Potential Inhibitor of DENV-2 Virus Protease (NS2B-NS3): An In-Silico Studies of Anti-Viral Plants

Authors

Abstract

Dengue virus (DENV) is a mosquito-borne pathogen that affects millions of people worldwide. The DENV-2 protease is a vital enzyme responsible for viral replication and is a promising target for antiviral therapy.  The objective of the study is to identify potential inhibitors of DENV-2 protease using In-Silico approaches with phytocompounds from ten antiviral plants. Initially, 133 phytoconstituents were collected with anti-dengue properties from previously reported studies which were virtually screened using SWISS ADME for ADME properties. The DENV-2 protease structure (2FOM) was obtained from the Protein Data Bank and molecular docking was performed using AutoDock Vina. The best-scoring compounds were evaluated and top five potential inhibitors with high binding affinity and stability were selected. The top-scoring compounds were Ligand-91 (Terchebin, -8.1 kcal/mol), Ligand-13 (7-desacetyl-7-benzoylgedunin, -7.8 kcal/mol), Ligand-100 (Triterpenoid, -7.8 kcal/mol), Ligand-12 (7-desacetyl-7-benzoylazadiradione, -7.7 kcal/mol), Ligand-20 (Azadirolic acid, -7.7 kcal/mol), Ref.1 (Doxycycline, -6.6 kcal/mol), Ref.2(Monosdenvir, -7.5 kcal/mol), and Ref.3 (Zanamivir, -5.6 kcal/mol). The result of the study shows that 7-desacetyl-7-benzoylazadiradione and 7-desacetyl-7-benzoylgeduninas compounds with high binding affinity for the target protein. These compounds are found in Azadirachta indica making it a promising candidate for further experimental validation and development of antiviral agents against DENV-2.

Keywords: Molecular docking, Anti-dengue, Anti-viral, ADME analysis

Keywords:

Molecular docking, Anti-dengue, Anti-viral, ADME analysis

DOI

https://doi.org/10.22270/jddt.v14i11.6870

Author Biography

Mhashevolu Rhakho, Department of Botany, St. Joseph’s College (A) Jakhama, Nagaland, India.

Department of Botany, St. Joseph’s College (A) Jakhama, Nagaland, India.

References

1. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013;10(5):210-29. https://doi.org/10.4314/ajtcam.v10i5.2. PMID: 24311829.

2. Chaachouay Noureddine, Zidane Lahcen. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024; 3(1):184-207. https://doi.org/10.3390/ddc3010011.

3. Chaughule, R.S., Barve, R.S. Role of herbal medicines in the treatment of infectious diseases. Vegetos. 2024; 37, 41–51. https://doi.org/10.1007/s42535-022-00549-2.

4. Aruku D. A brief review of medicinal plants used by the Naga tribes of Nagaland, India. International Journal of Life Science Research Archive, 2023; 04(01):143–152.https://doi.org/10.53771/ijlsra.2023.4.1.0025.

5. Bhuyan SI, Meyiwapangla , Laskar I. Indigenous Knowledge and Traditional Use of Medicinal Plants by Four Major Tribes of Nagaland, North East India.International Journal of Innovative Science, Engineering & Technology. 2014;1(6), ISSN 2348 – 7968.

6. Garg Amit Kumar, Faheem Mohammed, SinghSumer. Role of Medicinal Plant in Human Health Disease. Asian J. Plant Sci. Res., 2021;11(1):19-21.

7. Meyanungsang Kichu, Teresa Malewska, Kaisarun Akter, ImchawatiImchen, David Harrington, James Kohen, Subramanyam R. Vemulpad, Joanne F. Jamie. An ethnobotanical study of medicinal plants of Chungtia village, Nagaland, India, Journal of Ethnopharmacology. 2015; 166:5-17.https://doi.org/10.1016/j.jep.2015.02.053

8. Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses. 2021; 13(10):1967.https://doi.org/10.3390/v13101967

9. Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GE, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. Biomed Res Int. 2021;4224816.https://doi.org/10.1155/2021/4224816. PMID: 34957305.

10. Daep, C.A., Muñoz-Jordán, J.L. &Eugenin, E.A. Flaviviruses, an expanding threat in public health: Focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol.2014; 20, 539–560.https://doi.org/10.1007/s13365-014-0285-z.

11. Rastogi, M., Sharma, N. & Singh, S.K. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J. 2016;13, 131.https://doi.org/10.1186/s12985-016-0590-7

12. Yauch LE, Shresta S. Dengue virus vaccine development. Adv Virus Res. 2014;88;315-72. https://doi.org/10.1016/B978-0-12-800098-4.00007-6. PMID: 24373316.

13. Zhi-Shan Zhang, Yan-Sheng Yan, Yu-Wei Weng, Hai-Long Huang, Shi-Qing Li, Shi He, Jian-Ming Zhang. High-level expression of recombinant dengue virus type 2 envelope domain III protein and induction of neutralizing antibodies in BALB/C mice. Journal of Virological Methods. 2007; 143(2):125-131. https://doi.org/10.1016/j.jviromet.2007.02.012.

14. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013; 496(7446):504-507. https://doi.org/10.1038/nature12060. PMID: 23563266.

15. James A. Trostle, Charlotte Robbins, Betty Corozo Angulo, Andrés Acevedo, Josefina Coloma, Joseph N.S. Eisenberg, Dengue fever is not just urban or rural: reframing its spatial categorization. Social Science & Medicine, 2024; 117384. https://doi.org/10.1016/j.socscimed.2024.117384

16. Obi, J.O., Gutiérrez-Barbosa, H., Chua, J.V.Deredge, D.J. Current Trends and Limitations in Dengue Antiviral Research. Trop. Med. Infect. Dis. 2021; 6(180). https://doi.org/10.3390/tropicalmed6040180.

17. Lauren E. Yauch, Sujan Shresta, Chapter Seven - Dengue Virus Vaccine Development, Editor(s): Karl Maramorosch, Frederick A. Murphy, Advances in Virus Research, Academic Press, 2014; 88:315-372. https://doi.org/10.1016/B978-0-12-800098-4.00007-6.

18. Sirisena PDN, Mahilkar S, Sharma C, Jain J, Sunil S. Concurrent dengue infections: Epidemiology & clinical implications. Indian J Med Res. 2021;154(5):669-679. https://doi.org/10.4103/ijmr.IJMR_1219_18. PMID: 35532585.

19. Sun, P., Nie, K., Zhu, Y. et al. A mosquito salivary protein promotes flavivirus transmission by activation of autophagy. Nat Commun. 2020; 11( 260). https://doi.org/10.1038/s41467-019-14115-z

20. Valenzuela-Leon PC, Shrivastava G, Martin-Martin I, Cardenas JC, Londono-Renteria B, Calvo E. Multiple Salivary Proteins from Aedes aegypti Mosquito Bind to the Zika Virus Envelope Protein. Viruses. 2022;4(2), 221; https://doi.org/10.3390/v14020221. PMID: 35215815.

21. Murugesan A, Manoharan M. Dengue Virus. Emerging and Reemerging Viral Pathogens. 2020; 281–359. https://doi.org/10.1016/B978-0-12-819400-3.00016-8. PMC7149978.

22. Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses. 2023;15(3):705. https://doi.org/10.3390/v15030705. PMID: 36992414

23. Sinha, S., Singh, K., Ravi Kumar, Y.S. et al. Dengue virus pathogenesis and host molecular machineries. J Biomed Sci.2024; 31, 43 .https://doi.org/10.1186/s12929-024-01030-9

24. Balinsky CA, Schmeisser H, Ganesan S, Singh K, Pierson TC, Zoon KC. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol. 2013;87(24):13094-106. https://doi.org/10.1128/jvi.00704-13. PMID: 24027323.

25. Obi JO, Gutiérrez-Barbosa H, Chua JV, Deredge DJ. Current Trends and Limitations in Dengue Antiviral Research. Trop Med Infect Dis. 2021 Sep 30;6(4):180.https://doi.org/10.3390/tropicalmed6040180. PMID: 34698303.

26. Nicholls CMR, Sevvana M, Kuhn RJ. Structure-guided paradigm shifts in flavivirus assembly and maturation mechanisms. Adv Virus Res. 2020;108:33-83. https://doi.org/10.1016/bs.aivir.2020.08.003. PMID: 3383772.

27. Liangzhong Lim, Mei Dang, Amrita Roy, Jian Kang, and Jianxing Song. Curcumin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting Its Active Conformation. ACS Omega 2020; 5(40), 25677-25686.https://doi.org/10.1021/acsomega.0c00039

28. Lim, S.V., Rahman, M.B.A. & Tejo, B.A. Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. BMC Bioinformatics .2011;12 (24). https://doi.org/10.1186/1471-2105-12-S13-S24

29. Xu T, Sampath A, Chao A, Wen D, Nanao M, Chene P, Vasudevan SG, Lescar J. Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol. 2005;79(16):10278-88. https://doi.org/10.1128/jvi.79.16.10278-10288.2005. PMID: 16051821.

30. Chandrakala Basavannacharya, Subhash G. Vasudevan. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochemical and Biophysical Research Communications. 2014; 4539(3);539-544.https://doi.org/10.1016/j.bbrc.2014.09.113.

31. Swarbrick CMD, Basavannacharya C, Chan KWK, Chan SA, Singh D, Wei N, Phoo WW, Luo D, Lescar J, Vasudevan SG. NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucleic Acids Res. 2017;45(22):12904-12920.https://doi.org/10.1093/nar/gkx1127. PMID: 29165589.

32. Wang Y, Xie X, Shi PY. Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res. 2022;207:105423.https://doi.org/10.1016/j.antiviral.2022.105423. PMID: 36179934.

33. Salaemae, W., Junaid, M., Angsuthanasombat, C. et al. Structure-guided mutagenesis of active site residues in the dengue virus two-component protease NS2B-NS3. J Biomed Sci. 2010;17,68. https://doi.org/10.1186/1423-0127-17-68

34. Teo KF, Wright PJ: Internal proteolysis of the NS3 protein specified by dengue virus 2. J Gen Virol. 1997, 78 (2): 337-341.https://doi.org/10.1099/0022-1317-78-2-337

35. El Sahili A, Lescar J. Dengue Virus Non-Structural Protein 5. Viruses. 2017;9(4):91. https://doi.org/10.3390/v9040091. PMID: 28441781.

36. Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H, Deas TS, Zhou Y, Li H, Shi PY. West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol. 2006;80(17):8362-70. https://doi.org/10.1128/jvi.00814-06. PMID: 16912287.

37. Wu H, Bock S, Snitko M, Berger T, Weidner T, Holloway S, Kanitz M, Diederich WE, Steuber H, Walter C, Hofmann D, Weißbrich B, Spannaus R, Acosta EG, Bartenschlager R, Engels B, Schirmeister T, Bodem J. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother. 2015;59(2):1100-9. PMID: 25487800.

38. Dang M, Lim L, Roy A, Song J. Myricetin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting the Active and Locking the Inactive Conformations. ACS Omega. 2022 11;7(3):2798-2808.https://doi.org/10.1021/acsomega.1c05569. PMID: 35097276.

39. Alzohairy MA. Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evid Based Complement Alternat Med. 2016;2016:7382506. https://doi.org/10.1155/2016/7382506. PMID: 27034694.

40. Nawaz, H., Shad, M. A., & Muzaffar, S. Phytochemical Composition and Antioxidant Potential of Brassica. InTech. 2018. https://doi.org/10.5772/intechopen.76120.

41. Sharma A, Sharma R, Sharma M, Kumar M, Barbhai Mrunal D, Lorenzo M J, Sharma S, Samota Mahesh K, Atanassova M, Caruso G, Naushad Mo., Radha, Chandran D, Prakash P, Hasan M, Rais N, Dey A, Mahato D Kumar, Dhumal S, Singh S, Senapathy M, Rajalingam S, Visvanathan M, Saleena LAbdul Kalam, Mekhemar M. Carica papaya L. Leaves: Deciphering Its Antioxidant Bioactives, Biological Activities, Innovative Products, and Safety Aspects, Oxidative Medicine and Cellular Longevity. 2022; 2451733:20. https://doi.org/10.1155/2022/2451733

42. 42. Soib HH, Ismail HF, Husin F, Abu Bakar MH, Yaakob H, Sarmidi MR. Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities. Molecules. 2020; 25(3):517. https://doi.org/10.3390/molecules25030517

43. 43. Noor Zarina, A. W., &Nazlina, I. (2020). Efficacy of Catharanthus roseus extract against Dengue Virus Type 2 Infection in vitro. Indian Journal of Public Health Research & Development, 11(1), 1314-1319.

44. Wahab NZA, Azizul A, Ibrahim N. Phytochemistry, cytotoxicity and antiviral activity of Catharanthus roseus. Iran J Microbiol. 2020;12(5):460-465.https://doi.org/10.18502/ijm.v12i5.4608.PMID: 33604002.

45. K. B. Charuvil, S. Sivanandan and Radha Kesavan Lekshmi. Screening for Anti-Dengue Leads from Euphorbia hirta L. through In Silico Methods.Indian J Pharm Sci 2022;84(4):950-958. doi:10.36468/pharmaceutical-sciences.989.

46. Joshi RK, Agarwal S, Patil P, Alagarasu K, Panda K, Cherian S, Parashar D, Roy S. Anti-Dengue Activity of Lipophilic Fraction of Ocimumbasilicum L. Stem. Molecules. 2023 Feb 2;28(3):1446.https://doi.org/10.3390/molecules28031446. PMID: 36771120.

47. Kaushik, S., Kaushik, S., Dar, L. et al. Eugenol isolated from supercritical fluid extract of Ocimum sanctum: a potent inhibitor of DENV-2. AMB Expr. 2023; 13, 105. https://doi.org/10.1186/s13568-023-01607-x

48. Dewi BE, Taufiqqurrachman I, Desti H, Sudiro M, Fithriya, Angelina M, Inhibition mechanism of Psidium guajava leaf to dengue virus replication in vitro. IOP Conf. Ser.: Earth Environ. Sci. 2020;462 012034.https://doi.org/10.1088/1755-1315/462/1/012034

49. Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019; 6;19(1):298. https://doi.org/10.1186/s12906-019-2695-1. PMID: 31694638.

50. Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020;104:219-234. https://doi.org/10.1016/j.tifs.2020.08.006. PMID: 32836826.

51. Shabab Nasir, Keith F.A. Walters, Roberto M. Pereira, Muhammad Waris, Awais Ali Chatha, Munawar Hayat, Marriam Batool. Larvicidal activity of acetone extract and green synthesized silver nanoparticles from Allium sativum L. (Amaryllidaceae) against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Journal of Asia-Pacific Entomology. 2022; 25(3)101937. https://doi.org/10.1016/j.aspen.2022.101937.

52. Saleh MSM, Kamisah Y. Potential Medicinal Plants for the Treatment of Dengue Fever and Severe Acute Respiratory Syndrome-Coronavirus. Biomolecules. 2021; 11(1):42. https://doi.org/10.3390/biom11010042

53. K.H. Chiow, M.C. Phoon, Thomas Putti, Benny K.H. Tan, Vincent T. Chow, Evaluation of antiviral activities of Houttuynia cordataThunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific Journal of Tropical Medicine.2016; 9(1):1-7, https://doi.org/10.1016/j.apjtm.2015.12.002.

54. Babbar R, Kaur R, Rana P, Arora S, Behl T, Albratty M, Najmi A, Meraya AM, Alhazmi HA, Singla RK. The Current Landscape of Bioactive Molecules against DENV: A Systematic Review. Evidence-based complementary and alternative medicine. 2023; https://doi.org/10.1155/2023/2236210

55. Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, Evan E Bolton, PubChem 2023 update, Nucleic Acids Research.2023;51(D1);D1373–D1380. https://doi.org/10.1093/nar/gkac956

56. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-50. https://doi.org/10.1007/978-1-4939-2269-7_19. PMID: 25618350.

57. Dallakyan, S., Olson, A.J. (2015). Small-Molecule Library Screening by Docking with PyRx. In: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology. Methods in Molecular Biology. Vol 1263. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2269-7_19

58. Erbel, P., Schiering, N., D'Arcy, A. et al. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol. 2006;13:372–373. https://doi.org/10.1038/nsmb1073

59. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling.2021;61(8). https://pubs.acs.org/doi/10.1021/acs.jcim.1c00203.

60. Trott O, Olson AJ, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry.2010;21(2): 455-461. https://doi.org/10.1002/jcc.21334

61. Daina, A., Michielin, O. and Zoete, V. (2017) SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Report. 7, 42717.https://doi.org/10.1038/srep42717

62. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E.Nucleic Acids Res. 2023; 51(D1): D1373–D1380. https://doi.org/10.1093/nar/gkac956

63. Saleh MSM, Kamisah Y. Potential Medicinal Plants for the Treatment of Dengue Fever and Severe Acute Respiratory Syndrome-Coronavirus. Biomolecules. 2020;11(1):42. https://doi.org/10.3390/biom11010042. PMID: 33396926.

64. Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica) leaves on dengue virus type-2 replication. J Ethnopharmacol. 2002;79(2):273-8. https://doi.org/10.1016/s0378-8741(01)00395-6. PMID: 11801392

65. Saleem S, Muhammad G, Hussain MA, Bukhari SNA. A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytother Res. 2018;32(7):1241-1272. https://doi.org/10.1002/ptr.6076. PMID: 29671907

Published

15-11-2024
Statistics
Abstract Display: 34
PDF Downloads: 69
PDF Downloads: 4

How to Cite

1.
Rhakho M. Potential Inhibitor of DENV-2 Virus Protease (NS2B-NS3): An In-Silico Studies of Anti-Viral Plants. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):10-23. Available from: https://jddtonline.info/index.php/jddt/article/view/6870

How to Cite

1.
Rhakho M. Potential Inhibitor of DENV-2 Virus Protease (NS2B-NS3): An In-Silico Studies of Anti-Viral Plants. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):10-23. Available from: https://jddtonline.info/index.php/jddt/article/view/6870