STUDIES OF THE BIOLOGICAL AND THERAPEUTIC EFFECTS OF ARGENTINE STINGLESS BEE PROPOLIS

  • Yanina Brodkiewicz Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.
  • Karenina Marcinkevicius Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ayacucho 471, 4000, Tucumán, Argentina.
  • Marcos Reynoso Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.
  • Virginia Salomon Laboratorio de Agroindustrias, Estación experimental agropecuaria. Instituto Nacional de Tecnología Agropecuaria (INTA). Famaillá, 4132, Tucumán. Argentina.
  • Luis Maldonado Laboratorio de Agroindustrias, Estación experimental agropecuaria. Instituto Nacional de Tecnología Agropecuaria (INTA). Famaillá, 4132, Tucumán. Argentina.
  • Nancy Vera Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.

Abstract

Meliponids are native bees of the Americas, characterized by having no sting (ANSA). Some live in the Yunga forests of northern Argentina, a place rich in a diversity of this type of bees of which at least thirty-three species may be found. Propolis is a resinous substance that bees collect from plants exudates. Chemical composition and functional properties vary according to the flora of the place where the hives are. They have been valued by humans for their biological properties for centuries. This study is aimed at investigating the antinociceptive, antioxidant and anti-biofilm activities of propolis from the stingless bees Tetragonisca fiebrigi Schwarz and Scaptotrigona jujuyensis Schrottky found in Estación Experimental Agropecuaria Famaillá of INTA, Tucumán, Argentina. Analgesic activity of the extracts was estimated against acetic acid induced writhing, tail immersion method and formalin test. Antioxidant capacity was evaluated using DPPH free radical scavenging and β-carotene bleaching assays. Propolis anti biofilm activity was tested on Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATTC 6538P bacteria. Phytochemical constituents were obtained using standard chemical methods. The propolis alcoholic extracts of the studied species possess antinociceptive activity at both central and peripheral levels as demonstrated by the three algesia tests used. Both propolis extracts were effective antioxidants in DPPH and β-carotene linoleic acid model systems. S. jujuyensis propolis tested at all doses against S. aureus and P. aeruginosa presented a selective biofilm inhibition unrelated to bacterial growth inhibition, thus achieving a reduction in pathogenicity. The chemical studies revealed the presence of sterols, triterpenes, catechins, coumarins, flavonoids, phenols, tannins and anthocyanidins. Chemical composition observed in the T.fiebrigi and S. jujuyensis propolis, suggest that those responsible for the activity would be chemical compounds of a non-phenolic nature. Our data indicate that geopropolis is a natural source of bioactive substances with promising beneficial properties for human health. Isolation and identification of compounds responsible for the pharmacological activities displayed by propolis has started.


 

Keywords: Geopropolis, Scaptotrigona jujuyensis, Tetragonisca fiebrigi, Antinociceptive activity, Antioxidants, antimicrobial activity

Downloads

Download data is not yet available.

Author Biographies

Yanina Brodkiewicz, Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.

Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.

Karenina Marcinkevicius, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ayacucho 471, 4000, Tucumán, Argentina.

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ayacucho 471, 4000, Tucumán, Argentina.

Marcos Reynoso, Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.

Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.

Virginia Salomon, Laboratorio de Agroindustrias, Estación experimental agropecuaria. Instituto Nacional de Tecnología Agropecuaria (INTA). Famaillá, 4132, Tucumán. Argentina.

Laboratorio de Agroindustrias, Estación experimental agropecuaria. Instituto Nacional de Tecnología Agropecuaria (INTA). Famaillá, 4132, Tucumán. Argentina.

Luis Maldonado, Laboratorio de Agroindustrias, Estación experimental agropecuaria. Instituto Nacional de Tecnología Agropecuaria (INTA). Famaillá, 4132, Tucumán. Argentina.

Laboratorio de Agroindustrias, Estación experimental agropecuaria. Instituto Nacional de Tecnología Agropecuaria (INTA). Famaillá, 4132, Tucumán. Argentina.

Nancy Vera, Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.

Cátedra de Farmacoquímica, Inst. de Estudios Farmacológicos Dr. A. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina.

References

1. Verri W, Cunha T, Parada C, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development?. Pharmacology & Therapeutics, 2006; 112(1):116-38.
2. Busnardo T, Padoani C, Moraa T, Biavatti, MW, Fröde TS, Bürger C, Claudinoa VD, Dalmarco EM, De Souzaa MM. Anti-inflammatory evaluation of Coronopus didymus in the pleurisy and paw oedema models in mice. Journal of Ethnopharmacology, 2010; 128(2):519-25.
3. Dantas T, Nunes T, da Paixão A, da Paixãoa AO, Reisa FP, Júnior W, Cardosoa JC, Gramacho KP, Gomes MZ. Pharmacological evaluation of bee venom and melittin. Revista Brasileira de Farmacognosia, 2014; 24(1):67-72.
4. Kustiawan P, Puthong S, Arung E, Chanchao C. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pacific Journal of Tropical Biomedicine, 2014; 4(7):549-56.
5. Paulino N, Teixeira C, Martins R, Scremin A, Dirsch VM, Vollmar AM, Abreu SR, de Castro SL, Marcucci MC. Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis. Planta Medica, 2006; 72(10):899-906.
6. Ma X, Guo Z, Shen Z, Wang J, Hu Y, Wang D. The immune enhancement of propolis adjuvant on inactivated porcine parvovirus vaccine in guinea pig. Cellular Immunology, 2011; 270(1):13-18.
7. Potkonjak N, Veselinović D, Novaković M, 2012. Gorjanovic SZ, Pezo LL, Suznjevic DZ. Antioxidant activity of propolis extracts from Serbia: a polarographic approach. Food and Chemical Toxicology, 2012; 50(10):3614-3618.
8. Wang B, Lien Y, Yu Z. Supercritical fluid extractive fractionation: study of the antioxidant activities of propolis. Food Chemistry, 2004; 86(2):237-243.
9. Najafi M, Vahedy F, Seyyedin M, Jomehzadeh HR, Bozary K. Effect of the water extracts of propolis on stimulation and inhibition of different cells. Cytotechnology, 2007; 54(1):49–56.
10. Athikomkulchai S, Awale S, Ruangrungsi N, Ruchirawat S, Shigetoshi Kadota S. Chemical constituents of Thai propolis. Fitoterapia, 2013; 88:96-100.
11. Ayaad T, Shaker G, Almuhnaa A. Isolation of antimicrobial peptides from Apis florea and Apis cárnica in Saudi Arabia and investigation of the antimicrobial properties of natural honey samples. Journal of King Saud University – Science, 2012; 24(2):193-200.
12. Heard T. The role of stingless bees in crop pollination. Annual Review of Entomology, 1999; 44:183-206.
13. Barth O. Palynological analysis of geopropolis samples obtained from six species of Meliponinae in the Campus of the Universidade de Ribeirao Preto, USP, Brazil. Apiacta, 2006; 41:71-85.
14. Roig-Alsina A, Vossler F, Gennari G. Of Pot-Honey A legacy of stingless bees; Patricia Vit, Silvia R. M. Pedro, David Roubik. 2013. Springerlink. ISBN: 978-1-4614-4959-1 (Print) 978-1-4614-4960-7 (Online).
15. Franchin M, Cunha M, Denny C, Napimoga M, Napimoga MH, Cunha TM, Koo H, de Alencar SM, Ikegaki M, Rosalen PL. Geopropolis from Melipona scutellaris decreases the mechanical inflammatory hypernociception by inhibiting the production of IL-1β and TNF-α. Journal of Ethnopharmacology, 2012; 143(2):709-715.
16. Franchin M, Cunha M, Denny C, Napimoga MH, Cunha TM, Bueno Silva B, Alencar SM, Ikegaki M, Rosalen PL. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway. Evidence-Based Complementary and Alternative Medicine, 2013; 1-9.
17. Ferreira Campos J, Pereira dos Santos U, dos Santos da Rocha P, Damiao MJ, Perella Balestieri JB, Lima Cardoso CA, Paredes Gamero EJ, Estevinho LM, de Picoli Souza K, dos Santos EL. Antimicrobial, Antioxidant, Anti-Inflammatory, and Cytotoxic Activities of Propolis from the Stingless Bee Tetragonisca fiebrigi (Yateí). Evidence-Based Complementary and Alternative Medicine, 2015; 1-11.
18. Miorin P, Levy Junior N, Custodio A, Brets WA, Marcucci MC. Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. Journal of Applied Microbiology, 2003; 95(5):913-20.
19. Bankova V, Popova M. Propolis of stingless bees: a promising source of biologically active compounds. Pharmacogn Rev, 2007; 1(1):88–92.
20. Silva J, Rodrigues S, Feás X, Estevinho LM. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food and Chemical Toxicology, 2012; 50(5):1790–1795.
21. Brodkiewicz IY, Reynoso M, Gennari G, Maldonado LM, Vera NR. Anti-inflammatory, Antitussive and Expectorant activities evaluation of geopropolis of stingless bees of Tucuman, Argentina. Indian Journal of Experimental Biology, 2017.
22. Woisky R, Salatino A. Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 1998; 37(2):99-105.
23. Bedascarrasbure E, Maldonado L, Tabera A, Alvarez AR, Van Der Horst A. Actividad antibacteriana de propóleos argentino enfrentado a Stafilococcus Aureus, Anales del Congreso Internacional de Propóleos, Buenos Aires, 1 y 2 de setiembre de 2000, pp. 97.
24. Miranda M, Cuéllar A, 2002. Manual de prácticas de laboratorio. Farmacognosia y productos naturales. La Habana: Universidad de La Habana.
25. Hua Bin L, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 2007; 102(3):771–776.
26. Christel Q, Bernard G, Jacques V, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol, 2000; 72(1):35–42.
27. Vongsaka B, Kongkiatpaiboonb S, Jaisamut S, Machanaa S, Pattarapanich C. In vitro alpha glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard. Rev. Brasileira de Farmacog, 2015; 25(5):445-450.
28. Sun T, Ho C. Antioxidant activities of buckwheat extracts. Food Chem, 2005; 90(4):743–749.
29. Ozsoy N, Can A, Yanardag R, Akey N. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem, 2008; 110(3):571-583.
30. O’Toole G, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Mol Microbiol, 1998; 28(3):449-461.
31. Gorzalczany S, Marrassini C, Miño J, Acevedo C, Ferraro G. Antinociceptive activity of ethanolic extract and isolated compounds of Urtica circularis. J.Ethopharmacol, 2011; 134(3):733-738.
32. Reynoso M, Daud A, Belizán M, Sanchez A, Vera NR. Antinociceptive, Anti-inflammatory Effects and Safety of Ziziphus mistol Fruits. Int. J. Pharm. Sci. Drug Res, 2016; 8(2):103-110.
33. Daud, A., Habib, N., Sanchez Riera, A., 2006. Anti-inflammatory, anti-nociceptive and antipyretic effects of extracts of Phrygilanthus acutifolius flowers. J. Ethnopharmacol, 2006; 108:198-203.
34. Akindele A, Ibe I, Adeyemi O. Analgesic and antipyretic activities of Drymaria cordata (linn.) willd (Caryophyllaceae) extract. Afr J Tradit Complement Altern Med, 2012; 9(1):25‐35.
35. Ferdous M, Rouf R, Shilpi JA, Uddin S.J. Antinociceptive activity of the ethanolic extract of Ficus racemosa Linn. (Moraceae). Oriental Pharmacy and Experimental Medicine, 2008; 8(1):93-96.
36. Le Bars D, Gozariu M, Cadden S. Animal models of nociception. Pharmacologial Reviews, 2001; 53(4):597-652.
37. Tjolsen A, Berge O, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain, 1992; 51(1):5-17.
38. Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 1987; 30(1):103-114.
39. Shibata M, Ohkubo T, Takahashi H, Inoki R. Modified formalin test: characteristic biphasic pain response. Pain, 1989; 38(3):347-52.
40. Chen Y, Tsai H, Wu T. Anti-inflammatory and analgesic activities from root of Angelica pubescens. Planta Med, 1995; 61(1):2-8.
41. Lima Cavendish R, de Souza Santos J, Belo Neto R, Oliveira PA, Valeria Oliveira J, Divino de Araujo E, Beretta ESAA, Thomazzi MS, Cordeiro Cardozo J, Zanardo Gomez M. Antinociceptive and anti-inflammatory effects of Brazilian red propolis extract and formononetin in rodents. J. Ethnopharmacol, 2015; 173:127-33.
42. Zaccaria V, Curti V, Di Lorenzo A, Baldi A, Maccario C, Sommatis S, Mocchi R, Daglia M. Effect of Green and Brown Propolis Extracts on the Expression Levels of microRNAs, mRNAs and Proteins, Related to Oxidative Stress and Inflammation. Nutrients, 2017; 9(10):1090.
43. Amaya S, Pereira J, Borkosky S, Valdez JC, Bardon A, Arena ME. Inhibition of quórum sensing in Pseudomonas aerruginosas by sesquiterpenes lactones. Phytomedicine, 2012; 15; 19(13):1173-7.
44. Alencar S, Oldoni T, Castro M, Cabral IS, Costa Neto CM, Cury JA, Rosalen PL, Ikegaki M. Chemical composition and biological activity of a new type of Brazilian propolis: red propolis. J. Ethnopharmacol, 2007; 113(2):278-283.
Statistics
48 Views | 89 Downloads
How to Cite
Brodkiewicz, Y., Marcinkevicius, K., Reynoso, M., Salomon, V., Maldonado, L., & Vera, N. (2018). STUDIES OF THE BIOLOGICAL AND THERAPEUTIC EFFECTS OF ARGENTINE STINGLESS BEE PROPOLIS. Journal of Drug Delivery and Therapeutics, 8(5), 382-392. https://doi.org/10.22270/jddt.v8i5.1889