Available online on 15.06.2024 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright  © 2024 The  Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access   Full Text Article                                                                                                                                                         Review Article

Statins as a Combatant for Treatment of Glioblastoma

Arati Ganesh Jaybhaye*, Supriya Sangram Nikam , Kalyani Pranav Kayande, Pratik Marotirao Patil, Anushka Vijay Suroshe , Pavan Babasaheb Zalte , Shriparni Ashok Bhujbal 

Department of Pharmaceutics, Sinhgad Institute of Pharmacy Narhe, Pune, India 

Article Info:

___________________________________________

Article History:

Received 20 March 2024  

Reviewed 06 May 2024  

Accepted 29 May 2024  

Published 15 June 2024  

___________________________________________

Cite this article as: 

Jaybhaye AG, Nikam SS, Kayande KP, Patil PM, Suroshe AV, Zalte PB, Bhujbal SB, Statins as a Combatant for Treatment of Glioblastoma, Journal of Drug Delivery and Therapeutics. 2024; 14(6):237-246

DOI: http://dx.doi.org/10.22270/jddt.v14i6.6624 ___________________________________________

*Address for Correspondence:  

Arati Ganesh Jaybhaye, Department of Pharmaceutics, Sinhgad Institute of Pharmacy Narhe, Pune, India 

Abstract

___________________________________________________________________________________________________________________

The competitive HMG-CoA reductase (HMGCR) inhibitors, commonly referred to as "statins," have been shown in preclinical tests to have promise anticancer characteristics in addition to being potent medications that lower cholesterol and lower cardiovascular risk. When combined with other cancer treatment strategies, statins seem to improve the treatment outcome for a variety of malignancies. After surgical resection followed by concomitant radiation and chemotherapy, the median overall survival (OS) for glioblastoma multiforme (GBM), a particularly lethal cerebral tumour, is only about one year. Due to their capacity to inhibit cell growth, survival, migration, metastasis, inflammation, and angiogenesis in both in vitro and in vivo investigations, statins have recently come to light as prospective adjuvant medications for the treatment of GBM. Statins' therapeutic effects on the survival of GBM patients are still debatable, though. When just focusing on the treatment of cancer, specifically GBM, this study intends to analyse and address some of the known effects of statin medicines, including concurrent statin therapy with chemotherapeutic agents.

Keywords: statin, glioblastoma, brain tumor, antitumor, cholesterol, apoptosis.

  

 

 


 

Introduction

Despite different treatment modalities, such as the maximum safe surgical resection, radiation therapy, and chemotherapy with temozolomide (TMZ), patients of glioblastoma multiforme (GBM), one of the most aggressive cerebrum tumours, have an estimated survival of 12 to 18 months after diagnosis.1 The competitive HMG-CoA reductase (HMGCR) inhibitors, commonly referred to as "statins," have been shown in preclinical tests to have promise anticancer characteristics in addition to being potent medications that lower cholesterol and lower cardiovascular risk.2 In addition to finally allowing cholesterol to form, the mevalonate process may also produce important chemicals, such as non-sterol isoprenoids like dolichol, ubiquinol, farnesol, and geranylgeraniol.3 The lipid-lowering drugs known as statins are very popular and frequently prescribed. They can be divided into two groups based on their source: natural or fungus-derived (simvastatin, pravastatin, and lovastatin) and synthetic (atorvastatin, rosuvastatin, fluvastatin, cerivastatin, and pitavastatin). The capacity of statins to block the extremely rate- limiting enzyme of the mevalonate pathway, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, is determined at the molecular level (HMGCR). They subsequently prevent the formation of geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP), which are required to prenylate numerous proteins, including Rho, Rac1, and Ras (small G proteins).4,5 Via the downstream signalling pathways, statins' alteration of Ras' prenylation controls cell growth, survival, migration, invasion, metastasis, and death. Several investigations have demonstrated that both in vitro and in vivo.6,7 statins like atorvastatin have anticancer action by blocking the mevalonate system. Using statins for at least five years was linked to a relatively low risk of colorectal cancer, according to a case control analysis.8 Another case-control study discovered that men who use statins may have a lower chance of developing prostate cancer.9 Several investigations have revealed that statins cause a portion of tumor-derived cell lines' cells to undergo programmed death, indicating a susceptibility to statin-specific apoptosis in vivo.10

Only a few clinical trials have proven a link between statins and GBM survival, despite preclinical data supporting statin antitumor activity in GBM. Long-term statin medication may be advantageous for GBM patients, according to one clinical research.11 Statins have been shown to block the invasion, migration, and differentiation of GBM cells in preclinical GBM investigations through Ras/Rho-prenylation.12 A crucial and insidious function in the emergence of GBM is played by the mevalonate pathway, and more especially by HMGCR. HMGCR was found to be upregulated in a clinical GBM sample.13 Statins may potentially cause apoptosis in GBMs by downregulating the antiapoptotic protein Bcl-2 and inhibiting extracellular signal- regulated kinase (ERK) 1/2 and protein kinase B (Akt).14,15 This paper critically analyses evidence on the use of statins in the treatment of GBM and explores the effects of statins and their potential molecular anticancer pathways in preclinical investigations.

 

  1. Possible cancer-fighting properties of statins

Increased endothelium and/or atherosclerotic plaque stability, anti-inflammatory, immunomodulatory, neuroprotective, and anticancer characteristics are among these advantages.

16 Statins frequently suppress the synthesis of a number of different metabolites, such as isoprenoids, which are utilised to modify a number of proteins (Ras, Rac1, and RhoA) following transcription. This illustrates the cytoprotective effects of statins.5 These molecules can explain the pharmacological anticancer effects of non-cholesterol-based statins because they are necessary for a number of vital cellular processes.6 Statins may inhibit the small Rho GTPase protein family members' post-translational prenylation in cancer, preventing their translocation to the plasma membrane. This inhibits cell growth and triggers apoptosis. However, a research by Matzno et al. found that farnesylated Ras protein depletion rather than geranylated Rho protein was responsible for statin-induced apoptosis in muscle tissue.7 The statin-mediated suppression of isoprenoids formation also aids in the induction of apoptosis and halts the progression of the cell cycle in certain cancer cell types.17 Systematic reviews and meta-analyses, two types of large-scale reviews, have not consistently demonstrated a protective effect of statins against cancer.13,14 A recent large cohort research including almost 200,000 people found that long-term statin treatment improved the survival rates of patients with various cancers.11 Although statins as a class of medication may reduce mortality in 6 breast cancer patients, a meta-analysis in 2017 revealed that the antitumor impact varies by statin type and is also modified by time to follow up.

18 Lipophilic statins, such as simvastatin, atorvastatin, and fluvastatin, have demonstrated a significant protective role in patients with breast cancer. At the same time, all-cause mortality was slightly increased by hydrophilic statins, like rosuvastatin and pravastatin.19 Statin users, however, demonstrated longer medium relapse-free survival and maintained a lower risk of recurrence in young breast cancer patients, according to numerous studies.20,21 Promising outcomes have been obtained from in vivo studies as well. Simvastatin treatment has been shown to reduce the tumor size of xenografts made from breast cancer and prostate cancer cells in mice.22

  1. Beginning of apoptosis

The transformation of a normal cell into a malignant cell can be seen as the result of a series of genetic alterations; for this reason, inducing programmed cell death, also known as apoptosis, is one of the crucial mechanisms used in the treatment of malignancies.23 One study found that statins cause different cancer cells to undergo apoptosis via the mitochondrial pathway.24 Pharmacologically, altered Ras or RhoA prenylation, the release of the second mitochondria- derived activator of caspases (Smac/DIABLO), and a decrease in mitochondrial membrane potential (m) are likely to control the pathways that statin-7 induces apoptosis.24 According to numerous studies, statins lower levels of the anti-apoptotic protein Bcl-2 expression, which increases Bax and Bim levels, caspases-2/-3/-8/-9 activation, poly (ADP ribose) polymerase (PARP) cleavage, and DNA laddering.25 Simvastatin and lovastatin effectively decrease the viability of prostate cancer cells (PC3, DU145, and LnCap) by inducing apoptosis through the activation of caspases-3/-8/-9, according to data from the study by Hoque et al.26 The effects of statins on myeloma tumor cells through caspase-dependent apoptosis have also been demonstrated by Cafforio et al.24 According to these results, Fujiwara et al. suggested that statins increase caspase-3/-9 activation, induce the expression of Bim, stop the cell cycle at the G1 phase, and decrease m by inhibiting the Ras/ERK and Ras/mTOR pathways, all of which promote cell death.27 This finding supports the idea that statins may be effective antitumor medications. The tumor necrosis factor (TNF) and Fas-L molecules play a role in mediating prostate cancer cell apoptosis, and simvastatin treatment causes increased mRNA and protein expression of these molecules.28

  1.  Statins' cytostatic effects

Statins prevent the synthesis of mevalonate, a precursor to cholesterol that is catalysed by HMGCR, as was mentioned in the preceding section.15 Mevalonate overexpression has been linked to tumour development and cell survival. Statins that block the mevalonate pathway prevent the synthesis of GGPP and FPP and, as a result, a number of useful proteins, including RhoA, which is necessary for the post-translation of particular cell cycle regulatory proteins.29 By controlling the cell cycle, statins have an antiproliferative and pro-apoptotic effect on cancer cells.30 Statins have been shown to disrupt the G1 or S phases, which causes numerous cancer cells to undergo in vitro apoptosis.31,32

Simvastatin has been discovered to cause breast cancer cells to die and disable the PI3K/Akt and mitogen-activated protein kinase (MAPK)/ERK signalling pathways.33 Simvastatin, on the other hand, inhibited proliferation and caused cell cycle arrest in the G0/G1 phase (CDK4, CDK6, and cyclin D1) through PPAR- activation in bladder cancer cells by decreasing the abundance of the protein involved in the phase regulation of the G0- and G1-phase.34 Simvastatin had no discernible effect on apoptosis and cleaved caspase-3/-9, however. This demonstrates how simvastatin affects the TP53, CDKN1A, and CDK1 genes that control the cell cycle. Higher 9 cell percentages in the G0/G1 phases and lower cell percentages in the S-phase are indicators that it suppresses cell growth.35

The ability of new simvastatin compounds to stop the S phase and induce apoptosis in prostate cancer has been demonstrated.36 Recent research has shown that rosuvastatin polymeric nanocapsules have superior anticancer activity on human liver (HepG2) cancer cells through enhanced apoptosis and cell cycle arrest at the G2/M-phase, further highlighting their therapeutic potential for hepatic cancer.

  1.  Potentiation of chemotherapeutic action

Adjuvant statin use has the potential to increase biological activity and reduce the resistance to conventional anticancer therapy, according to preclinical research.37 This highlights a potentiating effect of statins against rectal cancer as they are linked to greater downstaging of rectal tumours and may play a role as adjuncts to neoadjuvant treatment, along with aspirin and metformin.38

An aminopeptidase inhibitor medication called tosedostat has demonstrated positive efficacy in treating acute myeloid leukemia (AML). Cloos et al. demonstrated that CHR2863, a structurally similar compound to tosedostat, potentiates the anticancer activity of various statins (fluvastatin, pravastatin, lovastatin, and simvastatin) in U937 AML cells. The synergy of CHR2863 with statins, which increases the sub-G1 percentage, was further supported by an increase in apoptotic induction and cell cycle arrest in 10 of the studies.39 Retrospective analysis of persistent and refractory AML cases treated with tosedostat-containing combination therapy revealed a therapeutic benefit for statin-using individuals. In contrast to patients not taking statins, AML patients who were taking both statins and tosedostat had a 50% chance of surviving for six months.40

Statins upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9) in addition to increasing the expression of the low-density lipoprotein receptor (LDLR), which creates a significant source for LDLR degradation.41 The design of PCSK9 inhibitors can therefore improve the cholesterol-reducing capabilities of statins since this creates a negative feedback reaction that lessens the influence of statins on lipid reduction.42 The potential link between PCSK9 inhibitors and cancer risk has been investigated in numerous clinical studies to date.43 By decreasing the activity of the PCSK9 promoter, silibinin A, the main active component of silymarin, has been shown to reduce PCSK9 expression in HepG2 cells. Silibinin A may be discovered as a new PCSK9 inhibitor that can increase the efficacy of statin therapy since it particularly inhibits the statin-induced phosphorylation pathway of p38 MAPK.44 Simvastatin, fluphenazine, and its two derivatives also increase the cytotoxicity of doxorubicin (0-35 M) when used in combination with doxorubicin-resistant colon cancer cells as compared to phenothiazine derivatives. Simvastatin treatment of colon cancer cells has been shown to enhance the anti-multidrug resistance (MDR), anti-inflammatory, and pro-apoptotic actions of phenothiazines, as shown by Roda-Pomianekthe et al.45 Table 1 displays a few statin-based combination tactics for fighting different cancer forms.

  1.  Statin’s antimetastatic effects

About 90% of all cancer-related deaths are caused by cancer metastasis,46 which is also the main source of cancer mortality rates. Statins might be thought of as long-term adjuvant treatments to delay clinical crises and lower mortality in afflicted people since they can prevent the formation of metastatic tumours.47 For the lipid moiety required for cell proliferation, adhesion, cell cycle progression, and signalling, transformed malignant cells predominantly rely on the mevalonate pathway.48 The mevalonate pathway has been shown to be more active in a variety of tumours; as a result, inhibiting the mevalonate route using HMGCR inhibitors will result in a decrease in mevalonate and its products, which will have a strong inhibitory effect on cancer cell metastasis. 49 Rho serves a purpose, thus inhibiting its manufacture will reduce cell proliferation and thereby prevent the development of the tumour.50 Rho activity may also be connected to the activity of cancer stem cells since tumours contain a population of cancer stem cells that can cause metastatic dissemination.51 For instance, atorvastatin (0-250 M) demonstrates antitumorigenic and antimetastatic effects in ovarian cancer cells in vitro,52 and simvastatin and atorvastatin both result in a concentration-dependent reduction in the ability of human cholangiocarcinoma cells to form colonies and migrate.53 Simvastatin also greatly increases DNA damage in ovarian cancer cells through the Akt/MAPK signalling cascade and decreases cell adherence and invasion.54

Epithelial-to-mesenchymal transformation (EMT), a dynamic multi-gene programming cycle, is a powerful cancer metastasis mechanism.55 By blocking the mevalonate route, lipophilic statins have been demonstrated to adversely alter the EMT pathways of signalling stem-like cells in breast cancer.56 In non-small cell lung cancer cells, atorvastatin attenuates the overexpression of SphK1, inhibits cell migration, and prevents actin filament remodelling, which all contribute to the partial inhibition of the EMT process brought on by transforming growth factor (TGF)-1.57 Additionally, phosphatase and tensin homolog (PTEN)/Akt pathway downregulation and the activation of RhoB are two additional aspects of atorvastatin's carcinostatic effects on breast cancer, both in vitro and in vivo.58

  1. Statins and GBM

GBM exhibits great invasiveness, rapid development, and apoptosis resistance.59 Alternative therapeutic modalities should target to decrease proliferation and cause cell apoptosis as a drug repositioning strategy. In several tumoral cell lines, inhibiting HMGCR results in the induction of apoptosis and the decrease of tumour growth; however, the precise molecular mechanisms of statins, which are potential HMGCR inhibitors, are not well understood in GBM.60 We have outlined the probable mechanisms and anticancer effects of statins in GBM from both preclinical and clinical research in the subsections that follow.

3.1 Preclinical research

The biosynthesis of cholesterol and the production of the intermediate metabolites GGPP and FPP, which are used in the prenylation of proteins, are both carried out by the mevalonate pathway, as was previously mentioned.61 Notably, mevalonate and GGPP pretreatment significantly inhibit statin-induced apoptosis62 and simvastatin induces cell death in a variety of human tumor cell lines, including astrocytoma, neuroblastoma, and GBM,63 via the intrinsic apoptotic pathway. For instance, by inhibiting Ras-signaling in a prenylation-dependent manner, atorvastatin increases the effectiveness of TMZ in GBM.64,65 The mevalonate pathway, which encourages apoptosis inhibition and cellular proliferation, is suppressed by cholesterol-lowering statins in this instance, which has been shown to improve the clinical outcomes of several malignancies.66

According to laboratory data, statins are showing promise as potential antitumor treatments for

14 GBM due to their pro-apoptotic, anti-proliferative, anti-invasive, radiosensitive, and radioprotective effects.67,68 However, compared to the clinical plasma concentration used as a lipid-lowering agent, these preclinical studies have used high concentrations of statins.69,70 For example, statins have been demonstrated by Weiss et al. to have proangiogenic effects at low therapeutic doses (nanomolar) but antiangiogenic effects at high doses (micromolar), which are reversible by GGPP.69 The emergence of TMZ resistance in GBM following ongoing TMZ therapy is one of the fundamental issues with clinical GBM therapy. However, the study used a high dose of statins compared to clinically therapeutic concentrations.71 As a result, the antitumor activities of statins against GBM are different from the anti-lipid effects and may depend on its concentration for efficacy.72,73 Recently, statin therapy has shown an improved anti-GBM effect of TMZ in vitro.

Pharmacologically, lovastatin may cause autophagy induction through inhibition of the Akt/mTOR signaling cascade. The autophagosome-lysosome fusion machinery may also be impacted by lovastatin's suppression of lysosomal associated membrane protein-2 and dynein. These findings suggest that lovastatin has the potential to significantly increase the efficacy of TMZ chemotherapy in GBM cells. Combining TMZ and lovastatin may be a promising GBM therapy intervention because the mechanism may be related to impaired autophagic flux, which enhances apoptosis of the malignant cells.74 For the treatment of GBM, the combination of statins and TMZ has demonstrated promise. Simvastatin, a blood-brain barrier permeable statin, also reduces the amount of autophagy induced by TMZ by preventing the development of autophagolysosomes.75,76 The presence of acidic vesicular organelles (AVO), a sign of autophagy, is increased in A172 GBM cells after treatment with atorvastatin and TMZ, as demonstrated by Oliveira et al.77 Simvastatin (0–50 M) was also found to induce the development of intracytoplasmic acidic vesicles that resemble autophagolysosomes in U251 and C6 GBM cells. Simvastatin-induced autophagy in vitro is confirmed mechanistically by the upregulation of the autophagosome-associated LC3-II, pro- autophagic beclin-1, and the downregulation of the selective autophagic target p62. Simvastatin is a central negative regulator for autophagy and Akt activation, and it is interesting to note that it induces the activation of AMP- activated protein kinase (AMPK) and inhibits mTOR. These noteworthy results led Misirkic et al. to hypothesize that AMPK-dependent autophagic response inhibition might make GBM cells more susceptible to statin-induced apoptotic cell death.78

Statins have also been demonstrated to accelerate apoptosis and inhibit tumor growth in GBM.78 In this regard, it has been suggested that lovastatin may make GBM cells more susceptible to apoptosis caused by TRAIL.79 Lovastatin significantly increases the expression of DR5 in GBM cell lines and tumor-bearing mice, triggering the extrinsic apoptosis pathway.80 Lovastatin has been shown to increase the short- and long-term cytotoxicity of TMZ and to induce GBM cell death in a dose-dependent manner. Additionally, concurrent lovastatin and TMZ exhibit synergistic behavior in cell apoptosis, suggesting lovastatin's potential role as a synthetic booster in the treatment of GBM.81 When it comes to the intrinsic pathway of apoptosis, atorvastatin (10 M) causes GBM spheroids to undergo apoptosis by activating caspase-8/-3 and suppressing the expression of Bcl-2, TRAF3IP2, and interleukin (IL)-17RA.82,83

Histone acetylation levels are frequently significantly lower in human tumors, which is thought to be a global epigenetic indicator of malignancy. Human cancer cells from the colon, stomach, kidney, breast, and brain all exhibit increased histone deacetylase (HDAC) activity.84,85 Recent research has shown that statins reduce HDAC activity and, as a result, raise the expression of p21 in a variety of cancer cells, including GBM. Interestingly, it has been demonstrated that fluvastatin effectively induces H2A histone family member X (-H2AX) and apoptosis in GBM8401 cells, which is followed by increased histone H3 and H4 acetylation. Additionally, this combination causes an upregulation of the gene p21, which is important for the cell cycle and apoptosis.86

According to several research, statins' ability to induce apoptosis is mediated via the HMGCR pathway suppression through the downregulation of the PI3K/Akt pathway, the activation of JNK1/2, an increase in the expression of Bax and Bim, and the activation of caspases on GBM. 87,88 Accordingly, Yanae et al. examined the cytotoxicity of statins (mevastatin, fluvastatin, or simvastatin, 1-20 M) towards the C6 GBM cells. Through the activation of caspase-3 and inhibition of ERK1/2/Akt, statins have been demonstrated to reduce cell growth and induce apoptosis in these cells.62 Simvastatin's antitumor action in U251 and U87 MG GBM cells is also mediated by manipulation of lipid rafts, Fas translocation, downregulation of PI3K/Akt, and caspase-3 activation, according to Wu et al.'s analysis.89

Numerous studies have shown that MMP production by microglia stimulated by GBM cells can facilitate cell proliferation, migration, and invasion. Additionally, forced HMGCR expression encourages GBM cell growth and migration, whereas forced HMGCR expression inhibits GBM cell growth, migration, and metastasis.90 Simvastatin (0.2-30 M) has been demonstrated by Gliemroth et al. 18 to decrease tumour cell growth and migration, but it does not appear to have any effect on the remaining U87 MG cells' invasiveness.91 According to certain research, atorvastatin can diminish MMP-2/-14/-9 expression levels and considerably lessen cancer cell invasion when used in conjunction with the RhoA-JNK-c-Jun-MMP-2 signalling pathway.92,93 Fluvastatin's effects on p-JNK1/2 upregulation, p-ERK1/2 expression reduction, and a decline in MMP-9 activity in C6 rat malignant GBM cells seem to be connected to its antiproliferative and anti-invasiveness properties.94 Additionally, GBM alters the expression of membrane type (MT)- 1-MMP in tumor-associated microglial cells, facilitating GBM invasion and growth via the toll-like receptor (TLR) signalling pathway. According to research by Yongjun et al., atorvastatin inhibits GBM invasion and migration via lowering microglial MT1-MMP expression, which in turn inhibits MMP-2 activity. 95

Integrins cluster as a result of RhoA activation, which makes it easier for FAK to be activated by tyrosine phosphorylation at position 397.96 By controlling MMP expression, focused complex formation at the leading edge of the cell, and FA deconstruction at the trailing edge, FAK signalling cascades control the invasion and metastasis of cancer cells.97,98 Cerivastatin was utilised to inactivate FAK by disrupting the cytoskeleton in a study on GBM cells, which prevented migration.99 This finding suggests that cerivastatin may be useful in combination therapy with traditional anticancer medications by preventing the invasion of GBM.

Recently, a possible connection between statins and TGF- in different cancer cells has been discovered. TGF- expression is decreased when the Ras/MEK/ERK and Ras/PI3K/Akt pathways are blocked by statins via mevalonate [100]. Simvastatin (0–50 M) impacts human GBM cells (U87 MG, U251 MG, and T98G cells) via TGF- inhibition, causing angiogenesis suppression, according to Xiao et al. Simvastatin decreases GBM migration and invasion, promotes apoptosis and autophagy, and does so both in vitro and in vivo, according to other investigations in this work.101 According to these studies, statins are extremely important for GBM patients receiving angiogenesis target therapy. In a three-dimensional in vitro model, it was found that atorvastatin has a strong anti-angiogenic effect against GBM spheroids by suppressing the expression of CD31 and vascular endothelial growth factor (VEGF).102 Simvastatin has also been shown to increase necrosis and apoptosis in vivo when used at low doses as opposed to control and high- dose groups. Simvastatin has a dual role in GBM, as shown by the fact that high-dose simvastatin increases vessel caliber by decreasing pericytic cells along the tumor vessel wall in comparison to both control and low-dose simvastatin groups.103 According to research on HMGCR inhibitors, statins lessen ERK signaling, FPP and GGPP levels, and cancer cell migration and proliferation.104 In U343 and U87 MG GBM cells, lovastatin has been shown to affect H-Ras and Rac1 post- translational modifications as well as the regulation of mevalonate and Ras-Raf-MEK-ERK.105

  1. Findings from clinical research

Statins may have potent antitumor effects, according to a growing body of preclinical data, but it is unclear how they interact with conventional therapy and affect cancer patients' clinical outcomes.106 Iarrobino et al. have recently shown the effect of statin use on outcomes in a study involving 303 patients with advanced pancreatic adenocarcinoma. It was discovered that statin (simvastatin and atorvastatin) usage is correlated with increased OS in affected patients. Additionally, statin use has been linked to a significant reduction in all-cause mortality, primarily by reducing the risk of distant metastases prior to or during diagnosis.107 Additionally, statin use is associated with a 2-year increase in OS in patients receiving radiation therapy, surgery, and chemotherapy, indicating that statins may help to improve the results of interventions for advanced-stage pancreatic cancer.108 The effectiveness of statin use in a sizable cohort of patients with stage IV non-small-cell lung cancer has been demonstrated by Lin et al. in another study. The median survival time for the statin group was seven months as opposed to four months for the non- statin group of patients. Additionally, statin use was linked to increased OS and survival only for lung cancer.109 However, they did demonstrate that statins improve OS in patients who had previously received nivolumab treatment for advanced non-small cell lung cancer.110 In contrast, Omori et al. discovered that OS was not improved.

In a phase I/II trial involving 18 patients with malignant GBM, lovastatin with and without radiation therapy was well tolerated, and so far, a negligible impact on tumor growth has been noted.111 According to a case-control study, simvastatin therapy for longer than six months was inversely associated with the risk of glioma.112 This study demonstrated the risk of GBM among statin users.

Statin use may have a chemical-preventive effect on the treatment of cancer, according to some research, but the impact of statins on the prognosis of GBM has not yet been investigated. Long- term prediagnostic statin use may increase the 21 survival of GBM patients and lower the risk of brain cancer, according to research by Chen et al. and Gaist et al.113 Additionally, a statistically significant improvement in OS was seen in GBM patients who had been taking a statin for more than a year. The probable chemoprevention impact was only seen in lipophilic statin users, despite the limited statistical precision. The biochemical characteristics of lipophilic statins, which have a higher ability than hydrophilic statins to cross the blood-brain barrier, may help to explain this114 On the other hand, mortality was comparable between both groups of GBM patients and the use of perioperative statins is not associated with an improvement in progression-free survival (PFS).66 In agreement with this finding, a secondary analysis of two significant GBM trials failed to find any proof that statin use was related to outcomes in patients with newly diagnosed GBM.115 According to a study by Seliger et al., taking statins had no effect on the OS or PFS of GBM patients116 or the risk of developing GBM.117 Additionally, Cote et al. discovered a marginally elevated risk of GBM with statin use.118 In a phase II study being conducted (NCT02029573) on patients with GBM, atorvastatin is being combined with radiotherapy and TMZ.


 

 

Table 1. Combinational strategies with statins in various cancer models.

S.N.

Combination Regimens

TYPE of Study

Main Effect (S)

Ref

1.

Simvastatin + tamoxifen

In vitro and in vivo

  A rise in necrotic and apoptotic cell death

A decline in MMP-2/-9 and VEGF

119

2.

Simvastatin + oxicam derivates

In vitro

Caspase-3-dependent apoptosis induction increased Bax expression, decreased Bcl-2 expression, and decreased COX2 expression and activity.

120

3.

Simvastatin + receptor- interacting protein 140

In vitro

suppression of cell survival and proliferation via the Wnt/catenin signaling pathway

121

4.

Fluvastatin + ALA and EA in an NLC1 formula

In vitro

vitro Pre-G1 phase significantly increased, resulting in cell death

122

5.

Atorvastatin+ cyanidin-3- glucoside

In vitro

Enhancing cell cycle arrest to have a synergistic effect on inhibiting proliferation and migration

A reduction in MAPK activity by downregulating p-p38, p-ERK1/2, and p-JNK expression

Increasing p21Cip1 and altering the PI3K/Akt pathway

123

6.

Atorvastatin+ nobiletin

In vitro In vivo

Coaxing extensive cell cycle arrest and apoptosis together

A reduction in the incidence and prevalence of colonic tumors

124

7.

Simvastatin+ herceptin-conjugated liposomes co-loaded with

In vitro In vivo

Strong cancer cell proliferation inhibition

Synergistic effects against angiogenesis

125

 

Atorvastatin + caffeine

In vitro

Induction of apoptosis and inhibition of cell growth

Preventing tumor sphere formation, migration, and invasion

Reducing the levels of the proteins phospho-ERK1/2, phospho-Akt, Bcl-2, and Survivin

126

 

Simvastatin+metformin

In vitro

Induction of apoptosis

Blocking the mTOR pathway

127

 

Atorvastatin metformin

In vitro

Induction of apoptosis and inhibition of cell growth

Preventing tumor sphere formation and cell migration

Survivin's expression was significantly reduced as a result of the substance's potent inhibitory effect on NF-B activity. 4) Decreasing phospho-Akt and phosphor-ERK1/2 levels

128

 

Statins + metformin

Clinical study

Dual users did not experience any positive effects

129

 

Simvastatin+celecoxib

In vitro

Significantly decreased tumor cell viability, growth, and IL-6 and IL-8 secretion

130

 

Simvastatin+doxorubicin

In vitro

A decrease in the capacity of cells to form colonies

A rise in ROS concentrations

A decrease in the expression of the CDK2, CDK4, and CDK6 cell cycle regulatory proteins

Upregulating the expression of the cyclin dependent kinase inhibitor p21, upregulating the expression of cytochrome c a n d c a s p a s e -3,  a n d downregulating the expression of cyclin D1

131

 

Pravastatin + sorafenib

Phase III, multicenter study

OS in the affected population did not improve.

132

 

References


 
  1. Sahab-Negah S, Ariakia F, Jalili-Nik M, Afshari AR, Salehi S, Samini F, Rajabzadeh G, Gorji A. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: an in vitro study. Molecular Neurobiology. 2020 Aug;57:3391-411. https://doi.org/10.1007/s12035-020-01922-5
  2. Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. In Seminars in Cancer Biology 2021 Aug 1 (Vol. 73, pp. 116- 133). Academic Press. https://doi.org/10.1016/j.semcancer.2020.08.002
  3. Sodero AO, Barrantes FJ. Pleiotropic effects of statins on brain cells. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020 Sep 1;1862(9):183340. https://doi.org/10.1016/j.bbamem.2020.183340
  4. Miraglia E, Högberg J, Stenius U. Statins exhibit anticancer effects through modifications of the pAkt signaling pathway. International journal of oncology. 2012 Mar 1;40(3):867- 75. https://doi.org/10.3892/ijo.2011.1223
  5. Laufs U, Kilter H, Konkol C, Wassmann S, Böhm M, Nickenig G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovascular research. 2002 Mar 1;53(4):911-20. https://doi.org/10.1016/S0008-6363(01)00540-5
  6. Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The potential of isoprenoids in adjuvant cancer therapy to reduce adverse effects of statins. Frontiers in pharmacology. 2019 Jan 4;9:1515. https://doi.org/10.3389/fphar.2018.01515
  7. Matzno S, Yasuda S, Juman S, Yamamoto Y, Nagareya-Ishida N, Nakabayashi T, Matsuyama K, Tazuya-Murayama K. Statin-induced apoptosis linked with membrane farnesylated Ras small G protein depletion, rather than geranylated Rho protein. Journal of                      pharmacy                         and pharmacology. 2005 Nov;57(11):1475-84. https://doi.org/10.1211/jpp.57.11.0014
  8. Lu SE, Lin Y, Graber JM, Rotter D, Zhang L, Petersen GM, Demissie K, Lu-Yao G, Tan XL. Differential and joint effects of metformin and statins on overall survival of elderly patients with pancreatic adenocarcinoma: a large population-based study. Cancer Epidemiology, Biomarkers & Prevention. 2017 Aug 1;26(8):1225-32. https://doi.org/10.1158/1055-9965.EPI-17-0227
  9. von Schuckmann LA, Khosrotehrani K, Ghiasvand R, Hughes MC, van der Pols JC, Malt M, Smithers BM, Green AC. Statins may reduce disease recurrence in patients with ulcerated primary melanoma. British Journal of Dermatology. 2020 Dec 1;183(6):1049- 55. https://doi.org/10.1111/bjd.19012
  10. Xia DK, Hu ZG, Tian YF, Zeng FJ. Statin use and prognosis of lung cancer: a systematic review and meta-analysis of observational studies and randomized controlled trials. Drug design, development and therapy. 2019 Jan 23:405-22. https://doi.org/10.2147/DDDT.S187690
  11. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. New England Journal of Medicine. 2012 Nov 8;367(19):1792-802. https://doi.org/10.3390/cancers16071313
  12. Tapia-Pérez JH, Sanchez-Aguilar M, Schneider T. The role of statins in neurosurgery. Neurosurgical Review. 2010 Jul; 33:259-70. https://doi.org/10.1007/s10143-010-0259-4
  13. Tan P, Zhang C, Wei SY, Tang Z, Gao L, Yang L, Wei Q. Effect of statins type on incident prostate cancer risk: a meta-analysis and systematic review. Asian journal of andrology. 2017 Nov;19(6):666. DOI: 10.4103/1008-682X.190327
  14. Gaber O, Eldessouki I, Hassan R, Magdy M, Morris JC, Karim NA. Retrospective Study of the Effect of Statins on the Outcome of Lung Cancer Patients, University of Cincinnati Experience. Asian Pacific journal of cancer prevention: APJCP. 2019;20(8):2391. DOI: 10.31557/APJCP.2019.20.8.2391
  15. Afshari AR, Mollazadeh H, Henney NC, Jamialahmad T, Sahebkar A. Effects of statins on brain tumors: a review. In Seminars in Cancer Biology 2021 Aug 1 (Vol. 73, pp. 116- 133). Academic Press. https://doi.org/10.1016/j.semcancer.2020.08.002
  16. Liu B, Yi Z, Guan X, Zeng YX, Ma F. The relationship between statins and breast cancer prognosis varies by statin type and exposure time: a meta-analysis. Breast cancer research and treatment. 2017 Jul; 164:1-1. https://doi.org/10.1007/s10549-017-4246-0
  17. Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews Cancer. 2016 Nov;16(11):732-49. https://doi.org/10.1038/nrc.2016.89
  18. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. New England Journal of Medicine. 2012 Nov 8;367(19):1792-802. https://doi.org/10.3390/cancers16071313
  19. Boudreau DM, Yu O, Johnson J. Statin use and cancer risk: a comprehensive review. Expert opinion on drug safety. 2010 Jul 1;9(4):603-21. https://doi.org/10.1517/14740331003662620
  20. Sakellakis M, Akinosoglou K, Kostaki A, Spyropoulou D, Koutras A. Statins and risk of breast cancer recurrence. Breast Cancer: Targets and Therapy. 2016 Nov 4:199-205. https://doi.org/10.2147/BCTT.S116694
  21. Boudreau DM, Yu O, Johnson J. Statin use and cancer risk: a comprehensive review. Expert opinion on drug safety. 2010 Jul 1;9(4):603-21. https://doi.org/10.1517/14740331003662620
  22. Sakellakis M, Akinosoglou K, Kostaki A, Spyropoulou D, Koutras A. Statins and risk of breast cancer recurrence. Breast Cancer: Targets and Therapy. 2016 Nov 4:199-205. https://doi.org/10.2147/BCTT.S116694
  23. Kochuparambil ST, Al-Husein B, Goc A, Soliman S, Somanath PR. Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. Journal of Pharmacology and Experimental Therapeutics. 2011 Feb 1;336(2):496-505. https://doi.org/10.1124/jpet.110.174870
  24. Warren CF, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell death & disease. 2019 Feb 21;10(3):177. https://doi.org/10.1038/s41419-019- 1407-6
  25. Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis. 2005 May 1;26(5):883-91. https://doi.org/10.1093/carcin/bgi036
  26. Kamigaki M, Sasaki T, Serikawa M, Inoue M, Kobayashi K, Itsuki H, Minami T, Yukutake M, Okazaki A, Ishigaki T, Ishii Y. Statins induce apoptosis and inhibit proliferation in cholangiocarcinoma cells. International journal of oncology. 2011 Sep 1;39(3):561-8. https://doi.org/10.3892/ijo.2011.1087
  27. Hoque A, Chen H, Xu XC. Statin induces apoptosis and cell growth arrest in prostate cancer cells. Cancer Epidemiology Biomarkers & Prevention. 2008 Jan;17(1):88-94. https://doi.org/10.1158/1055-9965.EPI-07-0531
  28. Fujiwara D, Tsubaki M, Takeda T, Tomonari Y, Koumoto YI, Sakaguchi K, Nishida S. Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells. Tumor Biology. 2017;Oct;39(10):1010428317734947. https://doi.org/10.1177/1010428317734947
  29. Goc A, Kochuparambil ST, Al-Husein B, Al-Azayzih A, Mohammad S, Somanath PR. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC cancer. 2012 Dec;12:1-3. https://doi.org/10.1186/1471-2407-12-409
  30. Thurnher M, Nussbaumer O, Gruenbacher G. Novel aspects of mevalonate pathway inhibitors as antitumor agents. Clinical Cancer Research. 2012 Jul 1;18(13):3524-31. https://doi.org/10.1158/1078-0432.CCR-12-0489
  31. Wang G, Cao R, Wang Y, Qian G, Dan HC, Jiang W, Ju L, Wu M, Xiao Y, Wang X. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Scientific reports. 2016 Oct 25;6(1):35783. https://doi.org/10.1038/srep35783
  32. Kamigaki M, Sasaki T, Serikawa M, Inoue M, Kobayashi K, Itsuki H, Minami T, Yukutake M, Okazaki A, Ishigaki T, Ishii Y. Statins induce apoptosis and inhibit proliferation in cholangiocarcinoma cells. International journal of oncology. 2011 Sep 1;39(3):561-8. https://doi.org/10.3892/ijo.2011.1087
  33. Matusewicz L, Meissner J, Toporkiewicz M, Sikorski AF. The effect of statins on cancer cells. Tumor Biology. 2015 Jul;36:4889-904. https://doi.org/10.1007/s13277-015-3551-7
  34. Wang T, Seah S, Loh X, Chan CW, Hartman M, Goh BC, Lee SC. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget. 2015 Nov 11;7(3):2532-44. doi: 10.18632/oncotarget.6304
  35. Wang G, Cao R, Wang Y, Qian G, Dan HC, Jiang W, Ju L, Wu M, Xiao Y, Wang X. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Scientific reports. 2016 Oct 25;6(1):35783. https://doi.org/10.1038/srep35783
  36. Kany S, Woschek M, Kneip N, Sturm R, Kalbitz M, Hanschen M, Relja B. Simvastatin exerts anticancer effects in osteosarcoma cell lines via geranylgeranylation and c-Jun activation. International journal of oncology. 2018 Apr 1;52(4):1285-94. https://doi.org/10.3892/ijo.2018.4288
  37. Ingersoll MA, Miller DR, Martinez O, Wakefield CB, Hsieh KC, Simha MV, Kao CL, Chen HT, Batra SK, Lin MF. Statin derivatives as therapeutic agents for castration- resistant prostate cancer. Cancer letters. 2016 Dec 1;383(1):94-105. https://doi.org/10.1016/j.canlet.2016.09.008
  38. Cho SJ, Kim JS, Kim JM, Lee JY, Jung HC, Song IS. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis‐associated colon cancer in mice. International journal of cancer. 2008 Aug 15;123(4):951-7. https://doi.org/10.1002/ijc.23593
  39. Gash KJ, Chambers AC, Cotton DE, Williams AC, Thomas MG. Potentiating the effects of radiotherapy in rectal cancer: the role of aspirin, statins and metformin as adjuncts to therapy. British journal of cancer. 2017 Jul;117(2):210-9. https://doi.org/10.1038/bjc.2017.175
  40. Cloos J, Peters GJ, Al M, Assaraf YG, Wang L, Singer JW, Cortes JE, Ossenkoppele GJ, Jansen G. Statins Potentiate Aminopeptidase Inhibitor (pro) Drug Activity in Acute Myeloid Leukemia Cells. Blood. 2018 Nov 29;132:3945. https://doi.org/10.1182/blood- 2018-99-114447
  41. Cortes J, Feldman E, Yee K, Rizzieri D, Advani AS, Charman A, Spruyt R, Toal M, Kantarjian H. Two dosing regimens of tosedostat in elderly patients with relapsed or refractory acute myeloid leukaemia (OPAL): a randomised open-label phase 2 study. The Lancet           Oncology.                  2013 Apr1;14(4):354-62. https://doi.org/10.1016/S1470-2045(13)70037-8
  42. Sahebkar A, Simental‐Mendía LE, Guerrero‐Romero F, Golledge J, Watts GF. Effect of statin therapy on plasma proprotein convertase subtilisin kexin 9 (PCSK9) concentrations: a systematic review and meta‐analysis of clinical trials. Diabetes, Obesity and Metabolism. 2015 Nov;17(11):1042-55. https://doi.org/10.1111/dom.12536
  43. Adorni MP, Zimetti F, Lupo MG, Ruscica M, Ferri N. Naturally occurring PCSK9 inhibitors. Nutrients. 2020 May 16;12(5):1440. https://doi.org/10.3390/nu12051440
  44. Momtazi-Borojeni AA, Nik ME, Jaafari MR, Banach M, Sahebkar A. Potential anti- tumor effect of a nanoliposomal antiPCSK9 vaccine in mice bearing colorectal cancer. Archives of Medical Science. 2019 May 1;15(3):559-69. https://doi.org/10.5114/aoms.2019.84732
  45. Dong Z, Zhang W, Chen S, Liu C. Silibinin A decreases statin-induced PCSK9 expression in human hepatoblastoma HepG2 cells. Molecular medicine reports. 2019 Aug 1;20(2):1383- 92. https://doi.org/10.3892/mmr.2019.10344
  46. Środa-Pomianek K, Michalak K, Palko-Łabuz A, Uryga A, Świątek P, Majkowski M, Wesołowska O. The combined use of phenothiazines and statins strongly affects doxorubicin-resistance, apoptosis, and Cox-2 activity in colon cancer cells. International journal of molecular sciences. 2019 Feb 22;20(4):955.    https://doi.org/10.3390/ijms20040955
  47. Um HD. Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget. 2016 Feb 2;7(5):5193. doi: 10.18632/oncotarget.6405
  48. Beckwitt CH, Clark AM, Ma B, Whaley D, Oltvai ZN, Wells A. Statins attenuate outgrowth of breast cancer metastases. British journal of cancer. 2018 Oct 30;119(9):1094-105. https://doi.org/10.1038/s41416-018-0267-7
  49. Göbel A, Rauner M, Hofbauer LC, Rachner TD. Cholesterol and beyond-The role of the mevalonate pathway in cancer biology. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2020 Apr 1;1873(2):188351. https://doi.org/10.1016/j.bbcan.2020.188351
  50. Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, Xue W. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 2019 Jan 24;176(3):564-80. https://doi.org/10.1016/j.cell.2018.11.011
  51. Ridley AJ. Rho proteins and cancer. Breast cancer research and treatment. 2004 Mar;84:13- 9. https://doi.org/10.1016/j.cell.2018.11.011
  52. Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer and Metastasis Reviews. 2009 Jun;28:65-76. https://doi.org/10.1007/s10555-008-9170-7
  53. Jones HM, Fang Z, Sun W, Clark LH, Stine JE, Tran AQ, Sullivan SA, Gilliam TP, Zhou C, Bae-Jump VL. Atorvastatin exhibits anti-tumorigenic and anti-metastatic effects in ovarian cancer in vitro. American journal of cancer research. 2017;7(12):2478.
  54. Buranrat B, Senggunprai L, Prawan A, Kukongviriyapan V. Simvastatin and atorvastatin as inhibitors of proliferation and inducers of apoptosis in human cholangiocarcinoma cells. Life sciences. 2016 May 15;153:41-9. https://doi.org/10.1016/j.lfs.2016.04.018
  55. Stine JE, Guo H, Sheng X, Han X, Schointuch MN, Gilliam TP, Gehrig PA, Zhou C, Bae- Jump VL. The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti- tumorigenic effects in ovarian cancer. Oncotarget. 2016 Jan 1;7(1):946. doi: 10.18632/oncotarget.5834
  56. Georgakopoulos-Soares I,   Chartoumpekis DV,  Kyriazopoulou V, Zaravinos A.   EMT factors and metabolic pathways in cancer. Frontiers in oncology. 2020 Apr 7;10:499. https://doi.org/10.3389/fonc.2020.00499
  57. Koohestanimobarhan S, Salami S, Imeni V, Mohammadi Z, Bayat O. Lipophilic statins antagonistically alter the major epithelial‐to‐mesenchymal transition signaling pathways in breast cancer stem–like cells via inhibition of the mevalonate pathway. Journal of cellular biochemistry. 2019 Feb;120(2):2515-31.https://doi.org/10.1002/jcb.27544
  58. Fan Z, Jiang H, Wang Z, Qu J. Atorvastatin partially inhibits the epithelial-mesenchymal transition in A549 cells induced by TGF-β1 by attenuating the upregulation of SphK1. Oncology reports. 2016 Aug 1;36(2):1016-22. https://doi.org/10.3892/or.2016.4897
  59. Ma Q, Gao Y, Xu P, Li K, Xu X, Gao J, Qi Y, Xu J, Yang Y, Song W, He X. Atorvastatin inhibits breast cancer cells by downregulating PTEN/AKT pathway via promoting ras homolog family member B (RhoB). BioMed research international. 2019 Oct;2019. https://doi.org/10.1155/2019/3235021
  60. Soukhtanloo M, Mohtashami E, Maghrouni A, Mollazadeh H, Mousavi SH, Roshan MK, Tabatabaeizadeh SA, Hosseini A, Vahedi MM, Jalili-Nik M, Afshari AR. Natural products as promising targets in glioblastoma multiforme: a focus on NF-κB signaling pathway. Pharmacological reports. 2020 Apr; 72:285-95. https://doi.org/10.1007/s43440-020- 00081-7
  61. Afshari AR, Jalili-Nik M, Soukhtanloo M, Ghorbani A, Sadeghnia HR, Mollazadeh H, Roshan MK, Rahmani F, Sabri H, Vahedi MM, Mousavi SH. Auraptene-induced cytotoxicity mechanisms in human malignant glioblastoma (U87) cells: role of reactive oxygen species (ROS). EXCLI journal. 2019;18:576. doi: 10.17179/excli2019-1136
  62. Göbel A, Rauner M, Hofbauer LC, Rachner TD. Cholesterol and beyond-The role of the mevalonate pathway in cancer biology. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2020 Apr 1;1873(2):188351https://doi.org/10.1016/j.bbcan.2020.188351
  63. Yanae M, Tsubaki M, Satou T, Itoh T, Imano M, Yamazoe Y, Nishida S. Statin-induced apoptosis via the suppression of ERK1/2 and Akt activation by inhibition of the geranylgeranyl-pyrophosphate biosynthesis in glioblastoma. Journal of Experimental & Clinical Cancer Research. 2011 Dec;30(1):1-8. https://doi.org/10.1186/1756-9966-30-74
  64. Cai WY, Zhuang Y, Yan F, Li T, Song WT, Sun JH. Effect of survivin downregulation by simvastatin on the growth and invasion of salivary adenoid cystic carcinoma . Molecular medicine reports . 2018 Aug 1;18(2):1939-46. https://doi.org/10.3892/mmr.2018.9204
  65. Shojaei S, Alizadeh J, Thliveris J, Koleini N, Kardami E, Hatch GM, Xu F, Hombach- Klonisch S, Klonisch T, Ghavami S. Statins: a new approach to combat temozolomide chemoresistance in glioblastoma. Journal of Investigative Medicine. 2018 Dec;66(8):1083- 7. https://doi.org/10.1136/jim-2018-000874
  66. Peng P, Wei W, Long C, Li J. Atorvastatin augments temozolomide's efficacy in glioblastoma via prenylation-dependent inhibition of Ras signaling. Biochemical and biophysical research communications. 2017 Jul 29;489(3):293-8. https://doi.org/10.1016/j.bbrc.2017.05.147
  67. Bhavsar S, Hagan K, Arunkumar R, Potylchansky Y, Grasu R, Dang A, Carlson R, Cowels C, Arnold B, Rahlfs TF, Lipski I. Preoperative statin use is not associated with improvement in survival after glioblastoma surgery. Journal of Clinical Neuroscience. 2016 Sep 1; 31:176-80. https://doi.org/10.1016/j.jocn.2016.03.010
  68. Gupta A, Stokes W, Eguchi M, Hararah M, Amini A, Mueller A, Morgan R, Bradley C, Raben D, McDermott J, Karam SD. Statin use associated with improved overall and cancer specific survival in patients with head and neck cancer. Oral oncology. 2019 Mar 1;90:54- 66. https://doi.org/10.1016/j.oraloncology.2019.01.019
  69. Fritz G, Henninger C, Huelsenbeck J. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. British medical bulletin . 2011 Mar 1;97(1):17-26. https://doi.org/10.1093/bmb/ldq044
  70. Weis M, Heeschen C, Glassford AJ, Cooke JP. Statins have biphasic effects on angiogenesis. Circulation. 2002 Feb 12;105(6):739-45. https://doi.org/10.1161/hc0602.103393
  71. Dulak J, Józkowicz A. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Current cancer drug targets. 2005 Dec 1;5(8):579-94. https://doi.org/10.2174/156800905774932824
  72. Björkhem-Bergman L, Lindh JD, Bergman P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects. British journal of clinical pharmacology. 2011 Jul;72(1):164. doi: 10.1111/j.1365-2125.2011.03907.x
  73. Peng P, Wei W, Long C, Li J. Atorvastatin augments temozolomide's efficacy in glioblastoma via prenylation-dependent inhibition of Ras signaling. Biochemical  and biophysical research communications. 2017 Jul 29;489(3):293-8. https://doi.org/10.1016/j.bbrc.2017.05.147
  74. Yamamoto Y, Tomiyama A, Sasaki N, Yamaguchi H, Shirakihara T, Nakashima K, Kumagai K, Takeuchi S, Toyooka T, Otani N, Wada K. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft. Biochemical and biophysical research communications . 2018 Jan 1;495(1):1292-9.https://doi.org/10.1016/j.bbrc.2017.11.113
  75. Zhu Z, Zhang P, Li N, Kiang KM, Cheng SY, Wong VK, Leung GK. Lovastatin enhances cytotoxicity of temozolomide via impairing autophagic flux in glioblastoma cells. BioMed research international. 2019;2019. https://doi.org/10.1155/2019/2710693
  76. Rodriguez GE, Blankstein A, Henson ES, Gibson SB. 18th BIENNIAL CANADIAN NEURO-ONCOLOGY MEETING| Banff Alberta| May 10-12, 2018 _. doi:10.1017/cjn.2018.280
  77. Shojaei S, Koleini N, Samiei E, Aghaei M, Cole LK, Alizadeh J, Islam MI, Vosoughi AR, Albokashy M, Butterfield Y, Marzban H. Simvastatin increases temozolomide‐induced cell death by targeting the fusion of autophagosomes and lysosomes. The FEBS journal. 2020 Mar;287(5):1005-34..
  78. Oliveira KA, Dal-Cim T, Lopes FG, Ludka FK, Nedel CB, Tasca CI. Atorvastatin promotes cytotoxicity and reduces migration and proliferation of human A172 glioma cells. Molecular neurobiology. 2018 Feb;55:1509-23. https://doi.org/10.1007/s12035-017-0423-8
  79. Misirkic M, Janjetovic K, Vucicevic L, Tovilovic G, Ristic B, Vilimanovich U, Harhaji- Trajkovic L, Sumarac-Dumanovic M, Micic D, Bumbasirevic V, Trajkovic V. Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin. Pharmacological research. 2012 Jan 1;65(1):111-9. https://doi.org/10.1016/j.phrs.2011.08.003
  80. Chan DY, Chen GG, Poon WS, Liu PC. Lovastatin sensitized human glioblastoma cells to TRAIL-induced apoptosis. Journal of neuro-oncology. 2008 Feb;86:273-83. https://doi.org/10.1007/s11060-007-9475-3
  81. Liu Y, Chen L, Gong Z, Shen L, Kao C, Hock JM, Sun L, Li X. Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells. Oncotarget. 2015 Feb;6(5):3055. Doi: 10.18632/oncotarget.3073
  82. Zhu Z, Zhang P, Li N, Kiang KM, Cheng SY, Wong VK, Leung GK. Lovastatin enhances cytotoxicity of temozolomide via impairing autophagic flux in glioblastoma cells. BioMed research international. 2019;2019.  https://doi.org/10.1155/2019/2710693
  83. Bayat N, Ebrahimi-Barough S, Norouzi-Javidan A, Saberi H, Tajerian R, Ardakan MM, Shirian S, Ai A, Ai J. Apoptotic effect of atorvastatin in glioblastoma spheroids tumor cultured in fibrin gel. Biomedicine & Pharmacotherapy. 2016 Dec 1;84:1959-66. https://doi.org/10.1016/j.biopha.2016.11.003
  84. Bayat N, Ebrahimi-Barough S, Norouzi-Javidan A, Saberi H, Tajerian R, Ardakan MM, Shirian S, Ai A, Ai J. Apoptotic effect of atorvastatin in glioblastoma spheroids tumor cultured in fibrin gel. Biomedicine & Pharmacotherapy. 2016 Dec 1;84:1959-66. https://doi.org/10.1016/j.biopha.2016.11.003
  85. Wawruszak A, Kalafut J, Okon E, Czapinski J, Halasa M, Przybyszewska A, Miziak P, Okla K, Rivero-Muller A, Stepulak A. Histone deacetylase inhibitors and phenotypical transformation      of      cancer      cells.      Cancers.      2019       Jan       27;11(2):148. DOI: 10.3390/cancers11020148
  86. Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug discovery today. 2019 Mar 1;24(3):685-702. https://doi.org/10.1016/j.drudis.2019.02.003
  87. Chang YL, Huang LC, Chen YC, Wang YW, Hueng DY, Huang SM. The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines. The international journal of biochemistry & cell biology. 2017 Nov 1;92:155- 63. https://doi.org/10.1016/j.biocel.2017.10.003
  88. Jiang Z, Zheng X, Lytle RA, Higashikubo R, Rich KM. Lovastatin‐induced up‐regulation of the BH3‐only protein, Bim, and cell death in glioblastoma cells. Journal of neurochemistry. 2004 Apr;89(1):168-78. https://doi.org/10.1111/j.1471-4159.2004.02319.x
  89. Koyuturk M, Ersoz M, Altiok N. Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neuroscience letters. 2004 Nov 11;370(2- 3):212-7. https://doi.org/10.1016/j.neulet.2004.08.020
  90. Wu H, Jiang H, Lu D, Xiong Y, Qu C, Zhao D, Mahmood A, Chopp M. Effect of simvastatin on glioma cell proliferation, migration and apoptosis. Neurosurgery. 2009 Dec;65(6):1087. DOI: 10.1227/01.NEU.0000360130.52812.1D
  91. Qiu Z, Yuan W, Chen T, Zhou C, Liu C, Huang Y, Han D, Huang Q. HMGCR positively regulated the growth and migration of glioblastoma cells. Gene. 2016 Jan 15;576(1):22-7. https://doi.org/10.1016/j.gene.2015.09.067
  92. Gliemroth J, Zulewski H, Arnold H, Terzis AJ. Migration, proliferation, and invasion of human glioma cells following treatment with simvastatin. Neurosurgical review. 2003 May;26:117-24. https://doi.org/10.1007/s10143-003-0258-9
  93. Fromigué O, Hamidouche Z, Marie PJ. Blockade of the RhoA-JNK-c-Jun-MMP2 cascade by atorvastatin reduces osteosarcoma cell invasion. Journal of Biological Chemistry. 2008 Nov 7;283(45):30549-56. https://doi.org/10.1074/jbc.M801436200
  94. Mahajan N, Dhawan V. Inhibition of C-reactive protein induced expression of matrix metalloproteinases by atorvastatin in THP-1 cells. Molecular and cellular biochemistry. 2010 May; 338:77-86. https://doi.org/10.1007/s11010-009-0340-x
  95. Sławińska-Brych A, Zdzisińska B, Kandefer-Szerszeń M. Fluvastatin inhibits growth and alters the malignant phenotype of the C6 glioma cell line. Pharmacological Reports. 2014 Feb 1;66(1):121-9.https://doi.org/10.1016/j.pharep.2014.01.002
  96. Yongjun Y, Shuyun H, Lei C, Xiangrong C, Zhilin Y, Yiquan K. Atorvastatin suppresses glioma invasion and migration by reducing microglial MT1-MMP expression. Journal of neuroimmunology. 2013 Jul15;260(1-2):1- 8. https://doi.org/10.1016/j.jneuroim.2013.04.020
  97. Rajshankar D, Wang B, Worndl E, Menezes S, Wang Y, McCulloch CA. Focal adhesion kinase regulates tractional collagen remodeling, matrix metalloproteinase expression, and collagen structure, which in turn affects matrix‐induced signaling. Journal of cellular physiology. 2020 Mar;235(3):3096-111.https://doi.org/10.1002/jcp.29215
  98. Deng B, Liu R, Tian X, Han Z, Chen J. Simulated microgravity inhibits the viability and migration of glioma via FAK/RhoA/Rock and FAK/Nek2 signaling. In Vitro Cellular & Developmental Biology-Animal. 2019 Apr 15;55:260-71.https://doi.org/10.1007/s11626- 019-00334-7
  99. Barańska J, editor. Glioma signaling. Springer; 2013.
  100. Obara S, Nakata M, Takeshima H, Kuratsu JI, Maruyama I, Kitajima I. Inhibition of migration of human glioblastoma cells by cerivastatin in association with focal adhesion kinase (FAK). Cancer letters. 2002 Nov 28;185(2):153-61.https://doi.org/10.1016/S0304- 3835(02)00278-1
  101. Tsubaki M, Yamazoe Y, Yanae M, Satou T, Itoh T, Kaneko J, Kidera Y, Moriyama K, Nishida S. Blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathways by statins reduces the expression of bFGF, HGF, and TGF-β as angiogenic factors in mouse osteosarcoma. Cytokine. 2011 Apr 1;54(1):100- 7.https://doi.org/10.1016/j.cyto.2011.01.005
  102. Xiao A, Brenneman B, Floyd D, Comeau L, Spurio K, Olmez I, Lee J, Nakano I, Godlewski J, Bronisz A, Kagaya N. Statins affect human glioblastoma and other cancers through TGF-β inhibition.    Oncotarget. 2019 Mar 3;10(18):1716. https://doi.org/10.18632%2Foncotarget.26733
  103. Bayat N, Izadpanah R, Ebrahimi-Barough S, Javidan AN, Ai A, Ardakan MM, Saberi H, Ai J. The anti-angiogenic effect of atorvastatin in glioblastoma spheroids tumor cultured in fibrin gel: in 3D in vitro model. Asian Pacific journal of cancer prevention: APJCP. 2018;19(9):2553. https://doi.org/10.22034%2FAPJCP.2018.19.9.2553
  104. Bababeygy SR, Polevaya NV, Youssef S, Sun A, Xiong A, Prugpichailers T, Veeravagu A, Hou LC, Steinman L, Tse V. HMG-CoA reductase inhibition causes increased necrosis and apoptosis in an in vivo mouse glioblastoma multiforme model. Anticancer research. 2009 Dec 1;29(12):4901-8.
  105. Jakobisiak M, Golab J. Potential antitumor effects of statins. International journal of oncology. 2003 Oct 1;23(4):1055-69. https://doi.org/10.3892/ijo.23.4.1055
  106. Afshordel S, Kern B, Clasohm J, König H, Priester M, Weissenberger J, Kögel D, Eckert GP. Lovastatin and perillyl alcohol inhibit glioma cell invasion, migration, and proliferation–impact of Ras-/Rho-prenylation. Pharmacological research. 2015 Jan 1;91:69-77https://doi.org/10.1016/j.phrs.2014.11.006
  107. Yarmolinsky J, Bull CJ, Vincent EE, Robinson J, Walther A, Smith GD, Lewis SJ, Relton CL, Martin RM. Association between genetically proxied inhibition of HMG- CoA reductase and epithelial ovarian cancer. Jama. 2020 Feb 18;323(7):646- 55.doi:10.1001/jama.2020.0150
  108. Tamburrino D, Crippa S, Partelli S, Archibugi L, Arcidiacono PG, Falconi M, Capurso G. Statin use improves survival in patients with pancreatic ductal adenocarcinoma: A meta- analysis. Digestive and Liver Disease. 2020 Apr 1;52(4):392-9. https://doi.org/10.1016/j.dld.2020.01.008
  109. Iarrobino NA, Gill B, Bernard ME, Mishra MV, Champ CE. Targeting tumor metabolism with statins during treatment for advanced-stage pancreatic cancer. American journal of clinical oncology. 2018 Nov;41(11):1125.DOI: 10.1097/COC.0000000000000433
  110. Lin JJ, Ezer N, Sigel K, Mhango G, Wisnivesky JP. The effect of statins on survival in patients with stage IV lung cancer. Lung cancer. 2016 Sep 1;99:137-42. https://doi.org/10.1016/j.lungcan.2016.07.006
  111. Omori M, Okuma Y, Hakozaki T, Hosomi Y. Statins improve survival in patients previously treated with nivolumab for advanced non-small cell lung cancer: An observational study. Molecular and clinical oncology. 2019 Jan 1;10(1):137-43.  https://doi.org/10.3892/mco.2018.1765
  112. Larner J, Jane J, Laws E, Packer R, Myers C, Shaffrey M. A phase I-II trial of lovastatin for anaplastic astrocytoma and glioblastoma multiforme. American journal of clinical oncology. 1998 Dec 1;21(6):579-83.
  113. Ferris JS, McCoy L, Neugut AI, Wrensch M, Lai R. HMG CoA reductase inhibitors, NSAIDs and risk of glioma. International journal of cancer. 2012 Sep 15;131(6):E1031-7. https://doi.org/10.1002/ijc.27536
  114. Chen BK, Chiu HF, Yang CY. Statins are Associated With a Reduced Risk of Brain Cancer: A Population-Based Case–Control Study. Medicine. 2016 Apr;95(17). https://doi.org/10.1097/MD.0000000000003392 
  115. Vuletic S, Riekse RG, Marcovina SM, Peskind ER, Hazzard WR, Albers JJ. Statins of different brain penetrability differentially affect CSF PLTP activity. Dementia and geriatric cognitive disorders. 2006;22(5-6):392-8.https://doi.org/10.1159/000095679
  116. Jiang Z, Zheng X, Lytle RA, Higashikubo R, Rich KM. Lovastatin‐induced up‐regulation of the BH3‐only protein, Bim, and cell death in glioblastoma cells. Journal of neurochemistry. 2004 Apr;89(1):168-78.https://doi.org/10.1111/j.1471- 4159.2004.02319.x
  117. Seliger C, Schaertl J, Gerken M, Luber C, Proescholdt M, Riemenschneider MJ, Leitzmann MF, Hau P, Klinkhammer-Schalke M. Use of statins or NSAIDs and survival of patients with           high-grade glioma. PloS one. 2018 Dec 3;13(12):e0207858.https://doi.org/10.1371/journal.pone.0207858
  118. Seliger C, Meier CR, Becker C, Jick SS, Bogdahn U, Hau P, Leitzmann MF. Statin use and risk of glioma: population-based case–control analysis. European journal of epidemiology. 2016 Sep;31:947-52.https://doi.org/10.1007/s10654-016-0145-7
  119. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, Evans S. Interpretation of the evidence for the efficacy and safety of statin therapy. The Lancet. 2016 Nov 19;388(10059):2532-61. https://doi.org/10.1016/S0140-6736(16)31357-5
  120. Ibrahim AB, Zaki HF, Ibrahim WW, Omran MM, Shouman SA. Evaluation of tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer         cells. Toxicology Reports. 2019  Jan 1;6:1114- 26.https://doi.org/10.1016/j.toxrep.2019.10.016
  121. Środa-Pomianek K, Michalak K, Palko-Łabuz A, Uryga A, Szczęśniak-Sięga B, Wesołowska O. Simvastatin strongly augments proapoptotic, anti-inflammatory and cytotoxic activity of oxicam derivatives in doxorubicin-resistant colon cancer cells. Anticancer research. 2019 Feb 1;39(2):727-34DOI: https://doi.org/10.21873/anticanres.13169
  122. Xia K, Zhang P, Hu J, Hou H, Xiong M, Xiong J, Yan N. Synergistic effect of receptor-interacting protein 140 and simvastatin on the inhibition of proliferation and survival of hepatocellular carcinoma cells. Oncology letters. 2018 Apr 1;15(4):4344-50. https://doi.org/10.3892/ol.2018.7831
  123. Fahmy UA, Aljaeid BM. Combined strategy for suppressing breast carcinoma MCF- 7 cell lines by loading simvastatin on alpha lipoic acid nanoparticles. Expert opinion on drug delivery. 2016 Dec 1;13(12):1653- 60.https://doi.org/10.1080/17425247.2016.1236788
  124. Wu X, Song M, Qiu P, Rakariyatham K, Li F, Gao Z, Cai X, Wang M, Xu F, Zheng J, Xiao H. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis. Carcinogenesis. 2017 Apr 1;38(4):455- 64. https://doi.org/10.1093/carcin/bgx018
  125. Li N, Xie X, Hu Y, He H, Fu X, Fang T, Li C. Herceptin-conjugated liposomes co- loaded with doxorubicin and simvastatin in targeted prostate cancer therapy. American journal of translational research. 2019;11(3):1255.
  126. Peng M, Darko KO, Tao T, Huang Y, Su Q, He C, Yin T, Liu Z, Yang X. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer treatment reviews. 2017 Mar 1;54:24- 33.https://doi.org/10.1016/j.ctrv.2017.01.005
  127. Kim JS, Turbov J, Rosales R, Thaete LG, Rodriguez GC. Combination simvastatin and metformin synergistically inhibits endometrial cancer cell growth. Gynecologic oncology. 2019 Aug 1;154(2):432-40.https://doi.org/10.1016/j.ygyno.2019.05.022
  128. Wang ZS, Huang HR, Zhang LY, Kim S, He Y, Li DL, Farischon C, Zhang K, Zheng X, Du ZY, Goodin S. Mechanistic study of inhibitory effects of metformin and atorvastatin in combination on prostate cancer cells in vitro and in vivo. Biological and Pharmaceutical Bulletin. 2017 Aug 1;40(8):1247-54. https://doi.org/10.1248/bpb.b17-00077
  129. Lu SE, Lin Y, Graber JM, Rotter D, Zhang L, Petersen GM, Demissie K, Lu-Yao G, Tan XL. Differential and joint effects of metformin and statins on overall survival of elderly patients with pancreatic adenocarcinoma: a large population-based study. Cancer Epidemiology, Biomarkers & Prevention. 2017 Aug 1;26(8):1225- 32.https://doi.org/10.1158/1055-9965.EPI-17-0227
  130. Gehrke T, Scherzad A, Hackenberg S, Ickrath P, Schendzielorz P, Hagen R, Kleinsasser N. Additive antitumor effects of celecoxib and simvastatin on head and neck squamous cell carcinoma in vitro. International journal of oncology. 2017 Sep 1;51(3):931- 8.https://doi.org/10.3892/ijo.2017.4071
  131. Buranrat B, Suwannaloet W, Naowaboot J. Simvastatin potentiates doxorubicin activity against MCF-7 breast cancer cells. Oncology letters. 2017 Nov 1;14(5):6243-50.  https://doi.org/10.3892/ol.2017.6783
  132. Jouve JL, Lecomte T, Bouché O, Barbier E, Akouz FK, Riachi G, Khac EN, Ollivier- Hourmand I, Debette-Gratien M, Faroux R, Villing AL. Pravastatin combination with sorafenib does not improve survival in advanced hepatocellular carcinoma. Journal of hepatology. 2019 Sep 1;71(3):516-22.https://doi.org/10.1016/j.jhep.2019.04.021
  133. Chen YH, Chen YC, Lin CC, Hsieh YP, Hsu CS, Hsieh MC. Synergistic anticancer effects of gemcitabine Cancer management and research. 2020; 12:4645. https://doi.org/10.2147/CMAR.S247876