Toxicity of mercury on the brain: ability of extract of Pistacia atlantica regulated effect

  • Benahmed Fatiha Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria
  • Hayet Fatima Zohra Belhouari Department of Biology, University Echahid Ahmed Zabana, Relizane 48000, Algeria
  • Radjaa Bounoura Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria
  • Elazhari Mehrab Department of Biology, University Echahid Ahmed Zabana, Relizane 48000, Algeria
  • Omar Kharoubi Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

Abstract

Objective: The purpose of this study was to evaluate the neuroprotective effect of 150 mg / kg extract of the plant Pistacia atlantica against mercury-induced oxidative stress


Methods: Hg was administered intraperitoneally (2,5 mg/kg body weight, one time a week), and P. atlantica and were given orally by gavage at a daily dose (150 mg/kg body weight) to rats for 32 days. 24 male adult Albinos Wistar rats were divided into four groups: group 1 Control, group 2 (HgCl2) group 3 (Hg + P. atlantica) and group 4 (P. atlantica). Paramatrical tests of oxidative stress and histological sections of the cerebral parenchyma. Results: Our results showed that the intraperitoneal injection of mercury chloride HgCl2 causes deleterious effects in the brain resulting in: a failure of redox status by disrupting the antioxidant defense system by a significant decrease in the activity of catalase glutathione peroxidase, glutathione-s-transferase and superoxide dismutase acetylcholinesterase and increase of the activity of the enzyme lactate dehydrogenase. The levels of lipid peroxidation markers were high in TBARS intoxicated rats with protein oxidation increased in the brain intoxicated by. The continuous use of mercury is also at the origin, in brain tissue However, supplementation of P. atlantica extract with mercury-treated rats attenuated some of the harmful and toxic effects of this metal. This clearly demonstrates the protective roles of this plant


Keywords: mercury, Pistacia atlantica, Wistar rat, brain, antioxidant, neurotoxicity.

Keywords: mercury, Pistacia atlantica, Wistar rat, brain, antioxidant, neurotoxicity

Downloads

Download data is not yet available.

Author Biographies

Benahmed Fatiha, Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

Hayet Fatima Zohra Belhouari, Department of Biology, University Echahid Ahmed Zabana, Relizane 48000, Algeria

Department of Biology, University Echahid Ahmed Zabana, Relizane 48000, Algeria

Radjaa Bounoura, Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

Elazhari Mehrab, Department of Biology, University Echahid Ahmed Zabana, Relizane 48000, Algeria

Department of Biology, University Echahid Ahmed Zabana, Relizane 48000, Algeria

Omar Kharoubi, Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

Laboratory of Experimental Biotoxicology, Department of Biology, Faculty of Life and Natural Sciences, University of Oran1, Ahmed Ben Bella, 1524 EL M Naouer 31000 Oran, Algeria

References

1. Officioso, A., Panzella, L., Tortora, F., Alfieri, M. L., Napolitano, A., & Manna, C. (2018). Comparative analysis of the effects of olive oil hydroxytyrosol and its 5-S-lipoyl conjugate in protecting human erythrocytes from mercury toxicity. Oxid Med Cell Longev., 2018; 2018:9042192.
2. Caglayan C., Kandemir FM., Yildirim S., Kucukler S., Eser G. Rutin protects mercuric chloride-induced nephrotoxicity via targeting of aquaporin 1 level, oxidative stress, apoptosis and inflammation in rats.; J Trace Elem Med Biol. 2019; 54:69-78.
3. Esdaile, L. J., & Chalker, J. M.. The Mercury Problem in Artisanal and Small‐Scale Gold Mining. Chem. Eur. J. 2018; 24(27):6905-6916.
4. Chan, Thomas YK. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clinical toxicology. 2011; 49(10):886-891.
5. Copan, L., Fowles, J., Barreau, T., & McGee, N. Mercury toxicity and contamination of households from the use of skin creams adulterated with mercurous chloride (Calomel). Int J Env Res Pub He., 2015; 12(9):10943-10954
6. Abu-Taweel, G. M. Neurobehavioral protective properties of curcumin against the mercury chloride treated mice offspring. Saudi J. Biol. Sci., 2019; 26(4): 736-743.
7. Koli, S., Prakash, A., Choudhury, S., Mandil, R., & Garg, S. K. Mercury affects uterine myogenic activity even without producing any apparent toxicity in rats: Involvement of calcium-signaling cascades. J Trace Elem Med Bio., 2020; 57: 0-47.
8. Corrêa, M. G., Bittencourt, L. O., Nascimento, P. C., Ferreira, R. O., Aragão, W. A. B., Silva, M. C. F., & Crespo-Lopez, M. E. Spinal cord neurodegeneration after inorganic mercury long-term exposure in adult rats: Ultrastructural, proteomic and biochemical damages associated with reduced neuronal density. Ecotox Environ Safe., 2020; 191:110-159.
9. Xu, J., Zhang, J., Lv, Y., Xu, K., Lu, S., Liu, X., & Yang, Y.. Effect of soil mercury pollution on ginger (Zingiber officinale Roscoe): Growth, product quality, health risks and silicon mitigation. Ecotox Environ Safe., 2020; 195:110472.
10. Barghout N, Chebata N, Moumene S, Khennouf S, Gharbi A, Gharbi A, El Hadi D, Antioxidant and antimicrobial effect of alkaloid bulbs extract of Polianthes tuberosa L. (Amaryllidaceae) cultivated in Algeria, Journal of Drug Delivery and Therapeutics 2020; 10(4):44-48
11. Ben Ahmed, Z., Yousfi, M., Viaene, J., Dejaegher, B., Demeyer, K., Mangelings, D., & Vander Heyden, Y.. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves. Pharm. Biol., 2017; 55(1):1185-1194.
12. Hasheminya, S. M., & Dehghannya, J. Composition, phenolic content, antioxidant and antimicrobial activity of Pistacia atlantica subsp. kurdica hulls’ essential oil. Food Bioscience. 2020; 34:100510.
13. Bagheri, M., Mostafavinia, A., Abdollahifar, M. A., Amini, A., Ghoreishi, S. K., Chien, S., & Bayat, M.. Combined effects of metformin and photobiomodulation improve the proliferation phase of wound healing in type 2 diabetic rats. Biomedicine & Pharmacotherapy, 2020; 123:109776.
14. Ohkawa, H., Ohishi, N., & Yagi, K.. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979; 95(2):351–358.
15. Sedlak, J., & Lindsay, R. H.. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968; 25:192–205.
16. Aebi H. Catalase. In: Berg Meyer H., editor. Methods of enzymatic analysis. 2nd ed. Weinheim: Verlag Chemie. 1974; p. 673-84
17. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G., Selenium. Biochemical Role as a Component of Glutathione Peroxidase. Science, 1973; 179:588–590.
18. Marklund, S., & Marklund, G. A simple assay for superoxide dismutase using auto oxidation of pyrogallol. Eur J Biochem., 1974; 47:469-72.
19. Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 1961; 7(2): 88-95.
20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem., 1951; 193(1):265-75
21. Lzurie S., Timothy J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radical Bio Med., 2013; 62:111-120.
22. Malqui H., Anarghou H., Ouardi F., Ouasmi N., Najimi M., Chigr F. Continuous Exposure to Inorganic Mercury Affects Neurobehavioral and Physiological Parameters in Mice. J Mol Neurosci., 2018; 66(2):291-305.
23. Sudo K., Van Dao C., Miyamoto A., Shiraishi M. Comparative. analysis of in vitro neurotoxicity of methylmercury, mercury, cadmium, and hydrogen peroxide on SH-SY5Y cells. J Vet Med Sci., 2019; 6:828-837.
24. Stringari J., Nunes A., Franco L., Bohrer D., Garcia S., Dafre L., Farina M. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharm., 2008; 227:147-154.
25. Zalups RK, Bridges CC. Mechanisms involved in the renal handling and toxicity of mercury. Comprehensive toxicology. 2018; 10:410–435
26. Bubber, P. A Study on Prooxidative and Neurotoxic Effects of Mercury Chloride in Rats. EC Pharmacology and Toxicology., 2019; 7:112-124.
27. Moneim, A. E. A. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis., 2015; 30(4):935-942.
28. Zefferino R, Piccoli C, Ricciardi N, Scrima R, Capitanio N. Possible Mechanisms of Mercury Toxicity and Cancer Promotion: Involvement of Gap Junction Intercellular Communications and Inflammatory Cytokines. Oxid Med Cell Longev., 2017; 2017:702858
29. Shahouzehi, B., Sepehri, G., Sadeghiyan, S., & Masoomi-Ardakani, Y. Effect of Pistacia atlantica resin oil on anti-oxidant, hydroxyprolin and VEGF changes in experimentally-induced skin burn in rat. World J. Plast. Surg., 2018; 7(3):357.
30. Gendrel, M., Atlas, E. G., & Hobert, O.. A cellular and regulatory map of the GABAergic nervous system of C. elegans. Elife, 2016; 5:e17686.
31. Dahalan A., Khalid K., Khalil M., Shukor Y., Syed N., Shamaan A.. Characterisation of cholinesterase from kidney tissue of Asian seabass (Lates calcarifer) and its inhibition in presence of metal ions J. Environ. Biol., 2017; 38:383-388
32. Nadeem S., Kabouche A., Kabouche Z. .Essential Oils Composition, Anticholinesterase and Antioxidant Activities of Pistacia atlantica Desf. Rec. Nat. Prod., 2017; 11:411-41.
33. Zerrad K., Benhamouda A., Chaib I., Larrif A., Mediouni J. Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium L.essential oils. Ind. Corps Prod., 2015; 76:121-127.
34. Agarwal R., Goel K., Chandra R., Behari R. Role of vitamin E in preventing acute mercury toxicity in rat. Environ toxicol phar., 2010; 29:70–78.
35. Akintunde, J. K., & Babaita, A. K. Effect of PUFAs from Pteleopsis suberosa stem bark on androgenic enzymes, cellular ATP and prostatic acid phosphatase in mercury chloride–exposed rat. Middle East Fertil. Soc., 2017; 22(3):211-218.
36. Liu C., Peng J., Zhang L., Wang S., Ju S., Liu C. Mercury adsorption from aqueous solution by regenerated activated carbon produced from depleted mercury-containing catalyst by microwave-assisted decontamination. J. Clean. Prod., 2018; 196:109–121.
Statistics
125 Views | 103 Downloads
How to Cite
1.
Fatiha B, Belhouari HFZ, Bounoura R, Mehrab E, Kharoubi O. Toxicity of mercury on the brain: ability of extract of Pistacia atlantica regulated effect. JDDT [Internet]. 15Aug.2020 [cited 23Apr.2021];10(4-s):17-4. Available from: http://jddtonline.info/index.php/jddt/article/view/4269