Monte Carlo Simulation of Organ Absorbed Dose of Worker's Radiation Exposure in Bone Scintigraphy
Abstract
Objectives: This study examines individual organ doses and the impact of ionizing radiation sources on effective radiation doses.
Methods: In the research, the ICRP-defined adult standing phantom was used as the phantom material in the Visual Monte Carlo Dose Calculation Program (VMC). Subsequently, the incurred doses were calculated by defining different doses, distances, and durations for the 99mTc radioactive source.
Results: Exposure times were set at 5 minutes and 20 minutes in comparison. The results indicated that for 5 minutes and 20 minutes at 360 cm, doses remained below the ICRP recommended annual dose limit of 5.7 µSv/h for occupational exposure.
Conclusion: Organ absorbed and effective doses varied with exposure time and source-phantom distance. To optimize radiation exposure, people working in radiation fields must make an increased effort to reduce radiation doses following the ALARA principles.
Keywords: Effective dose, absorbed dose, VMC software, Monte Carlo
Keywords:
Effective dose, absorbed dose, VMC software, Monte CarloDOI
https://doi.org/10.22270/jddt.v14i11.6896References
1. Technetium‐99m radiochemistry for pharmaceutical applications Dionysia Papagiannopoulou. https://doi.org/10.1002/jlcr.3531 PMid:28618064
2. Protection, R. ICRP Publication 103. Ann. ICRP 2007;37:2
3. ICRP. ICRP Statement on Tissue Reactions / Early and Late Effects of Radiation in Normal Tissues and Organs - Threshold Doses for Tissue Reactions in a Radiation Protection Context. ICRP Publication 2012;118. Ann. ICRP 41(1/2) https://doi.org/10.1016/j.icrp.2012.02.001 PMid:22925378
4. Love, C.; Din, A.S.; Tomas, M.B.; Kalapparambath, T.P.; Palestro, C.J. Radionuclide Bone Imaging: An Illustrative Review. Radiographics 2003;23:341-358. https://doi.org/10.1148/rg.232025103 PMid:12640151
5. Marshall SK, Prom-on P, Siriluck Sangkue and Wasinee Thiangsook Assessment of Radiation Exposure in a Nuclear Medicine Department during 99mTc-MDP Bone Scintigraphy. https://doi.org/10.3390/toxics11100814
6. S Mattsson, L Johansson, S Leide Svegborn, J Liniecki, D Noßke, K Å Riklund, M Stabin, D Taylor, W Bolch, S Carlsson, K Eckerman, A Giussani, L Söderberg, S Valind; ICRP. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann ICRP, 2015;44 (2suppl):7-321. https://doi.org/10.1177/0146645314558019 PMid:26069086
7. Bielajew A, Rogers D. Nucl. Instrum. Methods B, 1987;18:165-181 https://doi.org/10.1016/S0168-583X(86)80027-1
8. Briesmeister J F, ed. MCNP-A General Monte Carlo N-Particle Transport Code, Version 4C. Los Alamos National Laboratory, 2000, LA-13709-M
9. Johnson T K. Comp. Methods Programs Biomed, 1988;27:159-167 https://doi.org/10.1016/0169-2607(88)90027-2 PMid:3180752
10. Asl RG, Sabbaghi R, Ahangari HT, Hejazi P, Foroutan M. Prediction of Absorbed Dose to Normal Organs with Endocrine Tumors for I-131 by use of 99mTC Single Photon Emission Computed Tomography/Computed Tomography and Geant4 Application for Tomographic Emission Simulation. Indian J Nucl Med 2021;36:273-81 https://doi.org/10.4103/ijnm.ijnm_6_21 PMid:34658551 PMCid:PMC8481846
11. Hunt JG, Dantas BM, Lourenc MC¸o and Azeredo AMG. Voxel phantoms and monte carlo methods applied to in vivo measurements for simultaneous 241am contamination in four body regions. Radiation Protection Dosimetry 2003 ;105(1-4) :549-552. https://doi.org/10.1093/oxfordjournals.rpd.a006300 PMid:14527025
12. Souleymane K, Allangba K, Kouame Koutouan A. Estimation de la dose de rayonnement associée à la scintigraphie osseuse et établissement des niveaux de références diagnostiques locaux à l'Institut de Médecine Nucléaire d'Abidjan (IMENA). 2024;48(2) :P. 43-140. Elsevier Masson SAS 10e Journées Francophones de Médecine nucléaire - Biarritz. https://doi.org/10.1016/j.mednuc.2024.01.168
13. Hunt JG, Santo DDSs, da Silva FC, Malatova I, Foltanova S, Dantas BM, Azeredo A. Application of Voxel Phantoms and Monte Carlo Methods to Internal and External Dosimetry. 32017581, 2000;32(16)
14. Hunt JG, Dantas BM, Lourenc¸o MC, Azeredo AMG. Voxel phantoms and monte carlo methods applied to in vivo measurements for simultaneous 241am contamination in four body regions. Radiat Prot Dosimetry. 2003;105(1-4):549-52. https://doi.org/10.1093/oxfordjournals.rpd.a006300 PMid:14527025
15. Morovati N, Sajadi Z, Mohammadi S. On the caregiver effective dose analysis during I 131 therapy in different situations using two mathematical phantoms and Monte Carlo code. Journal- Korean Physical Society. 2022;80(7), https://doi.org/10.1007/s40042-022-00424-y
16. Charito Love, Anabella S. Din, Maria B. Tomas,Tomy P. Kalapparambath, Christopher J. Palestro. Radionuclide Bone Imaging: An Illustrative Review Radiographics. 2003 Mar-Apr;23(2):341-58. https://doi.org/10.1148/rg.232025103 PMid:12640151
17. Kara U. Cs-137, Co-60 ve Na-24 için Monte Carlo simülasyonu kullanılarak farklı vücut organlarının doz değerlendirilmesi. AKÜ Fen Müh Bil Derg. 2018;18(2):710-726. https://doi.org/10.5578/fmbd.67202
18. Bayram T, Yilmaz AH, Demir M, Sonmez B. Radiation Dose to Technologists per Nuclear Medicine Examination and Estimation of Annual Dose. J Nucl Med Technol. 2011 Mar;39(1):55-9. https://doi.org/10.2967/jnmt.110.080358 PMid:21321251
19. For The Next Decade. International Atomic Energy Agency: 2015.
20. Işıkcı Nİ, Demir M, Sönmezoğlu K. Evaluation of annual occupational doses of technologists in diagnostic nuclear medicine. Cerrahpaşa Med J. 2022;46(3):226-229. https://doi.org/10.5152/cjm.2022.22007
21. Kara U. Cs-137, Co-60 ve Na-24 için Monte Carlo simülasyonu kullanılarak farklı vücut organlarının doz değerlendirilmesi. AKÜ Fen Müh Bil Derg. 2018;18(2):710-726. https://doi.org/10.5578/fmbd.67202
22. ICRP. 2021a. Use of dose quantities in radiological protection. ICRP Publication 147. Ann. ICRP 50. https://doi.org/10.1177/0146645320911864 PMid:33653178
23. Clement C et al. Keeping the ICRP Recommendations Fit for Purpose. J. Radiol. Prot. 2021 ;41:1390-1409 https://doi.org/10.1088/1361-6498/ac1611 PMid:34284364
24. Şahmaran T. Evaluation of occupational radiation dose due to 99mTc and 131I based examinations. J Health Sci Med. 2024;7(2):168-173. https://doi.org/10.32322/jhsm.1418974
Published
PDF Downloads: 36
PDF Downloads: 14
How to Cite
Issue
Section
Copyright (c) 2024 Koffi Charles Kouman , Koffi N’guessan Placide Gabin Allangba , Yves Kily Hervé Fagnidi , Okra Guy Müller Banquet
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).