Immunomodulators for Curtailing COVID-19: a Positive Approach

  • Shabir Ahmad Bhat MD Scholar, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India
  • Shameem Ahmad Rather Reader, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India
  • Arsheed Iqbal Scientist III, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India
  • Haider Ali Qureshi MD Scholar, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India
  • Naquibul Islam Head of the department, Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India


Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is highly infectious, spreading swiftly from man to man which has not been previously recognized in humans. World Health Organization (WHO) on February 11, 2020 named the infection as COVID-19 as an acronym for ‘coronavirus disease-2019’ and on March 11, 2020 declared the outbreak as pandemic. It affects all the people without discrimination, however, older, immune compromised are more susceptible. The virus chiefly spread through droplet infection from infected person to healthy one by coughing, sneezing or with infected hands when touched to eyes, nose or mouth. Symptoms of the infection range from mild to severe ones. In severe cases (approx. 14% of cases) fever typically of high grade (104oF), breathlessness, pneumonia and severe acute respiratory syndrome may appear. So far no specific treatment or vaccine for novel coronavirus-2019 is there. From the past and recent past experiences we have learnt that herbal medicines have proven beneficial against various dreadful viral infections. Assessment of immune enhancing herbs in this paper may definitely be helpful for the body to fight COVID-19 infection.

Keywords:   Severe acute respiratory syndrome coronavirus-2, COVID-19, Pneumonia, Immune, Herbs

Keywords: Severe acute respiratory syndrome coronavirus-2, COVID-19, Pneumonia, Immune, Herbs


Download data is not yet available.

Author Biographies

Shabir Ahmad Bhat, MD Scholar, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

MD Scholar, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

Shameem Ahmad Rather, Reader, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

Reader, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

Arsheed Iqbal, Scientist III, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

Scientist III, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

Haider Ali Qureshi, MD Scholar, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

MD Scholar, Department of Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

Naquibul Islam, Head of the department, Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India

Head of the department, Moalajat, Regional Research Institute of Unani Medicine, University of Kashmir, Srinagar, J&K, India


1. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavorus disease 2019 (COVID-19) outbreak-an update on the status. Mil Med Res. 2020; 7(1):11. doi:10.1186/s40779-020-00240-0
2. World Health Organization. "Q&A on coronaviruses" ( April 23, 2020. Retrieved April 23, 2020.
3. World Health Organization (WHO). "Naming the coronavirus disease (COVID-19) and the virus that causes it.”
( Archived ( ases/nov el-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease(covid-2019)-and-the -virus-that-causes-it) from the original on 28 February 2020. Retrieved 28 February 2020.
4. Anonymous. "Coronavirus Disease 2019 (COVID-19) - Transmission" ( 9-ncov/prepare/transmission.html). Centers for Disease Control and Prevention. Updated on April 13, 2020. Retrieved April 23 2020.
5. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9(1):221-236.
6. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018; 14(8):e1007236.
7. Cascella M, Rajnik M, Cuomo A, et al. features, evaluation and treatment coronavirus (COVID-19) [updated 2020 Mar 20]. In: Statpearls [internet]. Treasure Island (FL): Statpearls Publishing. 2020 Jan.
8. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese centre for disease control and prevention. JAMA. 2020. doi:101001/jama.2020.2648
9. Kabir-ud-din M. Makhzanul Mufradāt. New Delhi: Ejaz publishing house; YNM. pp. 55,75,76,263,312, 317,460,461, 550,595,596.
10. Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Wild.) Hook.f. and Thoms. (Guduchi)- Validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010; 1(2):112-121.
11. Khosa RL, Prasad S. Pharmacognostical studies on Guduchi (Tinospora cordifolia Miers) J Res Ind Med. 1971;6:261–9. [Google Scholar]
12. Badar VA, Thawani VR, Wakode PT, Shrivastava MP, Gharpure KJ, Hingorani LL, et al. Efficacy of Tinospora cordifolia in allergic rhinitis. J Ethnopharmacol. 2005; 96:445–9. [PubMed]
13. Nayampalli S, Ainapure SS, Nadkarni PM. Study of antiallergic acid Bronchodilator effects of Tinospora cordifolia. Indian J Pharmacol. 1982;14:64–6. [Google Scholar]
14. Nayampalli SS, Desai NK, Ainapure SS. Anti-allergic properties of Tinospora cordifolia in animal models. Indian J Pharmacol. 1986; 18:250–2. [Google Scholar]
15. Rawal AK, Muddeshwar MG, Biswas SK. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation. BMC Complement Altern Med. 2004; 13(4):11. [PubMed]
16. Prince PS, Kamalakkannan N, Menon VP. Restoration of antioxidants by ethanolic Tinospora cordifolia in alloxan-induced diabetic Wistar rats. Acta Pol Pharm. 2004; 61:283–7. [PubMed]
17. Vedavathy S, Rao KN. Antipyretic activity of six indigenous medicinal plants of Tirumala Hilla, Andhra Pradesh, India. J Ethnopharmacol. 1991; 33:193–6. [PubMed]
18. Ikram M, Khattak SG, Gilani SN. Antipyretic studies on some indigenous Pakistani medicinal plants: II. J Ethnopharmacol. 1987; 19:185–92. [PubMed]
19. Jeyachandran R, Xavier TF, Anand SP. Anti-bacterial activity of stem extracts of Tinospora cordifolia (willd). Ancient Science life. 2003; 23:40–4. [PubMed]
20. Gupta KC, Viswanathan R. Antituberculous substances from plants. Antibiot Chemother. 1956; 6:194–5. [PubMed]
21. Nagarkatti DS, Rege NN, Desai NK, Dahanukar SA. Modulation of Kupffer cell activity by Tinospora cordifolia in liver damage. J Postgrad Med. 1994; 40:65–7. [PubMed]
22. Nair PK, Rodriguez S, Ramachandran R, Alamo A, Melnick SJ, Escalon E, et al. Immune stimulating properties of a novel polysaccharide from the medicinal plant Tinospora cordifolia. Int Immunopharmacol. 2004; 4:1645–59. [PubMed]
23. Sachan S, Dhama K, Latheef SK, Samad HA, Mariappan AK, Manuswamy P, et al. Immunomodulatory potential of Tinospora cordifolia and CpG ODN (TLR21 Agonist) against the very virulent infectious Bursal disease virus in SPF Chicks. Vaccines (Basel). 2019; 7(3):106. doi:10.3390/vaccines7030106
24. Gohari AR, Saeidnia S, Mahmoodabadi MK. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn Rev. 2013; 7(13):61-66. doi:10.4103/0973-7847.112850
25. Rezaee R, Hosseinzadeh H. Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci. 2013; 16:12–26. [PubMed]
26. Assimopoulou AN, Sinakos Z, Papageorgiou VP. Radical scavenging activity of Crocus sativus L extract and its bioactive constituents. Phytother Res. 2005; 19:997–1000. [PubMed]
27. Moallem SA, Hosseinzadeh H, Farahi S. A study of acute and chronic anti-nociceptive and anti-inflammatory effects of thiamine in mice. Iran Biomed J. 2008; 12:173–178. [PubMed]
28. Eslami M, Bayat M, Mozaffari Nejad AS, Sabokbar A, Anvar AA. Effect of polymer/nanosilver composite packaging on long-term microbiological status of Iranian saffron (Crocus sativus L) Saudi J Biol Sci. 2016; 23:341–347. [PubMed]
29. Liu M, Amini A, Ahmad Z. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth. Int J Biol Macromol. 2017; 95:145–152. [PubMed]
30. Soleymani S, Zabihollahi R, Shahbazi S, Bolhassani A. Antiviral Effects of Saffron and its Major Ingredients. Current Drug Delivery (2018) 15: 698. [PubMed]
31. Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. Daru. 2015; 23:31. [PubMed]
32. Zirak MZ, Rezaee SA, Karimi G, and Hosseinzadeh H. Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: A review. Iran J Basic Med Sci. 2019 Apr; 22(4): 334–344. [PubMed]
33. Majdalawieh AF, Hmaidan R, Carr RI. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol. 2010; 131(2):268–275.
34. Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 2009; 11(5):373–381.
35. Halawani E. Antibacterial activity of thymo-quinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics. Adv Biol Res. 2009; 148-152.
36. Ahmad A, Husain A, Mujeeb M, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed. 2013;3(5):337–352. doi:10.1016/S2221-1691(13)60075-1
37. Al-Jassir MS. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chem. 1992; 45:239–242.
38. Bakathir HA, Abbas NA. Detection of the antibacterial effect of Nigella sativa ground seeds with water. Afr J Tradit Compl Altern Med. 2011; 8(2):159–164.
39. Salem EM, Yar T, Bamosa AO, Al-Quorain A, Yasawy MI, Alsulaiman RM, et al. et al. Comparative study of Nigella sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi J Gastroenterol. 2010; 16(3):207–214.
40. Ogawa K, Nakamura S, Hosokawa K, Ishimaru H, Saito N, Ryu K, et al. New diterpenes from Nigella damascena seeds and their antiviral activities against herpes simplex virus type-1. J Nat Med. 2018; 72(2):439-447.
doi: 10.1007/s11418-017-1166-6. Epub 2017 Dec 29.
41. Salem ML, Hossain MS.Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol. 2000; 22(9):729-740.
42. Onifade AA, Jewell AP, Adedeji WA. Nigella satva concoction induced sustained seroreversion in HIV patient. Afric J Trad Complement AlternatvMed. 2013; 10:332-5.
43. Oyero OG, Toyama M, Mitsuhiro N, Onifade AA, Hidaka A, Okamoto M, et al. selective inhibition of hepatitis C virus replication by alpha-zam, a nigella sativa seed formulation. Afr J Tradit Complement Altern Med. 2016; 13:144-8.
44. Umar S, Munir MT, Subhan S, Azam T, Nisa Q, Khan MI, et al. protective and antiviral property of Nigella sativa against avian influenza (H9N2) in turkeys. J Saudi Soc Agric Sci. 2016; doi:10.1016/j.jssas.2016.09.004
45. Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev. 2011; 20(3):225-239.
46. Khare CP. Indian medicinal plants, An Illustrated Dictionary. New York: Springer Science + business media, LLC; 2007: pp. 238, 239.
47. Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods. 2017; 6(10): 92.
48. Prasad S, Aggarwal BB. Turmeric, the golden spice: From traditional medicine to modern medicine. In: Benzie IFF, Wachtel-Galor S, editors. Herbal medicine: Biomolecular and Clinical aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor and Francis; 2011. Ch.13.
49. Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res. 2017; 115:133-148. [PubMed]
50. Shakibaei M, Jhon T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007. [PubMed]
51. Niamsa N, Sittiwet C. Antimicrobial activity of Curcuma longa aqueous extract. Journal of Pharmacology and Toxicology. 2009; 4(4):173–177. [PubMed]
52. Ungphaiboon S, Supavita T, Singchangchai P, Sungkarak S, Rattanasuwan P, Itharat A. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. Songklanakarin Journal of Science and Technology. 2005; 27(2):269–578. [PubMed]
53. Lawhavinit O-A, Kongkathip N, Kongkathip B. Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart Journal—Natural Science. 2010; 44(3):364–371. [PubMed]
54. Hosny IM, El Kholy WI, Murad HA, El Dairouty RK. Antimicrobial activity of Curcumin upon pathogenic microorganisms during manufacture and storage of a novel style cheese ‘Karishcum’. Journal of American Science. 2011; 7:611–618. [PubMed]
55. De R, Kundu P, Swarnakar S, et al. Antimicrobial activity of curcumin against helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents and Chemotherapy. 2009; 53(4):1592–1597. [PubMed]
56. Singh RK, Rai D, Yadav D, Bhargava A, Balzarini J, De Clercq E. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. European Journal of Medicinal Chemistry. 2010; 45(3):1078–1086. [PubMed]
57. Chen D-Y, Shien J-H, Tiley L, et al. Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry. 2010; 119(4):1346–1351. [Google Scholar]
58. Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Molecular Carcinogenesis. 2006;45(5):320–332. [PubMed]
59. Si X, Wang Y, Wong J, Zhang J, McManus BM, Luo H. Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication. Journal of Virology. 2007; 81(7):3142–3150. [PubMed]
60. Kim HJ, Yoo HS, Kim JC, et al. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology. 2009; 124(2):189–196. [PubMed]
61. Kim K, Kim KH, Kim HY, Cho HK, Sakamoto N, Cheong J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Letters. 2010; 584(4):707–712. [PubMed]
62. Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90(5):1839–1842. [PubMed]
63. Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely used Chinese herb. Acta Pharm Sin B. 2015; 5(4):310-315. [PubMed]
64. Matsumoto Y, Matsuura T, Aoyagi H, Matsuda M, Hmwe S.S, Date T. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro. PLoS one. 2013; 8:e68992. [PubMed]
65. Ashfaq U.A, Masoud M.S, Nawaz Z, Riazuddin S. Glycyrrhizin as antiviral agent against hepatitis C virus. J Transl Med. 2011; 9:112. [PubMed]
66. Zhang H.C, Song Y.X, Zhang Z.C. Glycyrrhizin administration ameliorates coxsakievirus B3-induced myocarditis in mice. Am J Med Sci. 2012; 344:206-210. [PubMed]
67. Michaelis M, Geiler J, Naczk P, Sithisarn P, Leutz A, Doerr HW, et al. Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus replication and proinflammatory gene expression. PLoS one. 2011; 6(5):e19705. doi:10.1371/journal.pone.0019705.
68. Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced proinflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol. 2010; 199(4):291-297. [PubMed]
69. Smirnov V.S, Zarubaev V.V, Anfimov P.M, Shtro A.A. Effect of a combination of glutamyl-tryptophan and glycyrrhizic acid on the course of acute infection caused by influenza (H3H2) virus in mice. Vopr Virusol. 2012; 57:23–27. [PubMed]
70. Yeh C.F, Wang K.C, Chiang L.C, Shieh D.E, Yen M.H, Chang J.S. Water extract of licorice had antiviral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013; 148:466-473. [PubMed]
71. Wang J.J, Chen X.Q, Wang W, Zhang Y.T, Yang Z.Y, Jin Y. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. J Ethnopharmacol. 2013; 147:114-121. [PubMed]
72. Hong Y.K, Wu H.T, Ma T, Liu W.J, He X.J. Effects of Glycyrrhiza glabra polysaccharides on immune and antioxidant activities in high-fat mice. Int J Biol Macromol. 2009; 45:61–64. [PubMed]
73. Wang J.H, Kwas C, Wu L. Intercellular adhesion molecule 1 (ICAM-1), but not ICAM-2 and -3, is important for dendritic cell-mediated human immunodeficiency virus type 1 transmission. J Virol. 2009; 83:4195–4204. [PubMed]
74. Hocaoglu AB, Karaman O, Erge DO, Erbil G, et al. Glycyrrhizin and long-term histopathologic changes in a murine model of asthma. Curr Ther Res Clin Exp. 2011; 72(6):250-261. doi:10.1016/j.curtheres.2011.11.002
75. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of licoriceroots, and replication of SARS-associated coronavirus. Lancet. 2003; 361(9372):2045-2046. doi:10.1016/s0140-6736(03)13615-x
76. Blazevic I, Radonic A, Mastelic J, Zekic M, Skocibusic M, Maravic A. Hedge mustard (Sisymbrium officinale): chemical diversity of volatiles and their antimicrobial activity. Chem. Biodivers. 2010; (8):2023-2034. doi:10.1002/cbdv.200900234
77. Di Sotto A, Vitalone A, Nicoletti M, Piccin A, Mazzanti G. Pharmacological and phytochemical study on a sisymbrium officinale scop. Extract. J Ethnopharmacol. 2010; 127(3):731-736. doi:10.1016/j.jep.2009.12.001
78. Mohammad A. Alzohairy. Therapeutics Role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Alternat Med. 2016; 2016: 7382506. doi:10.1155/2016/7382506
79. Sultana B., Anwar F., Przybylski R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chemistry. 2007; 104(3):1106–1114.
doi: 10.1016/j.foodchem.2007.01.019.
80. Biswas K., Chattopadhyay I., Banerjee R. K., Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica) Current Science. 2002; 82(11):1336–1345.
81. Singh N., Sastry M. S. Antimicrobial activity of Neem oil. Indian Journal of Pharmacology. 1997; 13:102–106. [Google Scholar]
82. Kher A., Chaurasia S. C. Antifungal activity of essential oils of three medical plants. Indian Drugs. 1997; 15:41–42. [Google Scholar]
83. Paul R., Prasad M., Sah N. K. Anticancer biology of Azadirachta indica L (neem): a mini review. Cancer Biology and Therapy. 2011;12(6):467–476. doi: 10.4161/cbt.12.6.16850. [PubMed]
84. Badam L. Joshi SP, Bedekar SS. In vitro antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J Commum Dis. 1993; 31(2):79-90.
85. Tiwari V, Darmani NA, Yue BY, Shukla D. In vitro antiviral activity of neem (Azadirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother Res. 2013; 24(8):1132-1140.
86. Ahmad A, Javed MR, Rao AQ, Husnain T. Designing and screening of universal drug from neem (Azadirachta indica) and standard drug chemicals against influenza virus neucleoprotein. BMC Complement Altern Med. 2016; 16:519. doi:10.1186/s12906-016-1469-2
87. Bode AM, Dong Z. The Amazing and Mighty Ginger. In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press-Taylor & Francis; 2011. Ch.7.
Available from:
88. Young H. Y, Luo Y. L, Cheng H. Y, Hsieh W. C, Liao J. C, Peng W. H. Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol. 2005;96(1-2):207–10. [PubMed]
89. Sahoo M, Jena L, Rath S.N, Kumar S. Identification of suitable natural inhibitor against influenza A (H1N1) neuraminidase protein by molecular docking. Genomics inform. 2016;14(3):96-103. doi: 10.5808/GI.2016.14.3.96
90. Chang J.S, Wang K.C, Yeh C.F, Shieh D.E, Chiang L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013; 145(1):146-151. [PubMed]
91. Denyer C.V, Jackson P, Loakes D.M, Ellis MR, Young D.A. Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale). J Nat Prod. 1994; 57(5):658-662. [PubMed]
92. Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol. 2013; 48(2):157-163. doi:10.1165/rcmb.2012-0231OC
93. Cifci A, Tayman C, Yakut Hi, et al. Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turk J Med Sci. 2018;48(4):892-900. doi:10.3906/sag-1803-223
94. Khan AM, Shahzad M, Raza Asim MB, Imran M, Shabbir A. Zingiber officinale ameliorates allergic asthma via suppression of Th-2-mediated immune response. Pharm Biol. 2015; 53(3):359-367. doi:10.3109/13880209.2014.920396
95. Rao P.V, Gan S.H. Cinnamon: a multifaceted medicinal plant. Evid Based Complement Alternat Med. 2014; 2014:642942. dio: 10.1155/2014/642942
96. Schink A, Naumoska K, Kitanovski Z, et al. anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 signaling pathways. Food Funct. 2018; 9(11):5950-5964. [PubMed]
97. Han X, Parker T.L. Anti-inflammatory activity of cinnamon (Cinnamomum zeylanicum) bark essential oil in human skin. Phytother Res. 2017; 31(7):1034-1038. [PubMed]
98. Gunawardena D, Karunaweera N, Lee S, et al. anti-inflammatory activity of cinnamon (C. zeylanicum and C. cassia) extracts- identification of E-cinnamaldehyde and o-methoxy cinnamaldehyde as the most potent bioactive compounds. Food Funct. 2015;6(3):910-919. [PubMed]
99. Fatima M, Zaidi NU, Amraiz D, Afzal F. In vitro antiviral activity of cinnamomum cassia and its nanoparticles against H7N3 influenza A virus. J Microbiol Biotechnol. 2016; 26(1):151-159. [PubMed]
100. Brochot A, Guilbot A, Haddioui L, Roques C. Antibacterial, antifungal and antiviral effects of three essential oil blends. Microbiologyopen. 2017; 6(4):e00459. [PubMed]
101. Fauvelle C, Lambotin M, Heydmann L, et al. A cinnamon derived procyanidin type A compound inhibits hepatitis C virus cell entry. Hepatol Int. 2017; 11(5):440-445. [PubMed]
102. McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res. 2006; 20(8): 619-633. [PubMed]
103. Schhmacher A, Reichling J, Schnitzler P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine. 2003; 10(6-7): 504-510. [PubMed]
104. Li YX, Liu YB, Ma AQ. Bao Y, Wang M, Sun ZL. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci Biotechnol. 2017; 26(6): 1675-1683. [PubMed]
105. Ibne Sena. Alqanoonfittib. Urdu translation by GhulamHasnainkantoori. New Delhi: Ejaz publishing house; 2010; 91):464.
106. Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019; 8(7):246. doi:10.3390/foods8070246
107. Tsai Y, Colle LL, Davis LE, Lockwood SJ, Simmons V, Wild GC. Antiviral properties of garlic: In vitro effects on influenza B, Herpes simplex and Coxsackie viruses. Planta Med. 1985; 51(5):460-461. doi: 10.1055/s-2007-969553
108. Weber ND, Anderson DO, North JA, Murray BK, Lawson LD, Hughes BG. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med. 1992; 58(5):417-423. doi:10.1055/s-2006-961504
109. Guo NL. Lu DP, Woods GL, et al. demonstration of the antiviral activity of garlic extract against human cytomegalovirus in vitro. Chin Med J (Engl). 1993; 106(2):93-96. [PubMed]
110. Shojai TM, Langeroudi AG, Karimi V, Barin A, Sadri N. The effect of Allium sativum (garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016; 6(4):458-267. [PubMed]
111. Nejad ASM, Shabani S, Bayat M, Hosseini SE. Antibacterial effect of garlic aqueous extract on Staphylococcus aureus in Hamburger. Jundishapur J Microbiol. 2014; 7(11):e13134. doi: 10.5812/jjm.13134
112. Yadav S, Trivedi NA, Bhatt JD. Antimicrobial activity of fresh garlic juice: An in vitro study. Ayu. 2015; 36(2):203-207. doi: 10.4103/0974-8520.175548
113. Lu X, Rasco BA, Jabal JMF, Aston DE, Lin M, Konkel ME. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic derived organosulfur compounds on campylobacter jejuni by using fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Appl Environ Microbiol. 2011; 77(15):5257-5269. doi: 10.1128/AEM.02845-10
114. El-Azzouny MM, El-Demerdash AS, Seadawy HG, Abou-Khadra SH. Antimicrobial Effect of garlic (Allium sativum) and thyme (Zataria multiflora Boiss) extract on some food borne pathogens and their effect on virulence gene expression. Cell Mol Biol (Noisy-le-grand). 2018; 64(10):79-86. [PubMed]
115. Kshirsagar MM, Dodamani AS, Karibasappa GN, Vishwakarma PK, Vathar JB, Sonawane KR, et al. antibacterial activity of garlic extract on carcinogenic bacteria: An in vitro study. Ayu. 2018; 39(3):165-168. doi:10.4103/ayu.AYU-193-16
116. Jang HJ, Lee HJ, Yoon DK, Ji DS, Kim JH, Lee CH. Antioxidant and antimicrobial activities of fresh garlic by-products extracted with different solvents. Food Sci Biotechnol. 2018; 27(1):219-225. doi:10.1007/s10068-017-0246-4
117. Kang J.S., Kim S.O., Kim G.Y., Hwang H.J., Kim B.W., Chang Y.C., Kim W.J., Kim C.M., Yoo Y.H., Choi Y.H. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts. Int. J. Mol. Med. 2016; 37:149–156.
doi: 10.3892/ijmm.2015.2398. [PubMed]
118. Naji K.M., Al-Shaibani E.S., Alhadi F.A., Al-Soudi S.A., D’Souza M.R. Hepatoprotective and antioxidant effects of single clove garlic against ccl4-induced hepatic damage in rabbits. BMC Complement. Altern. Med. 2017; 17:411. doi: 10.1186/s12906-017-1916-8. [PubMed]
119. Schafer G, Kaschula CH. The immunomodulation and anti-inflammatory effects of garlic organosulphur compounds in cancer chemoprevention. Anticancer Agents Med Chem. 2014; 14(2):233-240. doi:10.2174/18715206113136660370
120. Mahima, Rahal A, Deb R. et al. immunomodulatory and therapeutic potential of herbal, traditional/indigenous and ethnoveterinary medicines. Pakistan Journal of Biological Sciences. 2012; 15(16):754-774. doi:10.3923/pjbs.2012.754.774.
121. Hofbauer R. Frass M. Gmeiner B. Kaye AD. Frost EA. Effects of garlic extract (Allium sativum) on neutrophil migration at the cellular level. Heart Dis. 2001; 3:14–17. [PubMed]
122. Lee DY, Li H, Lim HJ, Lee HJ, Jeon R, Ryu JH. Anti-inflammatory activity of sulfur- containing compounds from garlic. J Med Food. 2012; 15(11):992-999.
123. Surh YJ. Chun KS. Cha HH, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001:480–481. 243–268. [PubMed]
124. Islam MN, Yadav RL, Yadav PK. Modulation of lung function by increased nitric oxide production. J Clin Diagn Res. 2017; 11(6):CC09-CC12.
125. Saastamoinen M, Sarkijarvi S, Hyyppa S. Garlic (Allium sativum) supplementation improves respiratory health but has increased risk of lower hematologic values in horses. Animals (Basel). 2019; 9(1):13. doi:10.3390/ani9010013
126. Lissiman E, Bhasale AL, Cohen M. Garlic for the common cold. Cochrane database Syst Rev. 2014;2014(11):CD006206. doi:10.1002/14651858CD006206.pub4
127. Hsieh CC, PengWH, Tseng HH, Liang SY, Chen LJ, Tsai JC. The protective role of garlic on allergen-induced airway inflammation in mice. Am J Chin Med. 2019; 47(5):1099-1112. doi:10.1142/S0192415X19500563
128. Zare A, Farzaneh P, Pourpak Z, et al. Purified aged garlic extract modulates allergic airway inflammation in BALB/c mice. Iran J Allergy Asthma Immunol. 2008; (3):133-141. [PubMed]
129. Takoori H, Aumeeruddy MZ, Rengasamy KRR, et al. a systemic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Crit Rev Food Sci Nutr. 2019; 59(1):S210-S243. [PubMed]
130. Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed. 2013; 3(4):253-266. [PubMed]
131. Gulcin I. The antioxidant and radical scavenging activities of black pepper (piper nigrum) seeds. Int J Food Sci Nutr. 2005; 56(7):491-499. [PubMed]
132. Singh R, Singh N, Saini B.S, Rao H.S. In vitro antioxidant activity of pet ether extract of black pepper. Indian J Pharmacol. 2008; 40(4):147-151. [PubMed]
133. Tasleem F, Azhar I, Ali SN, Perveen S, Mahmood ZA. Analgesic and anti-inflammatory activities of piper nigrum L. Asian Pac J Med. 2014; 7S1:S461-S468. doi :10.1016/S1995-7645(14)60275-3
134. Bang JS, Oh DH, Choi HM, et al. anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther. 2009; 11(2):R49. [PubMed]
135. Zou L, Hu YY, Chen WX. Antibacterial mechanism and activities of black pepper chloroform extract. J Food Sci Technol. 2015; 52(12): 8196-8203. [PubMed]
136. Tang H, Chen W, Dou ZM, et al. Antimicrobial effect of black pepper petroleum ether extract for the morphology of Listeria monocytogenes and Salmonella typhimurium. J Food Sci Technol. 2017; 54(7):2067-2076. [PubMed]
137. Mair EM, Liu R, Atanasov AG, et al. Antiviral and anti-proliferative in vitro activities of piperamides from black pepper. Plant Medica. 2016; 81(S01):S1-S381. [PubMed]
138. Bhattacharya SK, Goel RK, Kaur R, Ghosal S. Anti - stress activity of Sitoindosides VII and VIII. New Acylsterylglucosides from Withania somnifera. Phytother Res. 1987; 1:32–37.
139. Ghosal S, Srivastava RS, Bhattacharya SK, Upadhyay SN, Jaiswal AK, Chattopadhyay U. Immunomodulatory and CNS effects of sitoindosides IX and X, two new glycowithanolides form Withania somnifera. Phytother Res. 1989; 2:201–206.
140. Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011; 8(5 Suppl):208–213. doi:10.4314/ajtcam.v8i5S.9
141. Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol.1996; 50(2):69-76.
142. Cai Z, Zang G, Tang B, Liu Y, Fu X, Zhang X. Promising anti-influenza properties of active constituent of Withania somnifera Ayurvedic herb in targeting neraminidase of H1N1 influenza: computational study. Cell Biochem Biophys. 2015; 72(3):727-739.
143. Marauder A, Ganzera M. Quantitative determination of major alkaloids in cinchona bark by supercritical fluid chromatography. J Chromatogr A. 2018; 117-122. doi:10.1016/j.chroma.2018.04.038
144. An J, Minie M, Sazaki T, Woodward JJ, Elkon KB. Antimalarial drugs as immune modulators: New mechanism for older drugs. Ann Rev Med. 2017; 68:317-330. doi:10.1146/annurev-med-043015-123453
145. Wen CC, Kyo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 2007; 50:4087-4095.
146. Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints [internet][updated March 13, 2020]. Cited on March 31, 2020. doi:10.20944/preprints202003.0226.v1
147. Ni L, Zhou L, Zhou M, Zhao J, Wang DW. Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19 in Wuhan. Front Med. 2020; doi:10.1007/s11684-020-0757-x
148. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese Medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci. 2020; 16(10):1708-1717. Doi:10.7150/ijbs.45538
737 Views | 540 Downloads
How to Cite
Bhat SA, Rather SA, Iqbal A, Qureshi HA, Islam N. Immunomodulators for Curtailing COVID-19: a Positive Approach. JDDT [Internet]. 15Jun.2020 [cited 17Jan.2021];10(3-s):286-94. Available from: