Nanoparticulate drug delivery systems: A revolution in design and development of drugs
Abstract
The recent developments in nanoparticle-based drug formulations have been helping to address issues around treating challenging diseases. Nanoparticles come in different sizes but usually vary between 100nm to 500nm. For the past few years there has been research going on in the area of drug delivery using particulate delivery systems. Various drug molecules have been modified for both pharmacokinetic and pharmacodynamic properties using nanoparticles as physical approach. Various polymers have been used in the formulation of nanoparticles for drug delivery research to increase therapeutic benefit, while minimizing side effects. Here, we review various aspects of nanoparticle formulation, characterization, effect of their characteristics and their applications in delivery of drug molecules and therapeutic genes.
Keywords: nanoparticles, applications in delivery, Liposomes, Dendrimers
Keywords:
nanoparticles, applications in delivery, Liposomes, DendrimersDOI
https://doi.org/10.22270/jddt.v11i5-S.5023References
Bhowmik D, Duraivel S, Kumar KS. Recent trends in challenges and opportunities in transdermal drug delivery system. The Pharma Innovation. 2012; 1(10). [Google Scholar]
NirvedV U, Lokesh V, Prasad MG, Joshi HM. Formulation and evaluation of ethosomes of sesbania grandiflora linn. Seeds. Novel Science International Journal of Pharmaceutical Science. 2012; 1:274-5. [Google Scholar]
Pan BF, Gao F, Gu HC: Dendrimer modified magnetite nanoparticles for protein immobilization. Journal of colloid and interface science, 2005; 284(1):1-6. https://doi.org/10.1016/j.jcis.2004.09.073
dos Santos Giuberti C, de Oliveira Reis EC, Ribeiro Rocha TG, Leite EA, Lacerda RG, Ramaldes GA, de Oliveira MC: Study of the pilot production process of long-circulating and pH-sensitive liposomes containing cisplatin. Journal of liposome research, 2011; 21(1):60-69. https://doi.org/10.3109/08982101003754377
Salata, Oleg V. "Applications of nanoparticles in biology and medicine." Journal of nanobiotechnology. 2004; 2(1):1-6. https://doi.org/10.1186/1477-3155-2-1
Paull R, Wolfe J, Hebert P, Sinkula M: Investing in nanotechnology. Nature Biotechnology. 2003; 21(10):1144-1147. 10.1038/nbt1003-1144. https://doi.org/10.1038/nbt1003-1144
Manne R, Devarajan A. Development of nicotinic acid controlled release tablets with natural phenolic anti-oxidant polymer by encapsulation technique. Journal of Natural Remedies. 2021; 20(4):204-16. https://doi.org/10.18311/jnr/2020/25514
van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G: Liposomal drug formulations in the treatment of rheumatoid arthritis. Molecular pharmaceutics, 2011; 8(4):1002-1015. https://doi.org/10.1021/mp2000742
Bilensoy E, Sarisozen C, Esendagl G, Dogan LA, Aktas Y, Sen M, Mangan AN: Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. International journal of pharmaceutics. 2009; 371(1-2):170-176 https://doi.org/10.1016/j.ijpharm.2008.12.015
Bai J, Li Y, Du J, Wang S, Zheng J, Yang O, Chen X: One-pot synthesis of polyacrylamide-gold nanocomposite. Materials Chemistry and Physics. 2007; 106(2-3): 412-415. https://doi.org/10.1016/j.matchemphys.2007.06.021
Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, Lim DV: Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic & medicinal chemistry letters. 2007; 17(1):53-56. https://doi.org/10.1016/j.bmcl.2006.09.098
Kurakula M, Naveen N R, Patel B, Manne R, Patel DB. Preparation, Optimization and Evaluation of Chitosan-Based Avanafil Nanocomplex Utilizing Antioxidants for Enhanced Neuroprotective Effect on PC12 Cells. Gels. 2021; 7(3):96. https://doi.org/10.3390/gels7030096
Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. International journal of pharmaceutics. 2010; 385(1-2):143-149. https://doi.org/10.1016/j.ijpharm.2009.10.004
Panyam J, Labhasetwar V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Molecular pharmaceutics. 2004; 1(1):77-84. https://doi.org/10.1021/mp034002c
Prabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharmaceutical research. 2004; 21(2):354-364. https://doi.org/10.1023/B:PHAM.0000016250.56402.99
Murakami, H., Kobayashi, M., Takeuchi, H., & Kawashima, Y. Preparation of poly (DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. International journal of pharmaceutics.1999; 187(2):143-152. https://doi.org/10.1016/S0378-5173(99)00187-8
Kovacevic A, Savic S, Vuleta G, Mueller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. International journal of pharmaceutics. 2011; 406(1-2):163-72. https://doi.org/10.1016/j.ijpharm.2010.12.036
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science. 1968; 26(1):62-9. https://doi.org/10.1016/0021-9797(68)90272-5
Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chemistry of Materials. 2001; 13(2):308-11. https://doi.org/10.1021/cm0011559
Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. International journal of pharmaceutics. 2001; 218(1-2):75-80. https://doi.org/10.1016/S0378-5173(01)00614-7
Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G. Combined hydroxypropyl-β-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. International journal of pharmaceutics. 2001; 218(1-2):113-24. https://doi.org/10.1016/S0378-5173(01)00622-6
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews. 2003; 55(3):329-47. https://doi.org/10.1016/S0169-409X(02)00228-4
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharmaceutical research. 1997; 14(11):1568-73. https://doi.org/10.1023/A:1012126301290
Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13:1838-45 https://doi.org/10.1023/A:1016085108889
Redhead HM, Davis SS, Illum L. Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. Journal of Controlled Release. 2001; 70(3):353-63. https://doi.org/10.1016/S0168-3659(00)00367-9
Swarbrick J, Boylan J. Encyclopedia of pharmaceutical technology. 2nd ed.; Marcel Dekker: New York, 2002. 34.
Müller RH, Wallis KH. Surface modification of iv injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. International journal of pharmaceutics. 1993; 89(1):25-31.https://doi.org/10.1016/0378-5173(93)90304-X https://doi.org/10.1016/0378-5173(93)90304-X
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews. 2012; 64:24-36. https://doi.org/10.1016/j.addr.2012.09.006
Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. Journal of pharmaceutical sciences. 2008; 97(9):3518-90. https://doi.org/10.1002/jps.21270
Devapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical development. J Pharm Sci. 2007; 96:2547-65. https://doi.org/10.1002/jps.20875
Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology. 2009; 86(3):215-23. https://doi.org/10.1016/j.yexmp.2008.12.004
Gupta S, Moulik SP. Biocompatible microemulsions and their prospective uses in drug delivery. Journal of pharmaceutical sciences. 2008; 97(1):22-45. https://doi.org/10.1002/jps.21177
Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Utilization of poly (DL-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. Journal of Controlled Release. 2000; 67(1):29-36. https://doi.org/10.1016/S0168-3659(99)00288-6
Mozafari MR, Omri A. Importance of divalent cations in nanolipoplex gene delivery. Journal of pharmaceutical sciences. 2007; 96(8):1955-66. https://doi.org/10.1002/jps.20902
Kolluru LP, Rizvi SA, D'Souza M, D'Souza MJ. Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. Journal of drug targeting. 2013; 21(1):77-86. Google Scholar https://doi.org/10.3109/1061186X.2012.729214
Chikan V, McLaurin EJ. Rapid nanoparticle synthesis by magnetic and microwave heating. Nanomaterials. 2016; 6(5):85. https://doi.org/10.3390/nano6050085. https://doi.org/10.3390/nano6050085
Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics. 2004; 57(1):53-63. [PubMed] [Google Scholar] https://doi.org/10.1016/S0939-6411(03)00095-X
Ramanan RM, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature‐sensitive composite hydrogel for drug delivery applications. Biotechnology progress. 2006; 22(1):118-25. [PubMed] [Google Scholar] https://doi.org/10.1021/bp0501367
Paavola A, Kilpeläinen I, Yliruusi J, Rosenberg P. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. International journal of pharmaceutics. 2000; 199(1):85-93. https://doi.org/10.1016/S0378-5173(00)00376-8
Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder technology. 2000; 107(1-2):137-43. https://doi.org/10.1016/S0032-5910(99)00182-5
Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Evaluation of poly (DL-lactide-co-glycolide) nanoparticles as matrix material for direct compression. Advanced Powder Technology. 2000; 11(3):311-22. https://doi.org/10.1163/156855200750172187
Published
Abstract Display: 434
PDF Downloads: 557
PDF Downloads: 89 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.