Comprehensive Review on Parkinson's Disease: Insights into Prevalence, Pathophysiology, Diagnosis, and Multifaceted Treatment Approaches
Abstract
Background: Parkinson's disease (PD), a prevalent neurodegenerative condition affecting more than seven million individuals globally, manifests through the loss of dopaminergic neurons, leading to diverse motor and non-motor symptoms. This comprehensive review aims to explore PD's multifaceted nature, covering its introduction, prevalence patterns, pathophysiology, diagnostic challenges, and varied treatment strategies. Genetic and environmental influences on prevalence, brain region degeneration, Lewy body formation, and early-stage diagnostic difficulties are key focus areas. The review emphasizes the necessity of personalized approaches, innovative clinical criteria-, and subtype categorizations for effective management.
Objective: This review aims to provide a holistic understanding of Parkinson's disease, contributing to improved insights for both individuals and healthcare professionals. By consolidating knowledge on PD's various facets, it seeks to facilitate informed decision-making for better management and enhanced quality of life.
Methods: A thorough review of research literature, including studies, trials, and historical perspectives, was done. It covers prevalence, causes, diagnosis, and treatment options, including both traditional and herbal remedies, alongside conventional approaches.
Results: The review reveals the complex interplay of genetic predisposition, environmental factors, and the neurodegenerative mechanisms underlying PD. It underscores the challenges of early-stage diagnosis and the wide array of treatment options available, emphasizing the need for personalized care.
Conclusion: Understanding Parkinson's disease in its entirety is crucial for effective management. By presenting a comprehensive overview, this review advocates for a holistic approach, integrating diverse treatments and individualized strategies, thereby offering valuable guidance for improved quality of life in PD patients.
Keywords: Parkinson's, neurodegeneration, DBS, Lewy bodies, motor & non-motor symptoms, diagnosis
Keywords:
Parkinson's, neurodegeneration, DBS, Lewy bodies, motor & non-motor symptoms, diagnosisDOI
https://doi.org/10.22270/jddt.v14i6.6637References
Schober A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res. 2004;318(1):215-24. https://doi.org/10.1007/s00441-004-0938-y PMid:15503155
Hirsch L, Jette N, Frolkis A, Steeves T PT. The Incidence of Parkinson's Disease: a systematic review and meta-analysis. Neuroepidemiology. 2016;46:292-300. https://doi.org/10.1159/000445751 PMid:27105081
Shalash AS, Hamid E, Elrassas HH, Bedair AS, Abushouk AI KM, Al. E. Non-motor symptoms as predictors of quality of life in egyptian patients with parkinson's disease: a cross-sectional study using a culturally adapted 39-item Parkinson's disease questionnaire. Front Neurol. 2018;9:357. https://doi.org/10.3389/fneur.2018.00357 PMid:29881368 PMCid:PMC5976737
Macchi ZA, Koljack CE, Miyasaki JM et al. Patient and caregiver characteristics associated with caregiver burden in Parkinson's disease: a palliative care approach. Ann Palliat Med. 2020;9 (suppl 1:S24-33. https://doi.org/10.21037/apm.2019.10.01 PMid:31735048
de Lau LML BM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006;5(6):525-35. https://doi.org/10.1016/S1474-4422(06)70471-9 PMid:16713924
L. M. Neuropsychiatric aspects of Parkinson's disease. Psychosomatics. 2000;41(1):15-23. https://doi.org/10.1016/S0033-3182(00)71169-8 PMid:10665264
MacMahon DG TS. Practical approach to quality of life in Parkinson's disease: the nurse's role. J Neurol. 1998;245(Suppl:S19-22. https://doi.org/10.1007/PL00007732 PMid:9617718
Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol [Internet]. 2021;20(5):385-97. https://doi.org/10.1016/S1474-4422(21)00030-2 PMid:33894193
Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm. 2017;124(8):901-5. https://doi.org/10.1007/s00702-017-1686-y PMid:28150045
Wong SL, Gilmour H, Ramage-Morin PL. Parkinson's Disease: Prevalence, diagnosis and impact Health Reports Parkinson's disease: Prevalence, diagnosis and impact. Heal Reports. 2014;25(11):10-4.
Hughes RC. Parkinson's Disease and its Management. Bmj. 1994;308(6923):281. https://doi.org/10.1136/bmj.308.6923.281
Davie CA. A review of Parkinson's disease. Br Med Bull. 2008;86(1):109-27. https://doi.org/10.1093/bmb/ldn013 PMid:18398010
Beitz JM. Parkinson's disease: a review. Front Biosci. 2014;6(3):65-74. https://doi.org/10.2741/S415 PMid:24389262
Brooks DJ. Dopamine agonists: Their role in the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2000;68(6):685-9. https://doi.org/10.1136/jnnp.68.6.685 PMid:10811688 PMCid:PMC1736955
Bonnet AM. Involvement of non-dopaminergic pathways in parkinson's disease: Pathophysiology and therapeutic implications. CNS Drugs. 2000;13(5):351-64. https://doi.org/10.2165/00023210-200013050-00005
Blandini F, Greenamyre JT. Prospects of glutamate antagonists in the therapy of Parkinson's disease. Fundam Clin Pharmacol. 1998;12(1):4-12. https://doi.org/10.1111/j.1472-8206.1998.tb00918.x PMid:9523179
Rinne UK. Brain neurotransmitter receptors in Parkinson's disease [Internet]. Movement Disorders. Butterworth Co (Publishers) Ltd; 1981. 59-74 p. https://doi.org/10.1016/B978-0-407-02295-9.50010-2
Werner F. Classical Neurotransmitters and Neuropeptides involved in Parkinson's Disease: A Multi-Neurotransmitter System. J Cytol Histol. 2014;05(05). https://doi.org/10.4172/2157-7099.1000266
Brichta L, Greengard P, Flajolet M. Advances in the pharmacological treatment of Parkinson's disease: Targeting neurotransmitter systems. Trends Neurosci [Internet]. 2013;36(9):543-54. https://doi.org/10.1016/j.tins.2013.06.003 PMid:23876424
10. Zvezdan pirtosek 1, ovidiu bajenaru 2, norbertkovacs 3, ivan milanov 4, maja relja 5 and matej skorvanek 6. update on the management of Parkinson's disease for general neurologists volume 2020. NICE, London, uk, 2017,. 2020; https://doi.org/10.1155/2020/9131474 PMid:32300476 PMCid:PMC7136815
Fritsch T, K Smyth, M Wallendal, T Hyde, G Leo D, Geldmacher. Parkinson Disease: Research update and clinical management. South Med Assoc. 2012;105(12),:650-6. https://doi.org/10.1097/SMJ.0b013e318273a60d PMid:23211499
DEUSCHL G., RAETHJEN J., BARON R. LM, WILMS H. KP. The pathophysiology of parkinsonian tremor : a review. J Neurol. 2000;247 (suppl:33-48. https://doi.org/10.1007/PL00007781 PMid:11081802
Maetzler W, Liepilt I BD. Progression of Parkinson's disease in the clinical phase: potential markers. Lancet Neurol. 2009;8:1158-1171. https://doi.org/10.1016/S1474-4422(09)70291-1 PMid:19909914
Dave P, The Challenges of Chronic Wound Care and Management, Asian Journal of Dental and Health Sciences. 2024; 4(1):45-50 https://doi.org/10.22270/ajdhs.v4i1.70
Berardelli, A.; Rothwell, J.C.; Thompson, P.D.; Hallett M. Pathophysiology of bradykinesia in Parkinson's disease. Brain. 2001;(124,):2131-2146. https://doi.org/10.1093/brain/124.11.2131 PMid:11673316
Vingerhoets, F.J.; Schulzer, M.; Calne, D.B.; Snow BJ. Which clinical sign of Parkinson's disease best reflects the nigrostriatal lesion? Ann. Neurol. 1997;41:58-64. https://doi.org/10.1002/ana.410410111 PMid:9005866
Riley, D.; Lang, A.E.; Blair, R.D.; Birnbaum, A.; Reid B. Frozen shoulder and other shoulder disturbances in Parkinson's disease. J. Neurol. Neurosurg Psychiatry. 1989;(52):63-66. https://doi.org/10.1136/jnnp.52.1.63 PMid:2709037 PMCid:PMC1032658
Williams, D.R.; Watt, H.C.; Lees AJ. Predictors of falls and fractures in bradykinetic rigid syndromes: A retrospective study. J. Neurol. Neurosurg Psychiatry. 2006;77:468-473. https://doi.org/10.1136/jnnp.2005.074070 PMid:16543524 PMCid:PMC2077491
Shivitz, N.; Koop, M.M.; Fahimi, J.; Heit, G.; Bronte-Stewart HM. Bilateral subthalamic nucleus deep brain stimulation improves certain aspects of postural control in Parkinson's disease, whereas medication does not. Mov Disord Off J Mov Disord. 2006;(21):1088-1097. https://doi.org/10.1002/mds.20905 PMid:16671073
Giladi N, McDermott MP, Fahn S et al. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology. 2001;56:1712-21. https://doi.org/10.1212/WNL.56.12.1712 PMid:11425939
D. B. Apraxia of lid opening: a review. Neurology. 1997;(48):1491-4. https://doi.org/10.1212/WNL.48.6.1491 PMid:9191752
Bloem BR, Hausdorff JM, Visser JE et al. Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;(19):871-84. https://doi.org/10.1002/mds.20115 PMid:15300651
Schaafsma JD, Balash Y, Gurevich T et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson's disease. Eur J Neurol. 2003;(10):391-8. https://doi.org/10.1046/j.1468-1331.2003.00611.x PMid:12823491
Dietz MA, Goetz CG SG. Evaluation of a modified inverted walking stick as a treatment for parkinsonian freezing episodes. Mov Disord. 1990;(5):243-7. https://doi.org/10.1002/mds.870050311 PMid:2388642
Dave P, The Correlation Between Stigma and Mental Health Disorders in People Living with HIV/AIDS, Journal of Drug Delivery and Therapeutics. 2024; 14(3):227-233 https://doi.org/10.22270/jddt.v14i3.6490
Marchese R, Diverio M, Zucchi F et al. The role of sensory cues in the rehabilitation of parkinsonian patients: a comparison of two physical therapy protocols. Mov Disord. 2000;(15):879-83. https://doi.org/10.1002/1531-8257(200009)15:5<879::AID-MDS1018>3.0.CO;2-9 PMid:11009194
Chaudhuri KR NY. Early Parkinson's disease and non-motor issues. J Neurol. 255 Suppl(5):33-38. https://doi.org/10.1007/s00415-008-5006-1 PMid:18787880
A. KY and T. Autonomic dysfunction in Parkinsons's disease. Eur Neurol. 1997;38(Suppl 2:8-12. https://doi.org/10.1159/000113470 PMid:9387797
H. JW. Autonomic dysfunction in idiopathic Parkinson's disease. J Neurol. 2003;250(Suppl:28-30. https://doi.org/10.1007/s00415-003-1105-z PMid:12761632
CH. A. Nonmotor complications in Parkinson's disease. Mov Disord. 20 (Suppl:S23-9. https://doi.org/10.1002/mds.20460 PMid:15822106
Jr. DR. Autonomic dysfunction in Parkinson's dis_ease. Neurol Clin. 22 (3 Supp:S127-39.
Hou JG LE. Non-motor Symptoms of Parkinson's Disease. Int J Gerontol. 2007;1(2):53-64. https://doi.org/10.1016/S1873-9598(08)70024-3
Hickey M. G., Demaerschalk B. M. CRJ et al. "Idiopathic" rapid-eye-movement sleep behavior disorder is associated with future development of neurodegenerative diseases. Neurologist. 2007;13:98-101. https://doi.org/10.1097/01.nrl.0000257848.06462.46 PMid:17351532
Stiasny-Kolster K, Doerr Y, Moller JC et al. Combination of idiopathic REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain. 2005;128 (part:126-37. https://doi.org/10.1093/brain/awh322 PMid:15548552
Menza MA, Robertson-Hoffman DE BA. Parkinson's disease and anxiety: comorbidity with depression. Biol Psychiatry. 1993;(34):465-70. https://doi.org/10.1016/0006-3223(93)90237-8 PMid:8268331
Henderson R, Kurlan R, Kerson JM et al. Preliminary examination of the comorbidity of anxiety and depression in Parkinson's disease. J Neuropsychiatry Clin Neurosci. 1992;4:257-64. https://doi.org/10.1176/jnp.4.3.257 PMid:1498578
Chen J ML. Anxiety in Parkinon's disease: identification and management. Ther Adv Neurol Disord. 2014;7(1):52-9. https://doi.org/10.1177/1756285613495723 PMid:24409202 PMCid:PMC3886380
Diederich NJ, Goetz CG SG. Repeated visual hallucinations in Parkinson's disease as disturbed exter_nal/internal perceptions: focused review and a new integrative model. Mov Disord. 2005;20:130-40. https://doi.org/10.1002/mds.20308 PMid:15486924
. Goetz CG SG. Mortality and hallucinations in nursing home patients with advanced Parkinson's dis_ease. Neurology. 1995;45:669. https://doi.org/10.1212/WNL.45.4.669 PMid:7723953
Chou KL, Messing S, Oakes D, Feldman PD BA, JH. F. Drug-induced psychosis in Parkinson disease: phenomenology and correlations among psy_chosis rating instruments. Clin Neuropharmacol. 2005;28:215-9. https://doi.org/10.1097/01.wnf.0000180228.77802.32 PMid:16239760
Diederich NJ, Goetz CG SG. Repeated visual hallucinations in Parkisnon's disease as disturbed external/internal perceptions: focused review and a new integrative model. Mov Disord. 2005;20:130-40. https://doi.org/10.1002/mds.20308 PMid:15486924
Moskovitz C, Moses H KH. Levodopa-induced psychosis: a kindling phenomenon. Am J Psychiatry. 1978;135:669-75. https://doi.org/10.1176/ajp.135.6.669 PMid:655276
Gelb DJ, Oliver E GS. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;(56):33-39. https://doi.org/10.1001/archneur.56.1.33 PMid:9923759
Larsen JP, Dupont E TE. Clinical diagnosis of Parkinson's disease. Proposal of diagnostic subgroups classified at different levels of confidence. Acta Neurol Scand. 1994;89(4):242-251. https://doi.org/10.1111/j.1600-0404.1994.tb01674.x PMid:8042440
Tolosa E, Wenning G PW. The diagnosis of Parkinson's disease. Lancet Neurol. 2006;5(1):75-86. https://doi.org/10.1016/S1474-4422(05)70285-4 PMid:16361025
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW OW, Obeso J, Marek K, Litvan I, Lang AE, Halliday G GC, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH DG. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 30(12):1591-1601. https://doi.org/10.1002/mds.26424 PMid:26474316
Postuma RB, Berg D, Stern M et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30:1591-601. https://doi.org/10.1002/mds.26424 PMid:26474316
Abdo WF, Borm GF, Munneke M, Verbeek MM ER, To BBT steps. identify atypical parkinsonism. J Neurol Neurosurg Psychiatry. 2006;77:1367-69. https://doi.org/10.1136/jnnp.2006.091322 PMid:16847047 PMCid:PMC2077404
Liu SM, Li XZ, Huo Y LF. Protective effect of extract of Acanthopanax senticosus Harms on dopaminergic neurons in Parkinson's disease mice. Phytomedicine. 2012;(19):631-8. https://doi.org/10.1016/j.phymed.2012.02.006 PMid:22402244
Fujikawa T, Miguchi S, Kanada N, Nakai N, Ogata M, Suzuki I et al. Acanthopanax senticosus Harms as a prophylactic for MPTP-induced Parkinson's disease in rats. J Ethnopharmacol. 2005;97:375-81. https://doi.org/10.1016/j.jep.2004.11.031 PMid:15707778
Fujikawa T, Soya H, Hibasami H, Kawashima H, Takeda H NS, Al. E. Effect of Acanthopanax senticosus Harms on biogenic monoamine levels in the rat brain. Phytother Res. 2002;16:474-8. https://doi.org/10.1002/ptr.1024 PMid:12203270
Fujikawa T, Kanada N, Shimada A, Ogata M, Suzuki I, Hayashi I et al. Effect of sesamin in Acanthopanax senticosus HARMS on behavioral dysfunction in rotenone-induced parkinsonian rats. Biol Pharm Bull. 2005;28:169-72. https://doi.org/10.1248/bpb.28.169 PMid:15635186
Lahaie-Collins V, Bournival J, Plouffe M, Carange J MM. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+- induced oxidative stress. Oxid Med Cell Longev. 2008;1:54-62. https://doi.org/10.4161/oxim.1.1.6958 PMid:19794909 PMCid:PMC2715194
Zhang ZJ, Cheang LC, Wang MW, Li GH, Chu IK, Lin ZX et al. Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine_induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell Mol Neurobiol. 2012;32:27-40. https://doi.org/10.1007/s10571-011-9731-0 PMid:21744117
Zhang HN, An CN PX. Protocatechuic acid inhibits neurotoxicity induced by MPTP in vivo. Neurosci Lett. 2010;474:99-103. https://doi.org/10.1016/j.neulet.2010.03.016 PMid:20227465
An LJ, Guan S, Shi GF, Bao YM, Duan YL JB. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol. 2006;44:436-43. https://doi.org/10.1016/j.fct.2005.08.017 PMid:16223555
Zhang HN, An CN, Xu M, Guo DA, Li M PX. Protocatechuic acid inhibits rat pheochromocytoma cell damage induced by a dopaminergic neurotoxin. Biol Pharm Bull. 2009;32:1866-9. https://doi.org/10.1248/bpb.32.1866 PMid:19881299
A.B. Sharangi. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)-a review,. Food Res Int. 2009;42:529-535. https://doi.org/10.1016/j.foodres.2009.01.007
Levites Y, Youdim MB, Maor G MS. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol. 2002;63:21-9. https://doi.org/10.1016/S0006-2952(01)00813-9 PMid:11754870
Guo S, Bezard E ZB. Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med. 2005;39:682-95. https://doi.org/10.1016/j.freeradbiomed.2005.04.022 PMid:16085186
Guo S, Yan J, Yang T, Yang X, Bezard E ZB. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry. 2007;62:1353-62. https://doi.org/10.1016/j.biopsych.2007.04.020 PMid:17624318
Nie G, Jin C, Cao Y, Shen S ZB. Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys. 2002;397:84-90. https://doi.org/10.1006/abbi.2001.2636 PMid:11747313
Kim JS, Kim JMO JJ. Inhibition of inducible nitric oxide synthase expres_sion and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkin_son's disease. J Clin Neurosci. 2010;17:1165-8. https://doi.org/10.1016/j.jocn.2010.01.042 PMid:20541420
Tai KK TD. (−)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells. Neurosci Lett. 2010;482:183-7. https://doi.org/10.1016/j.neulet.2010.06.018 PMid:20542083
Park TH, Kim DH, Kim CH, Jung HA, Choi JS, Lee JW et al. Peroxynitrite scavenging mode of alaternin isolated from Cassia tora. J Pharm Pharmacol. 2004;56:1315-21. https://doi.org/10.1211/0022357044229 PMid:15482647
Shin BY, Kim DH, Hyun SK, Jung HA, Kim JM, Park SJ et al. Alaternin attenuates delayed neuronal cell death induced by transient cerebral hypoperfusion in mice. Food Chem Toxicol. 2010;48:1528-36. https://doi.org/10.1016/j.fct.2010.03.020 PMid:20304026
Ju MS, Kim HG, Choi JG, Ryu JH, Hur J, Kim YJ et al. Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson's disease models. Food Chem Toxicol. 2010;48:2037-44. https://doi.org/10.1016/j.fct.2010.05.002 PMid:20457209
Drever Benjamin D, Anderson William GL, Gernot Riedel DH, Kim, Jong Hoon Ryu, Deog-Young Choi et al. The seed extract of Cassia obtusifolia offers neuroprotection to mouse hippocampal cultures. J Pharma_col Sci. 2008;107(4):380-92. https://doi.org/10.1254/jphs.08034FP PMid:18719316
KangX, Chen J, Xu Z, Li H WB. Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicol Vitr. 2007;21:1003-9. https://doi.org/10.1016/j.tiv.2007.02.004 PMid:17509817
Rojas P SG, N, Mares-Samano JJ, Medina-Campos ON, PedrazaChaverri J O, SO. EGb761 protects against nigrostriatal dopaminer gic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Eur J Neurosci. 2008;28:41-50. https://doi.org/10.1111/j.1460-9568.2008.06314.x PMid:18662333
M AS, Ahmad S, AS, Yousuf, S, Ansari, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamineinduced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem. 2005;93:94-104. https://doi.org/10.1111/j.1471-4159.2005.03000.x PMid:15773909
Choi HS, Park MS, Kim SH, Hwang BY, Lee CK LM. Neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Molecules. 2010;15:2814-24. https://doi.org/10.3390/molecules15042814 PMid:20428081 PMCid:PMC6257318
Wang P, Niu L, Guo XD, Gao L, Li WX, Jia D et al. Gypenosides protects dopaminergic neurons in primary culture against MPP(+)-induced oxidative injury. Brain Res Bull. 2010;83:266-71. https://doi.org/10.1016/j.brainresbull.2010.06.014 PMid:20615455
Wang P, Niu L, Gao L, Li WX, Jia D, Wang XL et al. Neuroprotective effect of gypenosides against oxidative injury in the substantia nigra of a mouse model of Parkinson's disease. J Int Med Res. 2010;38:1084-92. https://doi.org/10.1177/147323001003800336 PMid:20819446
Mohanasundari M SM. Modulating effect of Hypericum perforatum extract on astrocytes in MPTP induced Parkinson's disease in mice. Eur Rev Med Pharmacol Sci. 2007;11:17-20.
Zou YP, Lu YH WD. Protective effects of a flavonoid-rich extract of Hyper_icum perforatum L. against hydrogen peroxideinduced apoptosis in PC12 cells. Phytother Res. 24(Suppl.:S6-10. https://doi.org/10.1002/ptr.2852 PMid:19548287
] Sanchez-Reus MI, Gomez del Rio MA, Iglesias I, Elorza M, Slowing K BJ. Standardized Hypericum perforatum reduces oxidative stress and increases gene expression of antioxidant enzymes on rotenone exposed rats. Neu_ropharmacology. 2007;52:606-16. https://doi.org/10.1016/j.neuropharm.2006.09.003 PMid:17070561
Du J, Shan LC, Zhang GX WY. Effect of TMP on dopaminergic neuron injury induced by MPTP in vivo and vitro. Lishizhen Med Mater Med Res. 2011;22:1564-5.
Wang DQ, Wang W JF. Effects of tetramethylpyrazine on brain oxidative damage induced by intracerebral perfusion of L-DOPAin rats with Parkinson's disease. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2007;27:629-32.
D.M. Verma, N.P. Balakrishnan RDD. Flora of Madhya Pradesh, Botanical Survey of India,. 1993;
S. Ovallath PD. The history of parkinsonism: descriptions in ancient Indian medical literature. Mov Disord. 2013;28:566-568. https://doi.org/10.1002/mds.25420 PMid:23483637
Manyam BV1, Dhanasekaran M HT. Neuroprotective effects of the antiparkinson drug Mucuna pruriens. M Phytother Res. 2004;18(9):706-12. https://doi.org/10.1002/ptr.1514 PMid:15478206
Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Deo Singh T et al. Com_parison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int. 2014;65:1-13. https://doi.org/10.1016/j.neuint.2013.12.001 PMid:24333323
Ahmad M, Seema Yousuf M, Badruzzaman Khan M, Hoda N A, Shafique A, Ahmad Ansari M et al. Attenuation by Nardostachys jatamansi of 6-hydroxydopamineinduced parkinsonism in rats: behavioral, neuro_chemical, and immunohistochemical studies. Pharmacol Biochem Behav. 2006;83:150-60. https://doi.org/10.1016/j.pbb.2006.01.005 PMid:16500697
Cao BY, Yang YP, Luo WF, Mao CJ, Han R, Sun X et al. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. J Ethnopharmacol. 2010;131:122-9. https://doi.org/10.1016/j.jep.2010.06.009 PMid:20558269
Liu HQ, Zhang WY, Luo XT, Ye Y ZX. Paeoniflorin attenuates neuroin_flammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Br J Pharmacol. 2006;148:314-25. https://doi.org/10.1038/sj.bjp.0706732 Mid:16582933 PMCid:PMC1751566
Hu S, Han R, Mak S HY. Protection against 1-methyl-4- phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells. J Ethnopharmacol. 2011;135:34-42. https://doi.org/10.1016/j.jep.2011.02.017 PMid:21349320
Van Kampen J, Robertson H, Hagg T DR. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson's disease. Exp Neurol. 2003;184:521-9. https://doi.org/10.1016/j.expneurol.2003.08.002 PMid:14637121
Tsang D, Yeung HW, Tso WW PH. Ginseng saponins: influence on neurotransmitter uptake in rat brain synaptosomes. Planta Med. 1985;3:221-4. https://doi.org/10.1055/s-2007-969463 PMid:2863834
Xu L, Liu LX, Chen WF, Xie JX HW. The protective effect of ginsenoside Rg1 on dopaminergic neurons of substantia in the ovariectomized rat model of Parkinson's disease. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2008;24:1-5.
Xu L, Chen WF WM. Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson's disease through the IGF-I receptor signalling pathway. Br J Pharmacol. 2009;158:738-48. https://doi.org/10.1111/j.1476-5381.2009.00361.x PMid:19703168 PMCid:PMC2765594
Leung KW, Yung KK, Mak NK, Chan YS, Fan TP WR. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology. 2007;52:827-35. https://doi.org/10.1016/j.neuropharm.2006.10.001 PMid:17123556
L.C.S.L. Morais, L.J. Quintans-Ju' nior CIFF, J.R.G.S. Almeida RN. Almeida Antiparkinsonian-like effects of Plumbago scandens on tremorine-induced tremors methodology Pharmacology,. Biochem Behav. 2004;79:745-749. https://doi.org/10.1016/j.pbb.2004.10.004 PMid:15582683
Wang XJ XJ. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+−induced cytotoxicity. Neurosci Res. 2005;51:129-38. https://doi.org/10.1016/j.neures.2004.10.001 PMid:15681030
Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol. 2008;40:409-22. https://doi.org/10.1016/j.biocel.2007.08.005 PMid:17884684
Zeng G, Tang T, Wu HJ, You WH, Luo JK, Lin Y et al. Salvianolic acid B protects SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptosis. Biol Pharm Bull. 2010;33:1337-42. https://doi.org/10.1248/bpb.33.1337 PMid:20686228
Liu CS, Chen NH ZJ. Protection of PC12 cells from hydrogen peroxide_induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine. 2007;14:492-7. https://doi.org/10.1016/j.phymed.2006.11.002 PMid:17175150
Sharifi-Rad J, Rayess Y El, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front Pharmacol. 2020;11(September):1-23. https://doi.org/10.3389/fphar.2020.01021 PMid:33041781 PMCid:PMC7522354
Kitts, D.D.; Wijewickreme, A.N.; Hu C. Antioxidant properties of a North American ginseng extract. Mol Cell Biochem. 2000;203(1-2):1-10.
Lee, H.J.; Noh, Y.H.; Lee, D.Y.; Kim, Y.S.; Kim KY. C, Y.H.; Lee, W.B.; Kim SS. Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol. 2005;84(11):897-905. https://doi.org/10.1016/j.ejcb.2005.07.003 PMid:16323286
Yadav SK, Prakash J, Chouhan S, Westfall S, Verma M, Singh TD, et al. Comparison of the neuroprotective potential of Mucuna pruriens seed extract with estrogen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Neurochem Int [Internet]. 2014;65(1):1-13. https://doi.org/10.1016/j.neuint.2013.12.001 PMid:24333323
Ahlemeyer B, Krieglstein J. Neuroprotective Effects of Ginkgo biloba Extract. ACS Symp Ser. 1998;691:210-20. https://doi.org/10.1021/bk-1998-0691.ch015
Liu Q, Jin Z, Xu Z, Yang H, Li L, Li G, et al. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo. Cell Stress Chaperones. 2019;24(2):441-52. https://doi.org/10.1007/s12192-019-00977-1 PMid:30815818 PMCid:PMC6439064
Shen B, Truong J, Helliwell R, Govindaraghavan S, Sucher NJ. An in vitro study of neuroprotective properties of traditional Chinese herbal medicines thought to promote healthy ageing and longevity. BMC Complement Altern Med. 2013;13. https://doi.org/10.1186/1472-6882-13-373 PMid:24373151 PMCid:PMC3880008
Patočka J, Jakl J. Biomedically relevant chemical constituents of Valeriana officinalis. J Appl Biomed. 2010;8(1):11-8. https://doi.org/10.2478/v10136-009-0002-z
Zhang Q, Zhao JJ, Xu J, Feng F, Qu W. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria. J Ethnopharmacol [Internet]. 2015;173:48-80. https://doi.org/10.1016/j.jep.2015.06.011 PMid:26091967
Mahdy, H.M.; Tadros, M.G.; Mohamed, M.R.; Karim AM., Khalifa AE. The effect of Ginkgo biloba extract on 3 -nitropropionic acid-induced neurotoxicity in rats. Neurochem Int. 2011;59(6):770-8. https://doi.org/10.1016/j.neuint.2011.07.012 PMid:21827809
Ramu MG, Venkataram BS. Treatment of Parkinson ' s disease in ' Ayurveda ' ( ancient Indian system of medicine ): discussion paper. 1991;84(August):1991-2. https://doi.org/10.1177/014107689108400814 PMid:1886119 PMCid:PMC1293381
Fernandez HH. Updates in the medical management of Parkinson disease. Cleve Clin J Med. 2012;79(1):28-35. https://doi.org/10.3949/ccjm.78gr.11005 PMid:22219231
Armstrong MJ, Okun MS. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA - J Am Med Assoc. 2020;323(6):548-60. https://doi.org/10.1001/jama.2019.22360 PMid:32044947
Koller WC, Rueda MG. Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology. 1998;50(6 SUPPL.6). https://doi.org/10.1212/WNL.50.6_Suppl_6.S11
Aminoff MJ. Pharmacologic Management of Parkinsonism & Other Movement Disorders . Basic Clin Pharmacol McGraw-Hill Educ. 2015;
Special LD. L-DOPA ' s mechanism of action in Parkinson ' s disease > O. 1980;(October):229-31. https://doi.org/10.1016/0166-2236(80)90086-7
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).