A Review on Nanoparticles Drug Delivery System

Authors

  • Kranti Pawar Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India
  • Ramanlal Kachave Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India
  • Madhuri Kanawade Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India
  • Vinayak Zagre Gawande College of Pharmacy, Sakharkheda, Maharashtra, India

Abstract

The method or process of delivering a pharmaceutical ingredient to create a therapeutic effect in people or animals is referred to as drug delivery. Nasal and pulmonary routes of medication administration are becoming increasingly important in the treatment of human illnesses. These methods, especially for peptide and protein therapies, provide potential alternatives to parenteral drug administration. Several medication delivery methods have been developed for this purpose and are being tested for nasal and pulmonary delivery. Chitosan, Alginate, vanilline oxalate, zinc oxalate, cellulose, polymeric micelles, Gliadin, and phospholipid are examples of these. Multidrug resistance, a key issue in chemotherapy, can be reversed with these nanoparticles. Surgery, chemotherapy, immunotherapy, and radiation are all well-established treatments used in cancer treatment. A nanoparticle has emerged as a potential method for the targeted delivery of medicines used to treat certain illnesses.

Keywords: Nasal Drug Delivery, Pulmonary Drug Delivery, Nanoparticles

Keywords:

Nasal Drug Delivery, Pulmonary Drug Delivery, Nanoparticles

DOI

https://doi.org/10.22270/jddt.v11i4.4865

Author Biographies

Kranti Pawar, Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India

Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India

Ramanlal Kachave, Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India

Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India

Madhuri Kanawade, Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India

Amrutvahini College of Pharmacy, Sangamner, Maharashtra, India

Vinayak Zagre, Gawande College of Pharmacy, Sakharkheda, Maharashtra, India

Gawande College of Pharmacy, Sakharkheda, Maharashtra, India

References

Jahanshahi M, Babaei Z. Protein nanoparticle: a unique system as drug delivery vehicles. African Journal of Biotechnology. 2008 ;7(25).

Xin Y, Huang Q, Tang JQ, Hou XY, Zhang P, Zhang LZ, Jiang G. Nanoscale drug delivery for targeted chemotherapy. Cancer letters. 2016 Aug 28; 379(1):24-31. https://doi.org/10.1016/j.canlet.2016.05.023

Muhamad12 II, Selvakumaran S, Lazim NA. Designing polymeric nanoparticles for targeted drug delivery system. Nanomed. 2014; 287:287.

Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine. 2012 Feb 1; 8(2):147-66. https://doi.org/10.1016/j.nano.2011.05.016

Kwon J, Kim J, Park S, Khang G, Kang PM, Lee D. Inflammation-responsive antioxidant nanoparticles based on a polymeric prodrug of vanillin. Biomacromolecules. 2013 May 13; 14(5):1618-26. https://doi.org/10.1021/bm400256h

Park H, Kim S, Kim S, Song Y, Seung K, Hong D, Khang G, Lee D. Antioxidant and anti-inflammatory activities of hydroxybenzyl alcohol releasing biodegradable polyoxalate nanoparticles. Biomacromolecules. 2010 Aug 9; 11(8):2103-8. https://doi.org/10.1021/bm100474w

Ricchetti ME. Oxidative Stress Reduction, Redox Homeostasis & Antioxidants.

Swami Vetha BS, Adam AG, Aileru A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. International Journal of Molecular Sciences. 2021 Jan; 22(11):5607. https://doi.org/10.3390/ijms22115607

Konat Zorzi G, Contreras-Ruiz L, Párraga JE, López-García A, Romero Bello R, Diebold Y, Seijo B, Sánchez A. Expression of MUC5AC in ocular surface epithelial cells using cationized gelatin nanoparticles. Molecular pharmaceutics. 2011 Oct 3; 8(5):1783-8. https://doi.org/10.1021/mp200155t

Alonso MJ, Sánchez A. The potential of chitosan in ocular drug delivery. Journal of pharmacy and pharmacology. 2003 Nov;5 5(11):1451-63. https://doi.org/10.1211/0022357022476

Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artificial cells, nanomedicine, and biotechnology. 2017 Oct 3; 45(7):1397-407. https://doi.org/10.1080/21691401.2016.1243545

Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. International journal of clinical and experimental medicine. 2015; 8(10):19670.

Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of advanced research. 2019 Jan 1; 15:1-8. https://doi.org/10.1016/j.jare.2018.06.005

Kumar SU, Matai I, Dubey P, Bhushan B, Sachdev A, Gopinath P. Differentially cross-linkable core-shell nanofibers for tunable delivery of anticancer drugs: synthesis, characterization and their anticancer efficacy. RSC advances. 2014; 4(72):38263-72. https://doi.org/10.1039/C4RA05001K

Lee WH, Loo CY, Young PM, Traini D, Mason RS, Rohanizadeh R. Recent advances in curcumin nanoformulation for cancer therapy. Expert opinion on drug delivery. 2014 Aug 1; 11(8):1183-201. https://doi.org/10.1517/17425247.2014.916686

Mannava MK, Suresh K, Kumar Bommaka M, Bhavani Konga D, Nangia A. Curcumin-artemisinin coamorphous solid: Xenograft model preclinical study. Pharmaceutics. 2018 Mar; 10(1):7. https://doi.org/10.3390/pharmaceutics10010007

Mehanna MM, Mohyeldin SM, Elgindy NA. Respirable nanocarriers as a promising strategy for antitubercular drug delivery. Journal of controlled release. 2014 Aug 10; 187:183-97. https://doi.org/10.1016/j.jconrel.2014.05.038

Patel S, Freedman S, Chapman KL, Emms F, Fletcher AE, Knowles M, Marwood R, Mcallister G, Myers J, Patel S, Curtis N. Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine D4 receptor. Journal of Pharmacology and Experimental Therapeutics. 1997 Nov 1; 283(2):636-47.

De Freitas ES, Da Silva PB, Chorilli M, Batista AA, de Oliveira Lopes É, Silva MM, Leite CQ, Pavan FR. Nanostructured lipid systems as a strategy to improve the in vitro cytotoxicity of ruthenium (II) compounds. Molecules. 2014 May; 19(5):5999-6008. https://doi.org/10.3390/molecules19055999

Da Silva PB, de Freitas ES, Bernegossi J, Gonçalez ML, Sato MR, Leite CQ, Pavan FR, Chorilli M. Nanotechnology-based drug delivery systems for treatment of tuberculosis-a review. Journal of biomedical nanotechnology. 2016 Feb 1; 12(2):241-60. https://doi.org/10.1166/jbn.2016.2149

Pandey R, Khuller GK. Nanotechnology based drug delivery system (s) for the management of tuberculosis, Indian J Exp Biol, 2006 May; 44(5):357-66.

Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & therapeutics. 2006 Dec 1; 112(3):630-48. https://doi.org/10.1016/j.pharmthera.2006.05.006

López-Donaire ML, Sussman EM, Fernández-Gutiérrez M, Méndez-Vilas A, Ratner BD, Vázquez-Lasa B, San Román J. Amphiphilic self-assembled "polymeric drugs": Morphology, properties, and biological behavior of nanoparticles. Biomacromolecules. 2012 Mar 12; 13(3):624-35. https://doi.org/10.1021/bm300043f

Zhang Y, Huang Y, Zhao W, Lu J, Zhang P, Zhang X, Li J, Gao X, Venkataramanan R, Li S. Fmoc-conjugated PEG-vitamin E 2 micelles for tumor-targeted delivery of paclitaxel: enhanced drug-carrier interaction and loading capacity. The AAPS journal. 2014 Nov; 16(6):1282-91. https://doi.org/10.1208/s12248-014-9651-2

Neves MM, González-García MB, Santos-Silva A, Costa-García A. Voltammetric immunosensor for the diagnosis of celiac disease based on the quantification of anti-gliadin antibodies. Sensors and Actuators B: Chemical. 2012 Mar 1; 163 (1):253-9. https://doi.org/10.1016/j.snb.2012.01.048

Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, Andersson LC, Leskinen K, Saavalainen P, Hoover LI, Huang K. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterology. 2020 May 1; 158 (6):1667-81. https://doi.org/10.1053/j.gastro.2020.01.045

Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PloS one. 2012 Jan 27; 7(1):e30815. https://doi.org/10.1371/journal.pone.0030815

Wang YJ, Larsson M, Huang WT, Chiou SH, Nicholls SJ, Chao JI, Liu DM. The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Progress in Polymer Science. 2016 Jun 1; 57:153-78. https://doi.org/10.1016/j.progpolymsci.2016.01.002

Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, Yuan M. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Frontiers in bioengineering and biotechnology. 2020 Jan 31; 7:489. https://doi.org/10.3389/fbioe.2019.00489

Agarwal H, Shanmugam VK. Synthesis and optimization of zinc oxide nanoparticles using Kalanchoe pinnata towards the evaluation of its anti-inflammatory activity. Journal of Drug Delivery Science and Technology. 2019 Dec 1; 54:101291. https://doi.org/10.1016/j.jddst.2019.101291

Aathira CM, Arivarasu L, Rajeshkumar S. Antioxidant and Anti-Inflammatory Potential of Chromium Picolinate Mediated Zinc Oxide Nanoparticle. Journal of Pharmaceutical Research International. 2020 Aug 26:118-21. https://doi.org/10.9734/jpri/2020/v32i1930717

Liu C, Chen Z, Ye Z, He D, Dang Y, Li Z, Wang L, Ren M, Fan Z, Liu H. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front. Pharmacol. 2021; 12: 685465. https://doi.org/10.3389/fphar.2021.685465

Published

2021-07-15
Statistics
Abstract Display: 739
PDF Downloads: 749
PDF Downloads: 75

How to Cite

1.
Pawar K, Kachave R, Kanawade M, Zagre V. A Review on Nanoparticles Drug Delivery System. J. Drug Delivery Ther. [Internet]. 2021 Jul. 15 [cited 2025 Nov. 15];11(4):101-4. Available from: https://jddtonline.info/index.php/jddt/article/view/4865

How to Cite

1.
Pawar K, Kachave R, Kanawade M, Zagre V. A Review on Nanoparticles Drug Delivery System. J. Drug Delivery Ther. [Internet]. 2021 Jul. 15 [cited 2025 Nov. 15];11(4):101-4. Available from: https://jddtonline.info/index.php/jddt/article/view/4865