Monte Carlo Simulation of Organ Absorbed Dose of Worker's Radiation Exposure in Bone Scintigraphy

Authors

Abstract

Objectives: This study examines individual organ doses and the impact of ionizing radiation sources on effective radiation doses.

Methods: In the research, the ICRP-defined adult standing phantom was used as the phantom material in the Visual Monte Carlo Dose Calculation Program (VMC). Subsequently, the incurred doses were calculated by defining different doses, distances, and durations for the 99mTc radioactive source.

Results: Exposure times were set at 5 minutes and 20 minutes in comparison. The results indicated that for 5 minutes and 20 minutes at 360 cm, doses remained below the ICRP recommended annual dose limit of 5.7 µSv/h for occupational exposure.

Conclusion: Organ absorbed and effective doses varied with exposure time and source-phantom distance. To optimize radiation exposure, people working in radiation fields must make an increased effort to reduce radiation doses following the ALARA principles.

Keywords: Effective dose, absorbed dose, VMC software, Monte Carlo

Keywords:

Effective dose, absorbed dose, VMC software, Monte Carlo

DOI

https://doi.org/10.22270/jddt.v14i11.6896

Author Biographies

Koffi Charles Kouman , Laboratory of Fundamental and Applied Physics (LFAP), University Nangui Abrogoua, Abidjan, Côte d’Ivoire

Laboratory of Fundamental and Applied Physics (LFAP), University Nangui Abrogoua, Abidjan, Côte d’Ivoire

Koffi N’guessan Placide Gabin Allangba , Laboratory of Fundamental and Applied Physics (LFAP), University Nangui Abrogoua, Abidjan, Côte d’Ivoire

Laboratory of Fundamental and Applied Physics (LFAP), University Nangui Abrogoua, Abidjan, Côte d’Ivoire

Physics Teaching Unit, Laboratory of Environmental Sciences and Technologies, University Jean Lorougnon Guédé, Daloa, Côte d’Ivoire

Institute of Nuclear Medicine of Abidjan (IMENA), Biosecurity and Biosafety Pole, Medical Physics and Radiation Protection Unit, Abidjan, Côte d’Ivoire

Department of Medical Physics, University Trieste and International Centre for Theoretical Physics (ICTP), Trieste, Italie

Yves Kily Hervé Fagnidi , Training and Research Unit of Science and Technology, University Alassane Ouattara, Bouake, Cote d’Ivoire.

Laboratory of Fundamental and Applied Physics (LFAP), University Nangui Abrogoua, Abidjan, Côte d’Ivoire

 

Okra Guy Müller Banquet , Physics Teaching Unit, Laboratory of Environmental Sciences and Technologies, University Jean Lorougnon Guédé, Daloa, Côte d’Ivoire

Laboratory of Fundamental and Applied Physics (LFAP), University Nangui Abrogoua, Abidjan, Côte d’Ivoire

 

References

1. Technetium‐99m radiochemistry for pharmaceutical applications Dionysia Papagiannopoulou. https://doi.org/10.1002/jlcr.3531 PMid:28618064

2. Protection, R. ICRP Publication 103. Ann. ICRP 2007;37:2

3. ICRP. ICRP Statement on Tissue Reactions / Early and Late Effects of Radiation in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in a Radiation Protection Context. ICRP Publication 2012;118. Ann. ICRP 41(1/2) https://doi.org/10.1016/j.icrp.2012.02.001 PMid:22925378

4. Love, C.; Din, A.S.; Tomas, M.B.; Kalapparambath, T.P.; Palestro, C.J. Radionuclide Bone Imaging: An Illustrative Review. Radiographics 2003;23:341-358. https://doi.org/10.1148/rg.232025103 PMid:12640151

5. Marshall SK, Prom-on P, Siriluck Sangkue and Wasinee Thiangsook Assessment of Radiation Exposure in a Nuclear Medicine Department during 99mTc-MDP Bone Scintigraphy. https://doi.org/10.3390/toxics11100814

6. S Mattsson, L Johansson, S Leide Svegborn, J Liniecki, D Noßke, K Å Riklund, M Stabin, D Taylor, W Bolch, S Carlsson, K Eckerman, A Giussani, L Söderberg, S Valind; ICRP. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann ICRP, 2015;44 (2suppl):7-321. https://doi.org/10.1177/0146645314558019 PMid:26069086

7. Bielajew A, Rogers D. Nucl. Instrum. Methods B, 1987;18:165-181 https://doi.org/10.1016/S0168-583X(86)80027-1

8. Briesmeister J F, ed. MCNP-A General Monte Carlo N-Particle Transport Code, Version 4C. Los Alamos National Laboratory, 2000, LA-13709-M

9. Johnson T K. Comp. Methods Programs Biomed, 1988;27:159-167 https://doi.org/10.1016/0169-2607(88)90027-2 PMid:3180752

10. Asl RG, Sabbaghi R, Ahangari HT, Hejazi P, Foroutan M. Prediction of Absorbed Dose to Normal Organs with Endocrine Tumors for I-131 by use of 99mTC Single Photon Emission Computed Tomography/Computed Tomography and Geant4 Application for Tomographic Emission Simulation. Indian J Nucl Med 2021;36:273-81 https://doi.org/10.4103/ijnm.ijnm_6_21 PMid:34658551 PMCid:PMC8481846

11. Hunt JG, Dantas BM, Lourenc MC¸o and Azeredo AMG. Voxel phantoms and monte carlo methods applied to in vivo measurements for simultaneous 241am contamination in four body regions. Radiation Protection Dosimetry 2003 ;105(1-4) :549-552. https://doi.org/10.1093/oxfordjournals.rpd.a006300 PMid:14527025

12. Souleymane K, Allangba K, Kouame Koutouan A. Estimation de la dose de rayonnement associée à la scintigraphie osseuse et établissement des niveaux de références diagnostiques locaux à l'Institut de Médecine Nucléaire d'Abidjan (IMENA). 2024;48(2) :P. 43-140. Elsevier Masson SAS 10e Journées Francophones de Médecine nucléaire - Biarritz. https://doi.org/10.1016/j.mednuc.2024.01.168

13. Hunt JG, Santo DDSs, da Silva FC, Malatova I, Foltanova S, Dantas BM, Azeredo A. Application of Voxel Phantoms and Monte Carlo Methods to Internal and External Dosimetry. 32017581, 2000;32(16)

14. Hunt JG, Dantas BM, Lourenc¸o MC, Azeredo AMG. Voxel phantoms and monte carlo methods applied to in vivo measurements for simultaneous 241am contamination in four body regions. Radiat Prot Dosimetry. 2003;105(1-4):549-52. https://doi.org/10.1093/oxfordjournals.rpd.a006300 PMid:14527025

15. Morovati N, Sajadi Z, Mohammadi S. On the caregiver effective dose analysis during I 131 therapy in different situations using two mathematical phantoms and Monte Carlo code. Journal- Korean Physical Society. 2022;80(7), https://doi.org/10.1007/s40042-022-00424-y

16. Charito Love, Anabella S. Din, Maria B. Tomas,Tomy P. Kalapparambath, Christopher J. Palestro. Radionuclide Bone Imaging: An Illustrative Review Radiographics. 2003 Mar-Apr;23(2):341-58. https://doi.org/10.1148/rg.232025103 PMid:12640151

17. Kara U. Cs-137, Co-60 ve Na-24 için Monte Carlo simülasyonu kullanılarak farklı vücut organlarının doz değerlendirilmesi. AKÜ Fen Müh Bil Derg. 2018;18(2):710-726. https://doi.org/10.5578/fmbd.67202

18. Bayram T, Yilmaz AH, Demir M, Sonmez B. Radiation Dose to Technologists per Nuclear Medicine Examination and Estimation of Annual Dose. J Nucl Med Technol. 2011 Mar;39(1):55-9. https://doi.org/10.2967/jnmt.110.080358 PMid:21321251

19. For The Next Decade. International Atomic Energy Agency: 2015.

20. Işıkcı Nİ, Demir M, Sönmezoğlu K. Evaluation of annual occupational doses of technologists in diagnostic nuclear medicine. Cerrahpaşa Med J. 2022;46(3):226-229. https://doi.org/10.5152/cjm.2022.22007

21. Kara U. Cs-137, Co-60 ve Na-24 için Monte Carlo simülasyonu kullanılarak farklı vücut organlarının doz değerlendirilmesi. AKÜ Fen Müh Bil Derg. 2018;18(2):710-726. https://doi.org/10.5578/fmbd.67202

22. ICRP. 2021a. Use of dose quantities in radiological protection. ICRP Publication 147. Ann. ICRP 50. https://doi.org/10.1177/0146645320911864 PMid:33653178

23. Clement C et al. Keeping the ICRP Recommendations Fit for Purpose. J. Radiol. Prot. 2021 ;41:1390-1409 https://doi.org/10.1088/1361-6498/ac1611 PMid:34284364

24. Şahmaran T. Evaluation of occupational radiation dose due to 99mTc and 131I based examinations. J Health Sci Med. 2024;7(2):168-173. https://doi.org/10.32322/jhsm.1418974

Published

15-11-2024
Statistics
Abstract Display: 42
PDF Downloads: 36
PDF Downloads: 14

How to Cite

1.
Charles Kouman K, N’guessan Placide Gabin Allangba K, Fagnidi YKH, Guy Müller Banquet O. Monte Carlo Simulation of Organ Absorbed Dose of Worker’s Radiation Exposure in Bone Scintigraphy. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):105-10. Available from: https://jddtonline.info/index.php/jddt/article/view/6896

How to Cite

1.
Charles Kouman K, N’guessan Placide Gabin Allangba K, Fagnidi YKH, Guy Müller Banquet O. Monte Carlo Simulation of Organ Absorbed Dose of Worker’s Radiation Exposure in Bone Scintigraphy. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):105-10. Available from: https://jddtonline.info/index.php/jddt/article/view/6896