Hesperetin attenuates neuroprotective effect against 3-Nitropropionic acid induced Huntington’s disease-like behavioral symptoms in rats

Authors

  • Nagarjuna Babu Etukuri University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh -522501 India.
  • Prameela Rani Avula University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh -522501 India.

Abstract

The disease Huntington’s (HD) is an autosomal neurologic disorder characterized by inexorable loss of nerve cells in the brain accompanied with cognitive, motor and psychiatric disorders. In the present study, 3-Nitropropionic acid (3-NP), an inhibitor of mitochondrial citric acid cycle results in symptoms like HD. Hesperetin(HSP) is a flavanone rich in citrus species which possess neuroprotective effects. The aim of the present study was to evaluate the protective role of HSP against 3-NP induced symptoms. Pre-treatment of animals with HSP/normal saline for 7 days and from 8th day, 3-NP (10mg/kg) was co-administered with HSP. It is continued for 21 days of the treatment schedule. At the end day of the study, the results showed that HSP improved all the cognitive, motor and psychiatric symptoms induced by 3-NP significantly. Hence, these findings show the protective effect of HSP against 3-NP induced neurological disorder.

Keywords: Huntington’s disease, Hesperetin, 3-Nitropropionic acid,

Keywords:

Huntington’s disease, Hesperetin, 3-Nitropropionic acid

DOI

https://doi.org/10.22270/jddt.v14i11.6823

Author Biographies

Nagarjuna Babu Etukuri, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh -522501 India.

University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh -522501 India.

Prameela Rani Avula , University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh -522501 India.

University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh -522501 India.

References

1. Leegwater-Kim J, Cha JJ, The paradigm of Huntington's disease: therapeutic opportunities in neurodegeneration, NeuroRx, 2004:128-138. https://doi.org/10.1602/neurorx.1.1.128 PMid:15717013 PMCid:PMC534918

2. Wang LH, Qin ZH, Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies. Acta Pharmacol Sin 2006; 27:1287-1302. https://doi.org/10.1111/j.1745-7254.2006.00410.x PMid:17007735

3. Garcia M, Vanhoutte P, Pages C, et al, The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a c-Jun N-terminal kinase/c-Jun module, J Neurosci, 2002; 22: 2174-2184. https://doi.org/10.1523/JNEUROSCI.22-06-02174.2002 PMid:11896157 PMCid:PMC6758250

4. Tunez I, Inmaculada T, Perez-De LCV, Santamaria A, 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future, Molecules, 2008;15: 878-916. https://doi.org/10.3390/molecules15020878 PMid:20335954 PMCid:PMC6263191

5. Wang M, Tsao R, Zhang S, et al, Antioxidant activity, mutagenicity/ anti-mutagenicity, and clastogenicity/anti-clastogenicity of lutein from marigold flowers, Food Chem Toxicol, 2006; 54: 7998-8005. https://doi.org/10.1016/j.fct.2006.04.005 PMid:16757077

6. Schulz JB, Matthews RT, Henshaw DR, Beal MF, Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases, Neuroscience, 1996; 71: 1043-1048 https://doi.org/10.1016/0306-4522(95)00527-7 PMid:8684608

7. Tariq M, Khan HA, Elfaki I, Deeb SA, Moutaery KA, Neuroprotective effect of nicotine against 3-nitropropionic acid induced experimental Huntington's disease in rats, Brain. Res. Bull, 2005; 67: 161-168. https://doi.org/10.1016/j.brainresbull.2005.06.024 PMid:16140176

8. Saydoff JA, Liu LS, Garcia RA, Hu Z, Li D, Borstel RW, Oral uridine pro-drug PN401 decreases neurodegeneration, behavioral impairment, weight loss and mortality in the 3-nitropropionic acid mitochondrial toxin model of Huntington's disease. Brain Res, 2003; 994:44-54. https://doi.org/10.1016/j.brainres.2003.09.049 PMid:14642447

9. Setter S, Neumiller J, Dobbins E, Wood L, Clark J, DuVall C, Santiago A, Treatment of chorea associated with Huntington's disease: focus on tetrabenazine, Consul. Pharm, 2009; 24: 524-537. https://doi.org/10.4140/TCP.n.2009.524 PMid:19689181

10. Ahuja M, Bishnoi M, Chopra K, Protective effect of minocycline, a semi-synthetic second-generation tetracycline against 3-nitropropionic acid (3-NP)-induced neurotoxicity, Toxicology, 2008; 244: 111-122. https://doi.org/10.1016/j.tox.2007.11.003 PMid:18164115

11. Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M, 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin, Can. J. Neurol. Sci, 1991; 18: 492-498. https://doi.org/10.1017/S0317167100032212 PMid:1782616

12. Heim KE, Tagliaferro AR, Bobilya DJ, Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem, 2002; 14(10): 572-584.13. https://doi.org/10.1016/S0955-2863(02)00208-5 PMid:12550068

13. Agati G, Azzarello E, Pollastri S, Tattini M, Flavonoids as antioxidants in plants: Location and functional significance, Plant Science, 2012; 196: 67-76. https://doi.org/10.1016/j.plantsci.2012.07.014 PMid:23017900

14. Garg A, Garg S, Zaneveld LJD, Singla AK, Chemistry and pharmacology of the citrus bioflavonoid hesperidin, Phytother Res, 2001;15:655-69. https://doi.org/10.1002/ptr.1074 PMid:11746857

15. Hwang SL, Yen GC, Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells, J Agric Food Chem, 2008;56:859-64. https://doi.org/10.1021/jf072826r PMid:18189359

16. Shepherd, J.K., Grewal, S.S., Fletcher, A., Bill, D.J., Dourish, C.T., 1994. Behavioural and pharmacological characterisation of the elevated "zero-maze" as an animal model of anxiety, Psychopharmacol Berlin, 116: 56-64. https://doi.org/10.1007/BF02244871 PMid:7862931

17. X. Song, B. Zhou, P. Zhang, D. Lei, Y. Wang, G. Yao, T. Hayashi, M. Xia, S.I. Tashiro, S. Onodera, T. Ikejima, Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway, Neurochem. Res, 2016;41:1662-1672. https://doi.org/10.1007/s11064-016-1881-5 PMid:26961891

18. Hunter AJ, Hatcher J, Virley D, Nelson P, Irving E, Handubgham SJ, Functional assessments in mice and rats after focal stroke, Neuropharmacology, 2000; 39:806-816. https://doi.org/10.1016/S0028-3908(99)00262-2 PMid:10699446

19. Kulkarni SK, Hand Book of Experimental Pharmacology, Vallabh Prakashan, New Delhi, 1999.

20. Yan X, Wang S, Hou H, Ji R, Zhou J, Lithium improves the behavioral disorder in rats subjected to transient global cerebral ischemia, Behav. Brain Res, 2007; 177: 282-289. https://doi.org/10.1016/j.bbr.2006.11.021 PMid:17210190

21. Song YN, Li HZ, Zhu JN, Guo CL, Wang JJ, Histamine improves rat rota-rod and balance beam performances through H2 receptors in the cerebellar interpositus nucleus, Neuroscience, 2006; 140:33-43. https://doi.org/10.1016/j.neuroscience.2006.01.045 PMid:16533576

22. Vis JC, Verbeek MM, Waal RM, Donkelaar HJ, Kremer HP, 3-nitropropionic acid induces a spectrum of Huntington's disease-like neuropathology in rat striatum, Neuropath. Appl. Neuro, 1999; 25: 513-521. https://doi.org/10.1046/j.1365-2990.1999.00212.x PMid:10632901

23. Porsolt R.D., Bertin, A., Jalfre, M., Behavioral despair in mice: a primary screening test for antidepressants, Arch. Int. Pharmaco¬dyn. Ther, 1977; 229: 327-336.

24. Sandhir R, Mehrotra A, Kamboj SS, Lycopene prevents 3-nitropropionic acidinduced mitochondrial oxidative stress and dysfunctions in nervous system, Neurochem.Int,2010;57:579-587. https://doi.org/10.1016/j.neuint.2010.07.005 PMid:20643176

25. Marklund S, Marklund G, Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem, 1974;47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x PMid:4215654

26. Claiborne A, Catalase activities, in: R.A. Greenwald (Ed.), CRC Handbook of Methods in Oxygen Radical Research, CRC Press, Boca Raton, 1985.

27. Gelvan D, Saltman P, Different cellular targets of Cu- and Fe-catalyzed oxidation observed using a Cu-compatible thiobarbiturate acid assay, Biochim. Biophys. Acta, 1990; 1035: 353-360. https://doi.org/10.1016/0304-4165(90)90100-B

28. Kumar P, Kumar A, Effect of lycopene and epigallocatechin-3- gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism, Food Chem Toxicol, 2009; 47:2522-2530. https://doi.org/10.1016/j.fct.2009.07.011 PMid:19616597

29. King TE, Preparation of succinate dehydrogenase and reconstitution of succinate oxidase Method, Enzymol, 1967;10: 322-331. https://doi.org/10.1016/0076-6879(67)10061-X

30. Ellman GL, Courtney KD, Andres V, Featherstone RM, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol, 1961; 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9 PMid:13726518

31. Kola PK, Akula A, Nissankara Rao LS, Danduga RC, Protective effect of naringin on pentylenetetrazole (PTZ)-induced kindling; possible mechanisms of antikindling, memory improvement, and neuroprotection, Epilepsy Behavi, 2017;72: 114-126. https://doi.org/10.1016/j.yebeh.2017.07.011 PMid:28846920

32. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM, Evaluation of 2, 3, 5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats, Stroke 1986;17: 1304-1308. https://doi.org/10.1161/01.STR.17.6.1304 PMid:2433817

33. Ramaswamy S, McBride JL, Kordower JH, et al, Animal models of Huntington's disease, ILAR J, 2007;48:356-373. https://doi.org/10.1093/ilar.48.4.356 PMid:17712222

34. Kumar P, Kumar A, Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington's disease, J Med Food, 2009;12: 591-600. https://doi.org/10.1089/jmf.2008.0028 PMid:19627208

35. Lagoa R, Lopez-Sanchez C, Samhan-Arias AK, Ganan CM, Garcia-Martinez V, Gutierrez-Merino C, Kaempferol protects against rat striatal degeneration induced by 3-nitropropionic acid, J Neurochem, 2009; 111:473-487. https://doi.org/10.1111/j.1471-4159.2009.06331.x PMid:19682208

36. Kumar P, Kumar A, Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington's like symptoms in rats: possible role of nitric oxide, Behav Brain Res, 2010; 206:38-46. https://doi.org/10.1016/j.bbr.2009.08.028 PMid:19716383

37. Kumar P, Kumar A, Possible role of sertraline against 3- nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain, Prog Neuropsychopharmacol Biol Psychiatry, 2009;33:100-108. https://doi.org/10.1016/j.pnpbp.2008.10.013 PMid:19022325

38. Binienda ZK, Ali SA, Neuroprotective role of L-carnitine in the 3-nitropropionic acid induced neurotoxicity, Toxicol Lett, 2001; 125:67-73. https://doi.org/10.1016/S0378-4274(01)00415-5 PMid:11701224

39. Tadros MG, Khalifa AE, Abdel-Naim AB, Arafa HM, Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington's disease phenotype, Pharmacol Biochem Behav, 2005; 82:574-582. https://doi.org/10.1016/j.pbb.2005.10.018 PMid:16337998

40. Kumar P, Padi SS, Naidu PS, Kumar A, Effect of resveratrol on 3-nitropropionic acid-induced biochemical and behavioral changes: possible neuroprotective mechanisms, Behav Pharmacol, 2006;17:485-492. https://doi.org/10.1097/00008877-200609000-00014 PMid:16940769

41. S.H. Li, Z.X. Yu, C.L. Li, H.P. Nguyen, Y.X. Zhou, C. Deng, X.J. Li, Lack of huntingtin- associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington's disease, J. Neurosci, 2003; 23: 6956-6964. https://doi.org/10.1523/JNEUROSCI.23-17-06956.2003 PMid:12890790 PMCid:PMC6740731

42. Guyot MC, Palfi S, Stutzmann JM, Maziere M, Hantraye P, Brouillet E, Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats, Neuroscience, 1997; 81: 141-149. https://doi.org/10.1016/S0306-4522(97)00192-9 PMid:9300407

43. Silva RH, Ablio VC, Kameda SR, et al, Effects of 3-nitropropionic acid administration on memory and hippocampal lipid peroxidation in sleep-deprived mice, Prog Neuropsychopharmacol Biol Psychiatry, 2007;31:65-70. https://doi.org/10.1016/j.pnpbp.2006.06.019 PMid:16876303

44. Lee WT, Chang C, Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington's disease, Prog Neurobiol, 2004; 72: 87-110. https://doi.org/10.1016/j.pneurobio.2004.02.002 PMid:15063527

Published

15-11-2024
Statistics
Abstract Display: 39
PDF Downloads: 46
PDF Downloads: 3

How to Cite

1.
Etukuri NB, Avula PR. Hesperetin attenuates neuroprotective effect against 3-Nitropropionic acid induced Huntington’s disease-like behavioral symptoms in rats. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):31-8. Available from: https://jddtonline.info/index.php/jddt/article/view/6823

How to Cite

1.
Etukuri NB, Avula PR. Hesperetin attenuates neuroprotective effect against 3-Nitropropionic acid induced Huntington’s disease-like behavioral symptoms in rats. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):31-8. Available from: https://jddtonline.info/index.php/jddt/article/view/6823