.org/10.1039/C8TB02113A
60. Verma A, Sharma S, Gupta PK, Singh A, Teja BV, Dwivedi P, et al, “Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin” Acta Biomater, 2016; 31:288–300. DOI: http://dx.doi.org/10.1016/j.actbio.2015.12.017
61. Fukuoka Y, Khafagy ES, Goto T, Kamei N, Takayama K, Peppas NA, et al, “Combination strategy with complexation hydrogels and cell-penetrating peptides for oral delivery of insulin” Biol Pharm Bull, 2018; 41(5):811–4. https://doi.org/10.1248/bpb.b17-00951
62. Yan C, Gu J, Lv Y, Shi W, Huang Z, Liao Y, “5β-Cholanic Acid/Glycol Chitosan Self-Assembled Nanoparticles (5β-CHA/GC-NPs) for Enhancing the Absorption of FDs and Insulin by Rat Intestinal Membranes” AAPS PharmSciTech, 2019; 20(1):1–8. https://doi.org/10.1208/s12249-018-1242-6
63. Wang J, Kong M, Zhou Z, Yan D, Yu X, Cheng X, et al, “Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery” Carbohydr Polym, 2017;157:596–602. DOI: http://dx.doi.org/10.1016/j.carbpol.2016.10.021
64. Chen X, Ren Y, Feng Y, Xu X, Tan H, Li J, “Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity” Int J Pharm, 2019; 562:23–30. DOI: https://doi.org/10.1016/j.ijpharm.2019.03.020
65. Bahman F, Taurin S, Altayeb D, Taha S, Bakhiet M, Greish K, “Oral insulin delivery using poly (Styrene co-Maleic acid) micelles in a diabetic mouse model” Pharmaceutics, 2020; 12(11):1–17. https://doi.org/10.3390/pharmaceutics12111026
66. Shrestha N, Araújo F, Shahbazi MA, Mäkilä E, Gomes MJ, Herranz-Blanco B, et al, “Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin” Adv Funct Mater, 2016; 26(20):3405–16. https://doi.org/10.1002/adfm.201505252
67. Zhou X, Wu H, Long R, Wang S, Huang H, Xia Y, et al, “Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation” J Nanobiotechnology, 2020; 18(1):1–16. DOI: https://doi.org/10.1186/s12951-020-00652-z
68. Winarti L, Suwaldi, Martien R, Hakim L, “Formulation of insulin self nanoemulsifying drug delivery system and its in vitro-in vivo study” Indones J Pharm, 2018; 29(3):157–66. https://doi.org/10.14499/indonesianjpharm29iss3pp157
69. Sun S, Liang N, Gong X, An W, Kawashima Y, Cui F, et al, “Multifunctional composite microcapsules for oral delivery of insulin” Int J Mol Sci, 2017; 18(1). https://doi.org/10.3390/ijms18010054
70. Zhang Y, Xiong M, Ni X, Wang J, Rong H, Su Y, et al, “Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking through Dual Barriers of the Mucus Layer and the Intestinal Epithelium” ACS Appl Mater Interfaces, 2021; 13(15):18077–88. https://doi.org/10.1021/acsami.1c00580
71. Zeng Z, Dong C, Zhao P, Liu Z, Liu L, Mao HQ, et al, “Scalable Production of Therapeutic Protein Nanoparticles Using Flash Nanoprecipitation” Adv Healthc Mater, 2018; 8(6):1–7. https://doi.org/10.1002/adhm.201801010
72. He H, Wang P, Cai C, Yang R, Tang X, “VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption” Int J Pharm, 2015; 493(1–2):451–9. DOI: http://dx.doi.org/10.1016/j.ijpharm.2015.08.004
73. Ansari MJ, Anwer MK, Jamil S, Al-Shdefat R, Ali BE, Ahmad MM, et al, “Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats” Drug Deliv, 2016; 23(6):1972–9. https://doi.org/10.3109/10717544.2015.1039666
74. Niu Z, Tedesco E, Benetti F, Mabondzo A, Montagner IM, Marigo I, et al, “Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers” J Control Release, 2017; 263:4–17. https://doi.org/10.1016/j.jconrel.2017.02.024
75. Boushra M, Tous S, Fetih G, Korzekwa K, Lebo DB, Xue HY, et al, “Development and evaluation of viscosity-enhanced nanocarrier (VEN) for oral insulin delivery” Int J Pharm, 2016; 511(1):462–72. DOI: http://dx.doi.org/10.1016/j.ijpharm.2016.07.016
76. Koland M, Anchan RB, Mukund SG, Sindhoor SM, “Design and investigation of alginate coated solid lipid nanoparticles for oral insulin delivery” Indian J Pharm Educ Res, 2021; 55(2):383–94. https://doi.org/10.5530/ijper.55.2.76
77. Deng W, Xie Q, Wang H, Ma Z, Wu B, Zhang X, “Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism” Nanomedicine Nanotechnology, Biol Med, 2017; 13(6):1965–74. DOI: http://dx.doi.org/10.1016/j.nano.2017.05.002
78. Singh S, Kushwah V, Agrawal AK, Jain S, “Insulin- and quercetin-loaded liquid crystalline nanoparticles: Implications on oral bioavailability, antidiabetic and antioxidant efficacy” Nanomedicine, 2018; 13(5):521–37. https://doi.org/10.2217/nnm-2017-0278
79. Heade J, McCartney F, Chenlo M, Marro OM, Severic M, Kent R, et al, “Synthesis and in vivo evaluation of insulin-loaded whey beads as an oral peptide delivery system” Pharmaceutics, 2021; 13(5):1–18. https://doi.org/10.3390/pharmaceutics13050656
80. Chen S, Guo F, Deng T, Zhu S, Liu W, Zhong H, et al, “Eudragit S100-Coated Chitosan Nanoparticles Co-loading Tat for Enhanced Oral Colon Absorption of Insulin” AAPS PharmSciTech, 2017; 18(4):1277–87. https://doi.org/10.1208/s12249-016-0594-z
81. Agrawal AK, Kumar K, Swarnakar NK, Kushwah V, Jain S, “liquid Crystalline Nanoparticles”: Rationally Designed Vehicle to Improve Stability and Therapeutic Efficacy of Insulin Following Oral Administration” Mol Pharm, 2017; 14(6):1874–82. https://doi.org/10.1021/acs.molpharmaceut.6b01099
82. Kaur I, Nallamothu B, Kuche K, Katiyar SS, Chaudhari D, Jain S, “Exploring protein stabilized multiple emulsion with permeation enhancer for oral delivery of insulin” Int J Biol Macromol, 2021; 167:491–501. DOI: https://doi.org/10.1016/j.ijbiomac.2020.11.190
83. Zhu S, Chen S, Gao Y, Guo F, Li F, Xie B, et al, “Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec)” Drug Deliv, 2016; 23(6):1980–91. https://doi.org/10.3109/10717544.2015.1043472
84. Urimi D, Agrawal AK, Kushwah V, Jain S, “Polyglutamic Acid Functionalization of Chitosan Nanoparticles Enhances the Therapeutic Efficacy of Insulin Following Oral Administration” AAPS PharmSciTech, 2019; 20(3):1–14. https://doi.org/10.1208/s12249-019-1330-2
85. Wang T, Shen L, Zhang Y, Li H, Wang Y, Quan D, “Oil-soluble” reversed lipid nanoparticles for oral insulin delivery” J Nanobiotechnology, 2020; 18(1):98. https://doi.org/10.1186/s12951-020-00657-8
86. Xu B, Jiang G, Yu W, Liu D, Liu Y, Kong X, et al, “Preparation of poly(lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin” Mater Sci Eng C, 2017;78:420–8. DOI: http://dx.doi.org/10.1016/j.msec.2017.04.113
87. El Leithy ES, Abdel-Bar HM, Ali RAM, “Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity” Int J Pharm, 2019; 571:118708. DOI: https://doi.org/10.1016/j.ijpharm.2019.118708
88. Elkhatib MM, Ali AI, Al-Badrawy AS, “In vitro and in vivo comparative study of oral nanoparticles and gut iontophoresis as oral delivery systems for insulin” Biol Pharm Bull, 2021; 44(2):251–8. https://doi.org/10.1248/bpb.b20-00737
89. Elsayed AM, Khaled AH, Al Remawi MM, Qinna NA, Farsakh HA, Badwan AA, “Low molecular weight chitosan-insulin complexes solubilized in a mixture of self-assembled labrosol and plurol oleaque and their glucose reduction activity in rats” Mar Drugs, 2018; 16(1). https://doi.org/10.3390/md16010032
90. Zheng Y, Wu J, Shan W, Wu L, Zhou R, Liu M, et al, “Multifunctional Nanoparticles Enable Efficient Oral Delivery of Biomacromolecules via Improving Payload Stability and Regulating the Transcytosis Pathway” ACS Appl Mater Interfaces, 2018; 10(40):34039–49. https://doi.org/10.1021/acsami.8b13707
Statistics
70 Views | 2 Downloads
How to Cite
1.
KRISNA A, Ningrum HW, Fimannuha TL, Puspita OE. Systematic Review on the Effectiveness of Strategies for Increasing Insulin Bioavailability in Oral Route Delivery Systems Based on Manufacturing Techniques and Materials Used. JDDT [Internet]. 15Nov.2021 [cited 1Dec.2021];11(6):194-08. Available from: https://jddtonline.info/index.php/jddt/article/view/5132