In-vitro approaches to evaluate the anti-inflammatory potential of phytochemicals: A Review

Authors

Abstract

Phytochemicals, bioactive compounds derived from plants, have drawn considerable attention for their ability to modulate inflammatory pathways, presenting promising alternatives for the treatment of chronic inflammatory diseases. Inflammation, a complex biological response to injury or infection, involves a cascade of cellular and molecular events mediated by enzymes, cytokines, and reactive species. In vitro assays provide an essential platform for screening and investigating the anti-inflammatory potential of phytochemicals, offering valuable insights into their mechanisms of action. Commonly used techniques include the inhibition of protein denaturation and membrane stabilization, which evaluate the ability of compounds to prevent structural damage to proteins and cell membranes. Enzymatic assays, such as cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibition tests, focus on the suppression of key enzymes involved in arachidonic acid metabolism, thereby reducing the production of pro-inflammatory mediators like prostaglandins and leukotrienes. Other assays, like proteinase and hyaluronidase inhibition tests, assess the ability of compounds to block enzymes contributing to tissue degradation and inflammation. These assays offer robust, reproducible frameworks for evaluating phytochemicals in preclinical research, helping to identify compounds with potential therapeutic value. However, their limitations, such as lack of in vivo context and inter-assay variability, necessitate their integration with complementary studies to validate findings and understand their translational significance.

Keywords: Phytochemicals, in vitro methods, anti-inflammatory activity, protein denaturation, membrane stabilization

Keywords:

Phytochemicals, in vitro methods, anti-inflammatory activity, protein denaturation, membrane stabilization

DOI

https://doi.org/10.22270/jddt.v15i1.6956

Author Biography

Sriaandhal Sabalingam , Lecturer, Department of Pharmacy, Faculty of Allied Health Sciences,General Sir John Kotelawala Defence University.

Department of Pharmacy, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Sri Lanka

References

1. Chandra S, Chatterjee P, Dey P, Bhattacharya S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac J Trop Biomed 2012;2. https://doi.org/10.1016/S2221-1691(12)60154-3

2. Sankar Akula U, Odhav B. In vitro 5-Lipoxygenase inhibition of polyphenolic antioxidants from undomesticated plants of South Africa Aqueous and methanolic extracts of 18 leafy vegetables from South Africa were investigated for their free radical scavenging activity, total phenolic content and anti-inflammatory properties. vol. 2. 2008.

3. Singh S, Bansal A, Singh V, Chopra T, Poddar J. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus. J Diabetes Metab Disord 2022;21:941-50. https://doi.org/10.1007/s40200-021-00943-8 PMid:35673446 PMCid:PMC9167359

4. Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, et al. Phytochemicals and Their Usefulness in the Maintenance of Health. Plants 2024;13. https://doi.org/10.3390/plants13040523 PMid:38498532 PMCid:PMC10892216

5. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Erratum: Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma, Cell, 2018; 175(4):998-1013.e20), (S0092867418313941) (10.1016/j.cell.2018.10.038)). Cell 2019;176:404. https://doi.org/10.1016/j.cell.2018.12.034 PMid:30633907 PMCid:PMC6647017

6. Kalf RRJ, Vreman RA, Delnoij DMJ, Bouvy ML, Goettsch WG. Bridging the gap: Can International Consortium of Health Outcomes Measurement standard sets align outcomes accepted for regulatory and health technology assessment decision-making of oncology medicines. Pharmacol Res Perspect 2021;9. https://doi.org/10.1002/prp2.742 PMid:33749172 PMCid:PMC7982865

7. Sarveswaran R, Banukie Jayasuriya W, J A B N JW. In vitro assays to investigate the anti-inflammatory activity of herbal extracts: A Review. Jayasuriya et al World Journal of Pharmaceutical Research 2017;6:131. https://doi.org/10.20959/wjpr201717-10058 .

8. Pillai LS, Nair BR. In-vitro anti-inflammatory studies in Cleome viscosa L. and Cleome burmanni W. & A. (Cleomaceae). International Journal of Pharmaceutical Sciences and Research. 2014 Jan 1;5(11):4998-5003.

9. Jogdand SS, Pagar J, Shinde GP, Jaggi SM, Mhaismale S. IN-VITRO ASSAYS TO INVESTIGATE ANTI-INFLAMMATORY ACTIVITY OF HERBAL EXTRACTS. vol. 10. 2022.

10. Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N. Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: A review. Mar Drugs 2019;17. https://doi.org/10.3390/md17100590 PMid:31627414 PMCid:PMC6835611

11. Hasan MM, Islam ME, Hossain MS, Akter M, Rahman MAA, Kazi M, et al. Unveiling the therapeutic potential: Evaluation of anti-inflammatory and antineoplastic activity of Magnolia champaca Linn's stem bark isolate through molecular docking insights. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2023.e22972 PMid:38169693 PMCid:PMC10758728

12. Kalaskar M, Redasani V, Ayyanar M, Ghante M, Firke S, Agrawal K, et al. Isolation and Characterization of Anti-Inflammatory Compounds from Ficus microcarpa L.f. Stem Bark. Plants 2023;12. https://doi.org/10.3390/plants12183248 PMid:37765413 PMCid:PMC10538222

13. Akbar A, Gul Z, Chein SH, Sadiq MB. Investigation of Anti-Inflammatory Properties, Phytochemical Constituents, Antioxidant, and Antimicrobial Potentials of the Whole Plant Ethanolic Extract of Achillea santolinoides subsp. wilhelmsii (K. Koch) Greuter of Balochistan. Oxid Med Cell Longev 2023;2023. https://doi.org/10.1155/2023/2567333

14. Banerjee S, Biswas S, Chanda A, Das A, Adhikari A. Evaluation of phytochemical screening and anti inflammatory activity of leaves and stem of Mikania scandens (l.) wild. Ann Med Health Sci Res 2014;4:532. https://doi.org/10.4103/2141-9248.139302 PMid:25221699 PMCid:PMC4160675

15. Anosike CA, Obidoa O, Ezeanyika LU. Membrane stabilization as a mechanism of the anti-inflammatory activity of methanol extract of garden egg (Solanum aethiopicum). DARU, Journal of Pharmaceutical Sciences 2012;20. https://doi.org/10.1186/2008-2231-20-76 PMid:23351977 PMCid:PMC3556049

16. Aidoo DB, Konja D, Henneh IT, Ekor M. Protective Effect of Bergapten against Human Erythrocyte Hemolysis and Protein Denaturation in Vitro. Int J Inflam 2021;2021. https://doi.org/10.1155/2021/1279359 PMid:34970434 PMCid:PMC8714387

17. Fujiati F, Haryati H, Joharman J, Utami SW. In Vitro Metabolite Profiling and Anti-Inflammatory Activities of Rhodomyrtus Tomentosa with Red Blood Cell Membrane Stabilization Methods. vol. 11. 2022. https://doi.org/10.52547/rbmb.11.3.502 PMid:36718296 PMCid:PMC9883021

18. Hossain MM, Ahamed SK, Dewan SMR, Hassan MM, Istiaq A, Islam MS, et al. In vivo antipyretic, antiemetic, in vitro membrane stabilization, antimicrobial, and cytotoxic activities of different extracts from Spilanthes paniculata leaves. Biol Res 2014;47. https://doi.org/10.1186/0717-6287-47-45 PMid:25299748 PMCid:PMC4177068

19. Moualek I, Iratni Aiche G, Mestar Guechaoui N, Lahcene S, Houali K. Antioxidant and anti-inflammatory activities of Arbutus unedo aqueous extract. Asian Pac J Trop Biomed 2016;6:937-44. https://doi.org/10.1016/j.apjtb.2016.09.002

20. Yesmin S, Paul A, Naz T, Rahman ABMA, Akhter SF, Wahed MII, et al. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clinical Phytoscience 2020;6. https://doi.org/10.1186/s40816-020-00207-7

21. Sharma V, Singh M. In vitro antiarthritic and hemolysis preventive: Membrane stabilising efficacy of ethanolic root extract of operculina turpethum. 2014.

22. Berdyshev IM, Karaseva MA, Demidyuk I V. Assay for Protealysin-like Protease Inhibitor Activity. Bio Protoc 2022;12. https://doi.org/10.21769/BioProtoc.4528 PMid:36313197 PMCid:PMC9548520

23. Assiry AA, Bhavikatti SK, Althobaiti FA, Mohamed RN, Karobari MI. Evaluation of in Vitro Antiprotease Activity of Selected Traditional Medicinal Herbs in Dentistry and Its in Silico PASS Prediction. Biomed Res Int 2022;2022. https://doi.org/10.1155/2022/5870443 PMid:35707383 PMCid:PMC9192215

24. Zhang G. Protease Assays. 2012 May 1 [Updated 2012 Oct 1]. In: Markossian S, Grossman A, Arkin M, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004-. Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/

25. Yamamoto KZ, Yasuo N, Sekijima M. Screening for Inhibitors of Main Protease in SARS-CoV-2: In Silico and In Vitro Approach Avoiding Peptidyl Secondary Amides. J Chem Inf Model 2022;62:350-8. https://doi.org/10.1021/acs.jcim.1c01087 PMid:35015543

26. Eubanks M, Cook C. Assay for proteinase inhibition in Tripsacum-Zea diploperennis × maize hybrids resistant to Western corn rootworm. Maize Genetics Cooperation Newsletter [Internet]. 2000 Jan 1;(74):30-1. 27. Jiratchayamaethasakul C, Ding Y, Hwang O, Im ST, Jang Y, Myung SW, et al. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish Aquatic Sci 2020;23. https://doi.org/10.1186/s41240-020-00149-8

28. Vinardell MP, Maddaleno AS, Mitjans M. Harmonizing In Vitro Techniques for Anti-Aging Cosmetic Ingredient Assessment: A Comprehensive Review. Cosmetics 2024;11. https://doi.org/10.3390/cosmetics11050170

29. Akkol EK, Günbatan T, Gürbüz İ, Duman H, Kılıç CS, İlhan M. In Vitro Enzyme Inhibitory Activity of Ten Ferulago W. Koch Species Growing in Turkey. Brazilian Archives of Biology and Technology 2022;65. https://doi.org/10.1590/1678-4324-2022210207

30. Fariza IN, J. Fadzureena, A. Zunoliza, A. Luqman Chuah, K.Y. Pin, I. Adawiah. Anti-inflammatory Activity of the Major Compound from Methanol Extract of Phaleria macrocarpa Leaves. Journal of Applied Sciences [Internet]. 2012 May 15;12(11):1195-8. https://doi.org/10.3923/jas.2012.1195.1198

31. Salvamani S, Gunasekaran B, Shukor MY, Shaharuddin NA, Sabullah MK, Ahmad SA. Anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities of amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. Evidence-Based Complementary and Alternative Medicine 2016;2016. https://doi.org/10.1155/2016/8090841 PMid:27051453 PMCid:PMC4804040

32. Campos JF, Das Santos UP, Da Rocha PDS, Damião MJ, Balestieri JBP, Cardoso CAL, et al. Antimicrobial, Antioxidant, Anti-Inflammatory, and Cytotoxic Activities of Propolis from the Stingless Bee Tetragonisca fiebrigi (Jataí). Evidence-Based Complementary and Alternative Medicine 2015;2015. https://doi.org/10.1155/2015/296186 PMid:26185516 PMCid:PMC4491730

33. Wiem A, Smail A, Mnif W, Faleiro ML, Wissem M. Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of leaf, flower and seed aqueous extracts of Lawsonia inermis from Tunisia. 2014.

34. Nguyen HT, Vu TY, Chandi V, Polimati H, Tatipamula VB. Dual COX and 5-LOX inhibition by clerodane diterpenes from seeds of Polyalthia longifolia (Sonn.) Thwaites. Sci Rep 2020;10. https://doi.org/10.1038/s41598-020-72840-8 PMid:32994508 PMCid:PMC7524750

35. Fiorucci S, Meli R, Bucci M, Cirino G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? 2001.

36. Bošković J, Dobričić V, Mihajlović M, Kotur-Stevuljević J, Čudina O. Synthesis, Evaluation of Enzyme Inhibition and Redox Properties of Potential Dual COX-2 and 5-LOX Inhibitors. Pharmaceuticals 2023;16. https://doi.org/10.3390/ph16040549 PMid:37111306 PMCid:PMC10142505

37. Mogana R, Teng-Jin K, Wiart C. The Medicinal Timber Canarium patentinervium Miq. (Burseraceae Kunth.) Is an Anti-Inflammatory Bioresource of Dual Inhibitors of Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX) . ISRN Biotechnol 2013;2013:1-8. https://doi.org/10.5402/2013/986361 PMid:25937987 PMCid:PMC4393036

38. Sekhar S, R NS, S PH. In vitro antioxidant activity, lipoxygenase, cyclooxygenase-2 inhibition and DNA protection properties of Memecylon species. 2013.

39. Awang Hamsin DEZ, Abdul Hamid R, Saiful Yazan L, Mat Taib CN, Yeong LT. Ardisia crispa roots inhibit cyclooxygenase and suppress angiogenesis. BMC Complement Altern Med 2014;14. https://doi.org/10.1186/1472-6882-14-102 PMid:24641961 PMCid:PMC4000009

40. Cuendet M, Mesecar AD, DeWitt DL, Pezzuto JM. An ELISA method to measure inhibition of the COX enzymes. Nat Protoc 2006;1:1915-21. https://doi.org/10.1038/nprot.2006.308 PMid:17487176

41. Fang WF, Douglas IS, Wang CC, Kao HC, Chang YT, Tseng CC, et al. 5-lipoxygenase activating protein (FLAP) dependent leukotriene biosynthesis inhibition (MK591) attenuates lipid a endotoxin-induced inflammation. PLoS One 2014;9. https://doi.org/10.1371/journal.pone.0102622 PMid:25025775 PMCid:PMC4099325

42. Jiang Z, Yin X, Jiang Q. Natural Forms of Vitamin E and 13′-Carboxychromanol, a Long-Chain Vitamin E Metabolite, Inhibit Leukotriene Generation from Stimulated Neutrophils by Blocking Calcium Influx and Suppressing 5-Lipoxygenase Activity, Respectively. The Journal of Immunology 2011;186:1173-9. https://doi.org/10.4049/jimmunol.1002342 PMid:21169551 PMCid:PMC4050064

43. Garscha U, Romp E, Pace S, Rossi A, Temml V, Schuster D, et al. Pharmacological profile and efficiency in vivo of diflapolin, the first dual inhibitor of 5-lipoxygenase-activating protein and soluble epoxide hydrolase. Sci Rep 2017;7. https://doi.org/10.1038/s41598-017-09795-w PMid:28839250 PMCid:PMC5571211

44. Werz O. Inhibition of 5-Lipoxygenase Product Synthesis by Natural Compounds of Plant Origin n.d. https://doi.org/10.1055/s-2007-990242 PMid:17939102

Published

15-01-2025
Statistics
Abstract Display: 61
PDF Downloads: 58
PDF Downloads: 3

How to Cite

1.
Sabalingam S. In-vitro approaches to evaluate the anti-inflammatory potential of phytochemicals: A Review. J. Drug Delivery Ther. [Internet]. 2025 Jan. 15 [cited 2025 Feb. 13];15(1):187-92. Available from: https://jddtonline.info/index.php/jddt/article/view/6956

How to Cite

1.
Sabalingam S. In-vitro approaches to evaluate the anti-inflammatory potential of phytochemicals: A Review. J. Drug Delivery Ther. [Internet]. 2025 Jan. 15 [cited 2025 Feb. 13];15(1):187-92. Available from: https://jddtonline.info/index.php/jddt/article/view/6956