Study of xymedone release from hydrogels with zinc oxide nanoparticles

  • Ilya Alexandrovich Sheferov Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia
  • Anastasia Anatol`evna Emasheva Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia https://orcid.org/0009-0008-6097-4831
  • Alyona Anatol`evna Sheferova Department of Pharmacy, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia https://orcid.org/0009-0001-7645-3458
  • Dmitry Alexandrovich Panteleev Department of Pharmacy, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia https://orcid.org/0000-0003-4617-8608
  • Alexandr Vyacheslavovich Mitin Research Institute for Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia
  • Vsevolod Vladimirovich Kuz`michev Research Institute for Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia
  • Nina Borisovna Melnikova Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia https://orcid.org/0000-0003-1335-1048
Keywords: hydrogels, release, xymedone, zinc oxide nanoparticles, partial validation protocol

Abstract

In this work the approaches to assess of the xymedone release from hydrophilic gels with zinc oxide nanoparticles were proposed using a vertical Franz diffusion cell at 37 ℃. A partial validation protocol included the varying of the membrane polarity (lipophilic or hydrophilic cellulose acetate), the acceptor chamber volume (4,35 mL or 12,71 mL), the gel composition (with or without zinc oxide nanoparticles), as well as the metrological characteristics for the xymedone assay when it was released through the membrane in a Franz cell. It was estimated that the Franz cell with the volume of 12,71 mL, and the lipophilic membrane made it possible to estimate the amount of xymedone released with less error (RSD no more than 2%). We showed that the xymedone immobilization into zinc oxide nanoparticles increased the efficiency of xymedone release from the hydrophilic gel by 30%. The xymedone release through the both hydrophilic and lipophilic membranes is described by a pseudo-second-order equation that typical for desorption process from the polymer matrix. The proposed partial validation protocol to assessing the drug release using the Franz cell can be useful for selection of optimal composition of dermal topical dosage forms with hydrophilic pharmaceutical active substances.

Keywords: hydrogels, release, xymedone, zinc oxide nanoparticles, partial validation protocol

Downloads

Download data is not yet available.

Author Biographies

Ilya Alexandrovich Sheferov, Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Anastasia Anatol`evna Emasheva, Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Alyona Anatol`evna Sheferova, Department of Pharmacy, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia

Department of Pharmacy, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia

Dmitry Alexandrovich Panteleev, Department of Pharmacy, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia

Department of Pharmacy, Privolzhsky Research Medical University, 603950 Nizhny Novgorod, Russia

Alexandr Vyacheslavovich Mitin, Research Institute for Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Research Institute for Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Vsevolod Vladimirovich Kuz`michev, Research Institute for Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Research Institute for Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Nina Borisovna Melnikova, Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

Faculty of Chemistry, Lobachevsky University, 603022 Nizhny Novgorod, Russia

References

Bano T, Kumar N, Dudhe R, "Free radical scavenging properties of pyrimidine derivatives" Org. Med. Chem. Lett. 2012; 14:34. DOI: https://doi.org/10.1186/2191-2858-2-34 PMid:23151464 PMCid:PMC3519761

He ZX, Zhao TQ, Gong YP, Zhang X, Ma LY, Liu HM, "Pyrimidine: A promising scaffold for optimization to develop the inhibitors of ABC transporters" Eur. J. Med. Chem. 2020; 200:112458. https://doi.org/10.1016/j.ejmech.2020.112458 PMid:32497962

Izmailov, S.G, Izmailov, G.A. Averyanov M.Y, Reznik V.S, Xymedon in Clinical Practice, 1st ed.; NNSMA: Nizhny Novgorod, Russia, 2001;. ISBN 5-7032-0112-8. P. 185

Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF, "Synthesis of nucleoside phosphate and phosphonate prodrugs" Chem. Rev. 2014; 114:9154-9218. https://doi.org/10.1021/cr5002035 PMid:25144792 PMCid:PMC4173794

Zhang Y, Geng H, Junjie Z, He K, "An update mini-review on the progress of azanucleoside analogues "Chem. Pharm. Bull. 2022; 70:469-476. https://doi.org/10.1248/cpb.c22-00088 PMid:35753803

Beschastnov VV, Izmailov SG, Botyakov AA, Zharinov AY, Panteleev DA, Melnikova NB, "Antioxidant activity of pyrimidine derivatives in the local treatment of purulent wounds of soft tissues (in experiment)". Mod. Technol. Med. 2011; 3:21-26. (In Russian).

Melnikova N, Sheferov I, Panteleev D, Spitskaya I, Orekhov S, Kazantsev O, Solovyeva A, Novopoltsev D, "The Effect of Zinc Oxide Nanoparticles on Properties and Burn Wound Healing Activity of Thixotropic Xymedone Gels" Sci.Pharm, 2022; 90:61. https://doi.org/10.3390/scipharm90040061

Kumar M, Sharma A, Mahmood S, Thakur A, Mirza MA, Bhatia A, "Franz diffusion cell and its implication in skin permeation studies" J. Disp. Sci. Tech. 2023; 45(5):1-14. https://doi.org/10.1080/01932691.2023.2188923

Salamanca CH, Barrera-Ocampo A, Lasso JC, Camacho N, Yarce CJ, "Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms" Pharmaceutics, 2018; 10(3):148. https://doi.org/10.3390/pharmaceutics10030148 PMid:30189634 PMCid:PMC6161298

Mattiasson J, Method development of an in vitro vertical Franz diffusion cell system to assess permeation of cosmetic active ingredients, ISSN: 1650-8297, UPTEC K 20020, 2020. P. 7-68

Pulsoni I, Lubda M, Aiello M, Fedi A, Marzagalli M, Hagen J, Scaglione S, "Comparison Between Franz Diffusion Cell and a novel Micro-physiological System for In Vitro Penetration Assay Using Different Skin Models" SLAS Technology, 2022; 161-171. https://doi.org/10.1016/j.slast.2021.12.006 PMid:35058208

Bartos С, Szabó-Révész P, Horváth T, Varga P, Ambrus R, "Comparison of Modern In Vitro Permeability Methods with the Aim of Investigation Nasal Dosage Forms" Pharmaceutics, 2021; 13(6):846. https://doi.org/10.3390/pharmaceutics13060846 PMid:34201053 PMCid:PMC8227734

Venter JP, Müller DG, Plessis J, Goosen C, "A comparative study of an in situ adapted diffusion cell and an in vitro Franz diffusion cell method for transdermal absorption of doxylamine" Eur. Journ. Pharm. Sci., 2001; 169-177. https://doi.org/10.1016/S0928-0987(01)00110-5 PMid:11297901

Riley D. Kirk Kirk RD, Akanji T, Li H, Shen J, Allababidi S, Seeram NP, Bertin MJ, Ma H, "Evaluations of Skin Permeability of Cannabidiol and Its Topical Formulations by Skin Membrane-Based Parallel Artificial Membrane Permeability Assay and Franz Cell Diffusion Assay" MMJ, 2022; 5 (1):129-137. https://doi.org/10.1159/000526769 PMid:36467778 PMCid:PMC9710319

Iskandarsyah, Adelia SS, Aprianti I, "Effect of skin fat on capsaicin transfersome gel: in vitro penetration studies using franz diffusion cells" IJAP, 2023; 15:5. https://doi.org/10.22159/ijap.2023v15i5.48458

Špaglová M, Papadakos M, Cuchorov M, Matušová D, "Release of Tretinoin Solubilized in Microemulsion from Carbopol and Xanthan Gel: In Vitro versus Ex Vivo Permeation Study, Polymers, 2023; 15:329. https://doi.org/10.3390/polym15020329 PMid:36679211 PMCid:PMC9862831

Sun M, Osipitan OO, Sulicz EK, 1 AJ, "Preparation and Optimization of an Ultraflexible Liposomal Gel for Lidocaine Transdermal Delivery" Materials, 2022; 15:4895. https://doi.org/10.3390/ma15144895 PMid:35888361 PMCid:PMC9325174

Qureshi MI, Jamil QA, Usman F, Wani TA, Farooq M, Shah HS, Ahmad H, Khalil R, Sajjad M, Zargar S, Kausar S, "Tioconazole-Loaded Transethosomal Gel Using Box-Behnken Design for Topical Applications: In Vitro, In Vivo, and Molecular Docking Approache" Gels, 2023; 9:767. https://doi.org/10.3390/gels9090767 PMid:37754448 PMCid:PMC10530999

Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM, "Validation of a static Franz diffusion cell system for in vitro permeation studies" AAPS Pharmscitech, 2010; 11(3):1432-1441. https://doi.org/10.1208/s12249-010-9522-9 PMid:20842539 PMCid:PMC2974154

Khamizov RK, "A pseudo-second order kinetic equation for sorption processes" Russian Journal of Physical Chemistry A. 2020; 94(1):125-130. (In Russ.) https://doi.org/10.31857/S0044453720010148

Melnikova N, Sheferov I, Emascheva A, Sheferova A, Panteleev D, Slivkin A, "Drug release assessment from soft dosage forms and permeability prediction through the skin barrier (review), Drug development & registration, 2024; 13:3. https://doi.org/10.33380/2305-2066-2024-13-3-1793

Published
2024-08-15
How to Cite
1.
Sheferov IA, Emasheva AA, Sheferova AA, Panteleev DA, Mitin AV, Kuz`michevVV, Melnikova NB. Study of xymedone release from hydrogels with zinc oxide nanoparticles. JDDT [Internet]. 15Aug.2024 [cited 8Sep.2024];14(8):43-8. Available from: https://jddtonline.info/index.php/jddt/article/view/6728