Antioxidant and cytotoxic activities of protein hydrolysates from shrimp shell wastes, germinated soybean and pigeon pea flour blends: A mixture response surface methodology approach

  • Henry Chukwuemeka Uro-Chukwu Department of Community Medicine, Ebonyi State University, Abakaliki
  • Eric Chigozie Okoli Department of Food Science & Technology, Ebonyi State, University, Abakaliki, Nigeria https://orcid.org/0000-0003-4643-3066
  • Laura Chioma Okpala Department of Food Science & Technology, Ebonyi State, University, Abakaliki, Nigeria https://orcid.org/0000-0002-0835-9056
  • Franklyn Chidiebere Uro-Chukwu Institute of Nutrition, Nutraceuticals and Public Health Research& Development, Nigeria

Abstract

Cancer has high prevalence rate and mortality with conventional chemotherapy and other management protocols being both expensive and inaccessible especially in low/medium income countries (LMIC). Sourcing alternative cheaper and easily accessible treatment from blends of antioxidants sources can reduce the burden of cancer on patients. This work therefore seeks to produce a blend from the protein hydrolysates of shrimp shell waste, germinated soybean and germinated pigeon pea which not only has high antioxidant activity but also can inhibit cervical cancer cell proliferation. In vitro antioxidant and cytotoxic activities of the mixtures of germinated pigeon pea, germinated soybean, and shrimp shell waste hydrolysates were evaluated using the mixture response surface methodology (MRSM). Fourteen blends were obtained using the simplex centroid design. Total phenolic content (TPC), 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) and % cytotoxicity of the samples were analysed. Numerical optimization was conducted with the goal of simultaneously maximizing the DPPH scavenging activity and TPC while minimizing % cytotoxicity. The optimized blend consisted of 91.06 % pigeon pea, 8.94 % shrimp shell waste and 0 % soybean. The predicted responses obtained were 74.28 % DPPH scavenging activity, 39.6 GAE mg/dL TPC and 21 % cytotoxicity. The IC50 values for the optimized blend and a standard chemotherapeutic drug were 0.260 mmol/mL and 0.013 mmol / mL respectively. This in vitro study revealed that the pigeon pea - shrimp shell waste blend, as generated by MRSM, was comparable to a standard anticarcinogenic drug with respect to potency.


Keywords: pigeon pea, soybean, hydrolysates, shrimp shell waste, cytotoxicity, antioxidants, DPPH

Keywords: pigeon pea, soybean, hydrolysates, shrimp shell waste, cytotoxicity, antioxidants, DPPH

Downloads

Download data is not yet available.

Author Biographies

Henry Chukwuemeka Uro-Chukwu, Department of Community Medicine, Ebonyi State University, Abakaliki

Institute for Nutrition, Nutraceuticals & Public Health Research & Development, Nigeria

Department of Food Science & Technology, Ebonyi State University, Abakaliki, Nigeria

Eric Chigozie Okoli, Department of Food Science & Technology, Ebonyi State, University, Abakaliki, Nigeria

Professor of Food Chemistry at the Department of Food Science & Technology, Ebonyi State University, Abakaliki

Laura Chioma Okpala, Department of Food Science & Technology, Ebonyi State, University, Abakaliki, Nigeria

Associate Professor in the Department of Food Science & Technology, Ebonyi State University, Abakaliki

Franklyn Chidiebere Uro-Chukwu, Institute of Nutrition, Nutraceuticals and Public Health Research& Development, Nigeria

Franklyn Uro-Chukwu is a Research Fellow at the Institute of Nutrition, Nutraceuticals and Public Health Research & Development, Nigeria

References

1. Doll R. The epidemiology of cancer - PubMed. Cancer. 1980;45(10):2475-2485. Accessed August 2, 2021. https://pubmed.ncbi.nlm.nih.gov/7378985/ https://doi.org/10.1002/1097-0142(19800515)45:10<2475::AID-CNCR2820451004>3.0.CO;2-6 PMid:7378985
2. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today - PubMed. J Natl cancer Inst. 1981;66(6):1191-1308. Accessed August 2, 2021. https://pubmed.ncbi.nlm.nih.gov/7017215/ https://doi.org/10.1093/jnci/66.6.1192
3. Klaunig JE, Kamendulis LM. The Role of Oxidative Stress in Carcinogenesis. Annu Rev Pharmacol Toxicol. 2004;44:239-267. https://doi.org/10.1146/annurev.pharmtox.44.101802.121851 PMid:14744246
4. Klaunig J, Kamendulis L, Hocevar B. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010;38(1):96-109. https://doi.org/10.1177/0192623309356453 PMid:20019356
5. Forouzanfar MH, Foreman KJ, Delossantos AM, et al. Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet (London, England). 2011;378(9801):1461-1484. https://doi.org/10.1016/S0140-6736(11)61351-2 PMid:21924486
6. Zulfafamy KE, Ardiansyah, Budijanto S. Antioxidative properties and cytotoxic activity against colon cancer cell WiDr of rhizopus oryzae and rhizopus oligosporus-fermented black rice bran extract. Curr Res Nutr Food Sci. 2018;6(1):23-34. https://doi.org/10.12944/CRNFSJ.6.1.03
7. Navarro M, Arnaez E, Moreira I, et al. Polyphenolic Characterization, Antioxidant, and Cytotoxic Activities of Mangifera indica Cultivars from Costa Rica. Foods (Basel, Switzerland). 2019;8(9). https://doi.org/10.3390/foods8090384 PMid:31480721 PMCid:PMC6769667
8. Pownall T, Udenigwe C, Aluko R. Amino acid composition and antioxidant properties of pea seed ( Pisum sativum L.) enzymatic protein hydrolysate fractions. J Agric Food Chem. 2010;58(8):4712-4718. https://doi.org/10.1021/jf904456r PMid:20359226
9. Girgih AT, Udenigwe CC, Aluko RE. In Vitro Antioxidant Properties of Hemp Seed (Cannabis sativa L.) Protein Hydrolysate Fractions. J Am Oil Chem Soc. 2011;88(3):381-389. https://doi.org/10.1007/s11746-010-1686-7
10. Tang J, Moore D, Kujbida G, Tarnopolsky M, Phillips S. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol. 2009;107(3):987-992. https://doi.org/10.1152/japplphysiol.00076.2009 PMid:19589961
11. Li YH, Liu J, Zhang T, Jiang B, M MW. Enzymolysis technology optimization for production of antioxidant peptides from chickpea protein. Trans Chin SocAgric Engr. 2008;24(1):268-(1):268-273.
12. Udenigwe CC, Lu YL, Han CH, Hou WC, Aluko RE. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem. 2009;116(1):277-284. https://doi.org/10.1016/j.foodchem.2009.02.046
13. Messina M, Persky V, Setchell K, Barnes S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994;21(2):113-131. https://doi.org/10.1080/01635589409514310 PMid:8058523
14. Amarteifio J, Munthali D, Karikari S, Morake T. The composition of pigeon peas (Cajanus cajan (L.) Millsp.) grown in Botswana. Plant Foods Hum Nutr. 2002;57(2):173-177. https://doi.org/10.1023/A:1015248326920 PMid:12049149
15. Bressani R, Gómez-Brenes R, Elias L. Nutritional quality of pigeon pea protein, immature and ripe, and its supplementary value for cereals] - PubMed. Arch Lat Nutr . 1986;36(1):108-116. Accessed August 2, 2021. https://pubmed.ncbi.nlm.nih.gov/3632193/
16. Siddhartha S, Archana M, Jinu J, Pradeep M. Anthelmintic Potential of Andrographis paniculata, Cajanus cajan and Silybum marianum. Pharm J. Published online 2010.
17. Bendary E, Francis RR, Ali HMG, Sarwat MI, El Hady S. Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci. 2013;58(2):173-181. https://doi.org/10.1016/j.aoas.2013.07.002
18. Aviram M. Dietary flavonoids protect lipoproteins from oxidation and attenuate the development of atherosclerosis. In: Martens S, Treutter D, Forkmann G, eds. Polyphenols Communications, Vol. 1. Groupe Polyphenols, Bordeaux, France. ; 2000:301-303.
19. Kikuzaki, H., Hisamoto, M., Hirose, K, Akiyama, K. Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem. 2002;50(7):2161-2168. https://doi.org/10.1021/jf011348w PMid:11902973
20. Jovanovic S V., Steenken S, Hara Y, Simic MG. Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J Chem Soc Perkin Trans 2. 1996;(11):2497-2504. https://doi.org/10.1039/p29960002497
21. Rao PU, Deosthale YG. Polyphenoloxidase Activity in Germinated Legume Seeds. J Food Sci. 1987;52(6):1549-1551. https://doi.org/10.1111/j.1365-2621.1987.tb05877.x
22. Sies H, Stahl W, Sundquist A. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci. 1992;669(1):7-20. https://doi.org/10.1111/j.1749-6632.1992.tb17085.x PMid:1444060
23. Prodanov M, Sierra I, Vidal-Valverde C. Effect of germination on the thiamine, riboflavin and niacin contents in legumes. Zeitschrift für Leb und -forsch A 1997 2051. 1997;205(1):48-52. https://doi.org/10.1007/s002170050122
24. Qi X, Wilson K, Tan-Wilson A. Characterization of the Major Protease Involved in the Soybean beta-Conglycinin Storage Protein Mobilization. Plant Physiol. 1992;99(2):725-733. https://doi.org/10.1104/pp.99.2.725 PMid:16668946 PMCid:PMC1080525
25. Davila M, Sangronis E, Granito M. Leguminosas germinadas o fermentadas: alimentos o ingredientes de alimentos funcionales. Arch latinoam nutr. Published online 2003:348-354. Accessed August 2, 2021. http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0004-06222003000400003&lng=es&nrm=iso&tlng=es
26. Manni L, Ghorbel-Bellaaj O, Jellouli K, Younes I, Nasri M. Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl Biochem Biotechnol. 2010;162(2):345-357. https://doi.org/10.1007/s12010-009-8846-y PMid:19960271
27. Seymour T., Li JS, Morrissey M. Characterization of a natural antioxidant from shrimp shell waste. Jour Agric Food Chem. 1996;44:682-685. https://doi.org/10.1021/jf950597f
28. Mao X, Liu P, He S, et al. Antioxidant properties of bio-active substances from shrimp head fermented by bacillus licheniformis OPL-007. Appl Biochem Biotechnol. 2013;171(5):1240-1252. https://doi.org/10.1007/s12010-013-0217-z PMid:23609904
29. Sila A, Sayari N, Balti R, et al. Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 2013;148:445-452. https://doi.org/10.1016/j.foodchem.2013.05.146 PMid:24262581
30. Kannan A, Hettiarachchy N, Marshall M, Raghavan S, Kristinsson H. Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. J Sci Food Agric. 2011;91(10):1920-1924. https://doi.org/10.1002/jsfa.4464 PMid:21594874
31. Mora-Escobedo R, Robles-Ramírez Mdel C, Ramón-Gallegos E, Reza-Alemán R. Effect of protein hydrolysates from germinated soybean on cancerous cells of the human cervix: an in vitro study. Plant Foods Hum Nutr. 2009;64(4):271-278. https://doi.org/10.1007/s11130-009-0131-2 PMid:19688264
32. Lo WMY, Farnworth ER, Li-Chan ECY. Angiotensin I-Converting Enzyme Inhibitory Activity of Soy Protein Digests in a Dynamic Model System Simulating the Upper Gastrointestinal Tract. J Food Sci. 2006;71(3):S231-S237. https://doi.org/10.1111/j.1365-2621.2006.tb15646.x
33. Ferreira ICFR, Baptista P, Vilas-Boas M, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem . 2007;100:1511-1516. https://doi.org/10.1016/j.foodchem.2005.11.043
34. Sefatie RS, Fatoumata T, Eric K, Eric K, Guo-wei L. In Vitro Antioxidant Activities of Protein Hydrolysate from Germinated Black Soybean (Glycine max L.). Adv J Food Sci Technol. 2013;5(4):453-459. https://doi.org/10.19026/ajfst.5.3290
35. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112-1116. https://doi.org/10.1038/nprot.2006.179 PMid:17406391
36. Scheffe H. The simplex-centroid design for experiments with mixtures. J R Stat Soc Ser B. 1963;B25:235-263.https://doi.org/10.1111/j.2517-6161.1963.tb00506.x
37. Okpala L, Okoli E. Development of cookies made with cocoyam, fermented sorghum and germinated pigeon pea flour blends using response surface methodology. J Food Sci Technol. 2012;51(10):2671-2677. https://doi.org/10.1007/s13197-012-0749-1 PMid:25328210 PMCid:PMC4190228
38. Ratnayani K, Panjaitan IWS, Puspawati NM. Screening Potential Antioxidant And Antibacterial Activities of Protein Hydrolysates Derived From Germinated Lablab Bean, Pigeon Pea and Kidney Bean. J Heal Sci Med. 2017;1(1):24-27. https://doi.org/10.24843/JHSM.2017.v01.i01.p07
39. Queiroz A, Gomes B, Moraes W, Borges R. A theoretical antioxidant pharmacophore for resveratrol. Eur J Med Chem. 2009;44(4):1644-1649. https://doi.org/10.1016/j.ejmech.2008.09.023 PMid:18976835
40. Huang X, Cai W, Xu B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (glycine max l.) and mung bean (vigna radiata l.) with germination time. Food Chem. 2014;143:268-276. https://doi.org/10.1016/j.foodchem.2013.07.080 PMid:24054239
41. Lai Y, Hsu W, Huang J, Wu S. Antioxidant and anti-inflammatory effects of pigeon pea (Cajanus cajan L.) extracts on hydrogen peroxide- and lipopolysaccharide-treated RAW264.7 macrophages. Food Funct. 2012;3(12):1294-1301. https://doi.org/10.1039/c2fo30120b PMid:22914868
42. Miafo A-PT, Koubala BB, Kansci G, Saha BUF, Fokou E. Optimizing the Extraction of Dietary Fibers from Sorghum Bran Using Response Surface Methodology. J Food Process. 2015;2015:1-8. https://doi.org/10.1155/2015/609703
Crossmark
Statistics
97 Views | 12 Downloads
How to Cite
1.
Uro-Chukwu HC, Okoli EC, Okpala LC, Uro-Chukwu FC. Antioxidant and cytotoxic activities of protein hydrolysates from shrimp shell wastes, germinated soybean and pigeon pea flour blends: A mixture response surface methodology approach. JDDT [Internet]. 15Jun.2024 [cited 17Jul.2024];14(6):7-4. Available from: https://jddtonline.info/index.php/jddt/article/view/6616