In vivo antiplasmodial potential of Carrageenan and Prosopis africana buccal films of artemether on malariogenic mice

  • Petra Nnamani Drug Delivery and Nanomedicines Research Group; Public Health and Environmental Sustainability Research Group; Department of Pharmaceutics; Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;
  • Ogechukwu Nnadi Drug Delivery and Nanomedicines Research Group; Public Health and Environmental Sustainability Research Group; Department of Pharmaceutics; Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;
  • Emmanuel Ibezim Drug Delivery and Nanomedicines Research Group; Public Health and Environmental Sustainability Research Group; Department of Pharmaceutics; Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;
  • Ebere Ayogu Department of Clinical Pharmacy and Hospital Administration; Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;
  • Joy Reginald-Opara Drug Delivery and Nanomedicines Research Group; Public Health and Environmental Sustainability Research Group; Department of Pharmaceutics; Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;
  • Simon Onoja Department of Human Nutrition and Dietetics; University of Nigeria, Nsukka, Nigeria
  • Amelia Odo Department of Human Kinetics and Health Education; University of Nigeria, Nsukka, Nigeria
  • Agatha Ugwu Drug Delivery and Nanomedicines Research Group; Public Health and Environmental Sustainability Research Group; Department of Pharmaceutics; Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;
  • Chidi Ogbonna Health Safety Environment and Quality Assurance, Compass Group Canada Ltd, 2710 – 17TH Avenue S.E., Calgary, Alberta, T2A0P6 Canada
  • Anthony Attama Drug Delivery and Nanomedicines Research Group; Public Health and Environmental Sustainability Research Group; Department of Pharmaceutics; Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;

Abstract

Objective: To deliver bioadhesive buccal films of artemether (ART) with ability to adhere, hydrate and release drug across the buccal membrane. Methods: Buccal films prepared by film casting using carrageenan (CAR) and Prosopis africana (PRO) were characterized by size, zeta potential, texture, water content, morphology, thermal and interaction studies, in vitro and in vivo antiplasmodial activity in mice. Results: Films were stable with sizes (2442 and 835 nm), water content (21 and 15 %), bioadhesivity (24 and 9.4 %) and film thickness (0.18 and 0.28 mm) for CARART and PROART respectively. Enthalpy of CARART, PROART and ART were 76, 22 and 88 J/g where as parasitaemia reduction of 67 and 76 % were observed for CARART and PROART respectively. Conclusion: Though CARART had better water content and bioadhesivity necessary for film hydration at buccal membrane, PROART eventually had superior buccal performance perhaps due to its film thickness and amorphous nanoparticle subdivision.


Key words: Artemether; Carrageenan; Prosopis africana; Sublingual buccal films; Malaria

Keywords: Artemether, Carrageenan, Prosopis africana, Sublingual buccal films

Downloads

Download data is not yet available.

References

1. Langer R. Transdermal drug delivery: past progress, current status and future prospects, Adv. Drug Dev Rev 2014; 56: 557–558.
2. Patel V.F., Liu F., Brown M.B. Advances in oral transmucosal drug delivery. J Control Rel 2011; 153: 106–16.
3. Morales J.O., McConville J.T. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biophar 2011; 77: 187–99
4. Park D-M., Song Y-K., Jee J-P., Kim H.T., Kim C-K. Development of chitosan-based ondansetron buccal delivery system for the treatment of emesis. Drug Dev Ind. Pharm 2012; 38: 1077–1083.
5. Mathias N.R., Hussain M.A. Non-invasive systemic drug delivery: Developabilityconsiderations for alternate routes of administration. J. Pharm. Sci. 2010; 99: 1–20.
6. Yehia S.A, El-Gazayerly O.N., Basalious E.B. Fluconazole mucoadhesive Buccal Films: In Vitro/In Vivo Performance. Curr. Drug Deliv. 2009; 6: 17-27 17.
7. Nishigaki M. Development of fast dissolving film containing dexamethasone as antiemetic medication: clinical medication. Int J Pharm 2012; 421: 12-17.
8. Meher J.G., Tarai M., Yadav N.P, Patnaik A., Mishra P., Yadav K.S. Development and characterization of cellulose-polymethacrylate mucoadhesive film for buccal delivery of carvedilol. Carbohydr Polym 2013; 96: 172–80.
9. Kumria R., Nair A.B., Al-Dhubiab B.E. Loratidine buccal films for allergic rhinitis: development and evaluation. Drug Dev Ind Pharm 2014a; 40: 625–31.
10. Kumria R., Nair A.B., Goomber G., Gupta S. Buccal films of prednisolone with enhanced bioavailability. Drug Deliv 2014b; 1–8.
11. Guo R., Du X., Zhang R., Deng L., Dong A., Zhang J. Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur. J. Pharm. Biopharm 2011; 7: 574–583.
12. Bruschi M.L., de Freitas O. Oral bioadhesive drug delivery systems. Drug Dev. Ind. Pharm 2005; 31: 293–310.
13. Castán H., Ruiz M.A., Clares B., Morales M.E. Design, development and characterization of buccal bioadhesive films of Doxepin for treatment of odontalgia. Drug Deliv, 2015; 2(6): 869–876.
14. Kianfar F., Chowdhry B.Z., Antonijevic M.D., Boateng J.S. Novel films for drug delivery via the buccal mucosa using model soluble and insoluble drugs. Drug Dev Ind. Pharm 2012; 38: 1207–1220.
15. Al-Dhubiab B.E., Nair A.B., Kumria R., Attimarad M., Harsha S. Development and evaluation of buccal films impregnated with selegiline-loaded nanospheres. Drug Deliv 2016; 23(7): 2154–2162.
16. Adhikari S.N., Nayak B.S., Nayak A.K., Mohanty B. Formulation and evaluation of buccal patches for delivery of atenolol. AAPS PharmSciTech 2010; 11: 1038–44.
17. Abdelbary G.A., Aburahma M.H. Oro-dental mucoadhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain. J Liposome Res 2015; 25(2): 107-21. doi:10.3109/08982 104.2014.941861.
18. Nadaf S., Nnamani P.O., Jadhav N. Evaluation of Prosopis africana Seed Gum as an Extended Release Polymer for Tablet Formulation. AAPS PharmSciTech 2014 DOI: 10.1208/s12249-014-0256-y (Online ISSN: 1530-9932)
19. Adikwu M.U., Udeala O.K., Ohiri F.C. Physico-chemical properties of a new polysaccharide gum from Prosopis africana. Part II. Coacervation properties with ethanol. Discov. Inno 2000; 12: 80-84.
20. Attama A.A., Adikwu M.U., Okoli N.D. Studies on bioadhesive granules. I. Granules formulated with Prosopis africana (prosopis) gum. Chem. Pharm. Bull. 2000; 48:734-737.
21. Nnamani P.O., Lokhande C.D., Shinde A.J., Jadhav N.R., Sanandam M.R. Solid oral pharmaceutical composition. Nigeria Patent 2014; 565: September 30.
22. Emeje M., Izuka A., Isimi C., Ofoefule S., Kunle O. Preparation and standardization of a herbal agent for the therapeutic management of asthma. Pharm Dev Technol. 2011; 16: 170-178.
23. Attama A.A., Nnamani P.O., Okorie O. Effect of pH and ionic strength on the bioadhesive properties of Prosopis africana gum. J. Pharm. Biores. 2005; 2: 141-145.
24. Barminas J.T., Maina H.M., Ali J. Nutrient content of Prosopis africana seeds Plant Foods for Human Nutri. 1998; 52: 325–328.
25. Aremu M.O., Olonisakin A., Atolaye B.O., Ogbu C. Some nutritional and functional studies of Prosopis africana. Electron. J. Environ. Agric. Food Chem. 2006; 5: 1640-1648.
26. Adikwu M.U., Yoshikama Y., Takada K. Bioadhesive delivery of metformin using prosopis gum with antidiabetic potential, Biol. Pharm. Bull 2003; 26: 662-666.
27. Kolapo A.L., Okunade M.B., Adejumobi J.A., Ogundiya M.O. Phytochemical composition and antimicrobial A.L. activity of Prosopis africana against some selected oral pathogens. World J. Agric. Sci 2009; 5: 90-93.
28. Nnamani P.O., Kenechukwu F.C., Okonkwo C.C. and Otuu F.C. Performance of Prosopis Africana peel powder (PAPP) as a novel sorbent for remediating malachite green contaminated aqua system. Sci Res and Essays 2012; 7: 4130-4137
29. Adikwu M.U., Ezeabasili S.I., Esimone C.O. Evaluation of the physic-chemical properties of a new polysaccharide gum from Prosopis africana. Boll Chim Farm 2001; 140: 40-45.
30. Egunsola O., Oshikoya K.A. Comparative safety of artemether-lumefantrine and other artemisinin-based combinations in children: a systematic review. Malar J 2013; 12: 385.
31. WHO, 2014. World Malaria Report 2014. World Health Organisation.
32. Kumria R., Gupta V., Bansal S., Wadhwa J., Nair A.B. Oral buccoadhesive films of ondansetron: development and evaluation. Int J Pharm Investig 2013; 3: 12–8.
33. Sohi H., Ahuja A., Ahmad F.J., Khar R.K. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev. Ind. Pharm 2010; 36: 254–282.
34. Nnamani P.O., Kenechukwu F.C. Okoye O and Akpa P.A. Sustained release Mebendazole microcapsules prepared with Prosopis africana peel powder (PAPP) hydrogel. Indian J. Novel Drug deliv 2017; 9(3): 167-184.
35. Nnamani P.O., Attama A.A., Kenechukwu F.C., Ibezim E.C, Adikwu M.U. Pharmacodynamics of Piroxicam from Novel Solid Lipid Microparticles Formulated with Homolipids from Bos indicus. Curr Drug Deliv 2013; 10(6): 645-655.
36. Kianfar F., Ayensu I., Boateng JS. Development and physicomechanical characterization of carrageenan and poloxamer-based lyophilized matrix as a potential buccal drug delivery system. Drug Dev Ind Pharm 2013; 40: 361–9.
37. Nnamani P.O., Ugwu A.A., Ibezim E.C., Kenechukwu F.C., Akpa P.A., Ogbonna J.D.N., Obitte N.C., Lehr C.M., Attama A.A. Sustained-release Liquisolid Compact Tablets Containing Lumefantrine-Artemether as Alternate-Day-Regimen for Malaria Treatment to Improve Patient Compliance. Int. J. Nanomed 2016; 11: 6365-6378.
38. Nnamani P.O., Kenechukwu F.C., Dibua E.U., Ogbonna C.C., Monemeh U.L., Attama A.A. Transdermal microgels of gentamicin. Eur J Pharm Biopharm 2013; 84: 345-354.
39. Nnamani P.O., Hansen S., Windbergs M., Lehr C.M. Development of artemether-loaded nanostructured lipid carrier (NLC) formulation for topical application. Int. J. Pharm 2014; 477: 208–217.
40. Attama A.A. Kenechukwu F.C., Onuigbo E.B., Nnamani P.O., Obitte N., Finke J.H., Pretor S., Müller-Goymann C.C. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and antimalarials – artemether and lumefantrine: evaluation of cellular uptake and antimalarial activity. Eur J Nanomed 2016; 8(3): 129–138. ISSN (Online) 1662-596X, ISSN (Print) 1662-5986, DOI: 10.1515/ejnm-2016-0009.
41. Teeranachaideekul V., Souto E.B., Junyaprasert V.B., Müller R.H. Cetyl palmitate-based NLC for topical delivery of coenzyme Q10 – development, physicochemical characterization and in vitro release studies. Eur. J. Pharm. Biopharm 2007; 67: 141–148.
42. Westesen K., Siekmann B., Koch M.H.J. Investigations on the physical state of solid lipid nanoparticles by synchrom radiation X-ray diffraction. Int. J. Pharm 1993; 93: 189–199.
43. Souto E.B., Müller R.H. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J. Microencapsul 2006; 23: 377–388.
44. Schubert M.A., Müller-Goymann C.C. Characterization of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and non-ionic emulsifier. Eur. J. Pharm. Biopharm 2005; 61: 77–86.
45. Saupe A., Wissing S.A., Lenk A., Schmidt C., Müller R.H. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)-structural investigations on two different carrier systems. Biomed. Mater. Eng 2005; 15: 393–402.
46. Patel D.J., Pate J.K. Design and evaluation of famotidine mucoadhesive nanoparticles for aspirin induced ulcer treatment. Braz Arch Biol Technol 2013; 56(2): 223-36. doi:10.1590/s1516-89132013000 200007.
47. Akiyama Y., Yoshioka M., Horibe H., Hirai S., Kitamori N., Toguchi H. Novel oral controlled-release microspheres using polyglycerol esters of fatty acids. J. Control. Release 1993; 26: 1–10.
48. Savolainen M., Khoo C., Glad H., Dahlqvist C., Juppo A.M. Evaluation of controlled release polar lipid microparticles. Int. J. Pharm 2002; 244: 151–161.
49. Agubata C.O., Nzekwe I.T., Attama A.A., Mueller-Goymann C.C., Onunkwo G.C. Formulation, characterization and anti-malarial activity of homolipid-based artemether microparticles. Int J Pharm 2015; 478: 202–222.
50. Puglia C., Offerta A., Rizza L., Zingale G., Bonina F., Ronsisvalle S. Optimization of curcumin loaded lipid nanoparticles formulated using high shear homogenization (HSH) and ultrasonication (US) methods. J. Nanosci. Nanotechnol 2013; 13: 6888–6893.
51. Reginald-Opara J.N., Attama A.A., Ofokansi K.C., Umeyor C., Kenechukwu F.C. Molecular interaction between glimepiride and Soluplus1-PEG 4000 hybrid based solid dispersions: Characterisation and anti-diabetic studies. Int. J. Pharm 2015; 496: 741–750.
52. Jones E., Ojewole E., Pillay V., Kumar P., Rambharose S., Govender T. Monolayered multipolymeric buccal films with drug and polymers of opposing solubilities for ARV therapy: physico-mechanical evaluation and molecular mechanics modelling. Int J Pharm 2013; 455: 197–212.
53. Shimpi S.L., Mahadik K.R., Paradkar A.R. Study on mechanism for amorphous drug stabilization using Gelucire 50/13. Chem Pharm Bull 2009; 57: 937–942.
54. Palm T, Esfandiary R, Gandhi, R. The effect of PEGylation on the stability of small therapeutic proteins, Pharm. Dev. Technol 2011; 16: 441–448.
55. Subrata M., Satyanarayan P, Kalpana S, Pintu K.D., Arindam S., Gaurisankar G., Arijit M et al. Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin. Eur J Pharm Biopharm 2008; 68: 346–51.
56. Giovino C, Ayensu I, Tetteh J, Boateng J.S. An integrated buccal system combining chitosan films impregnated with peptide loaded PEG-b_PLA nanoparticles. Colloids Surf B Biointerf 2013; 112: 9–15
57. Youssef A.M.K, Winter G. A critical evaluation of microcalorimetry as a predictive tool for long term stability of liquid protein formulations: Granulocyte Colony Stimulating Factor (GCSF). Eur J Pharm Biopharm 2013; 84: 145–155.
Statistics
5 Views | 18 Downloads
How to Cite
1.
Nnamani P, Nnadi O, Ibezim E, Ayogu E, Reginald-Opara J, Onoja S, Odo A, Ugwu A, Ogbonna C, Attama A. In vivo antiplasmodial potential of Carrageenan and Prosopis africana buccal films of artemether on malariogenic mice. JDDT [Internet]. 15Feb.2020 [cited 27Feb.2020];10(1-s):114-25. Available from: http://jddtonline.info/index.php/jddt/article/view/3790