Chimeric Antigen Receptor T-Cells (CAR T-Cells): An Engineered Targeted Therapy for Treatment of Cancer

Abstract

We have undertaken this review to explore the various developments and insights of CAR-T cell therapy during 1989-2023 and its advantages in the treatment of cancer and immune modulation. It is a chimeric antigen receptor T-cell therapy, which is an innovative form of immunotherapy that harnesses the power of the immune system to fight cancer. At first, T cells are extracted from the patient’s blood through a process called leukapheresis. Then the modification has been done in T cells by genetically engineered to express chimeric antigen receptors (CARs) on their surface. These receptors are designed to recognize specific proteins, or antigens, that are found on the surface of cancer cells. Many conventional therapies available in the market for the treatment of cancer and Immuno modulation but most of them having Adverse Drug Reaction (ADR). But CAR-T cells possess upper hand on these conventional Formulations. Once a sufficient number of CAR-T cells have been produced, they are infused back into the patient’s bloodstream. Once reach inside the body, the CAR-T cells recognize and bind to the cancer cells that express the specific antigen targeted by the CAR. This triggers the destruction of the cancer cells by the immune system. CAR-T cell therapy has shown remarkable success in treating certain types of blood cancers, such as acute lymphoblastic leukaemia (ALL), chronic lymphocytic leukaemia (CLL), and certain types of lymphoma. The content of this review will pave the way to work on CAR-T cell therapy.


Keywords: CAR-T, Immunotherapy, cancer, antigen, leukemia, lymphoma.

Keywords: CAR-T, Immunotherapy, cancer, antigen, leukemia, lymphoma

Downloads

Download data is not yet available.

Author Biographies

Darshana Rathi, M. Pharm Scholar, Columbia Institute of Pharmacy, Village Tekari, Near Vidhansabha, Raipur-493111, C.G., India
  1. Pharm Scholar, Columbia Institute of Pharmacy, Village Tekari, Near Vidhansabha, Raipur-493111, C.G., India
Nikita Patel, M. Pharm Scholar, Columbia Institute of Pharmacy, Village Tekari, Near Vidhansabha, Raipur-493111, C.G., India

M. Pharm Scholar, Columbia Institute of Pharmacy, Village Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Trilochan Satapathy, Professor, Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha. C.G., India.

Professor, Department of Pharmacology, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha. C.G., India.

References

1. Dardamani DG. Modern Biotechnological Approaches in Diagnosis and Treatment of Lung Cancer.
2. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules asfunctional receptors with antibody-type specificity. Proceedings of the National Academy ofSciences. 1989 Dec;86(24):10024-8. https://doi.org/10.1073/pnas.86.24.10024 PMid:2513569 PMCid:PMC298636
3. Gross G, Gorochov G, Waks T, Eshhar Z. Generation of effector T-cells expressing chimeric T-cellreceptor with antibody type-specificity. InTransplantation proceedings 1989;21(1):127-130
4. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells inchronic lymphoid leukemia. New England Journal of Medicine. 2011 Aug 25;365(8):725-33. https://doi.org/10.1056/NEJMoa1103849 PMid:21830940 PMCid:PMC3387277
5. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B,Wright JF, Milone MC. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.New England Journal of Medicine. 2013 Apr 18;368(16):1509-18. https://doi.org/10.1056/NEJMoa1215134 PMid:23527958 PMCid:PMC4058440
6. Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Frontiers in pharmacology. 2014 Oct28;5:117198. https://doi.org/10.3389/fphar.2014.00235 PMid:25389405 PMCid:PMC4211380
7. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert opinion on biologicaltherapy. 2015 Aug 3;15(8):1145-54. https://doi.org/10.1517/14712598.2015.1046430 PMid:25985798
8. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment ofcancer. Frontiers in immunology. 2015 Nov 17;6:169989.. https://doi.org/10.3389/fimmu.2015.00578
9. Ren J, Zhao Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein &cell. 2017 Sep;8(9):634-43. https://doi.org/10.1007/s13238-017-0410-x PMid:28434148 PMCid:PMC5563282
10. Schultz LM, Muffly LS, Spiegel JY, Ramakrishna S, Hossain N, Baggott C, Sahaf B, Patel S, Craig J,Yoon J, Kadapakkam M. Phase I trial using CD19/CD22 bispecific CAR T cells in pediatric and adultacute lymphoblastic leukemia (ALL). Blood. 2019 Nov 13;134:744. https://doi.org/10.1182/blood-2019-129411
11. Lee S, Kim TD. Breakthroughs in cancer immunotherapy: an overview of T cell, NK cell, Mφ, and DC-based treatments. International Journal of Molecular Sciences. 2023 Dec 18;24(24):17634. https://doi.org/10.3390/ijms242417634 PMid:38139461 PMCid:PMC10744055
12.CAR T. cells: engineering patients' immune cells to treat their cancers. Originally published by National Cancer Institute. 2022.
13.Passweg JR, Baldomero H, Chabannon C, Basak GW, Corbacioglu S, Duarte R, Dolstra H, Lankester AC, Mohty M, Montoto S, Peffault de Latour R. The EBMT activity survey on hematopoietic-cell transplantation and cellular therapy 2018: CAR-T's come into focus. Bone marrow transplantation. 2020 Aug;55(8):1604-13. https://doi.org/10.1038/s41409-020-0826-4 PMid:32066864 PMCid:PMC7391287
14. Ricardo Goulart L, Souza Santos P, Paula Carneiro A, Brasil Santana B, C Vallinoto A, GoncalvesAraujo T. Unraveling antibody display: systems biology and personalized medicine. CurrentPharmaceutical Design. 2016 Dec 1;22(43):6560-76. https://doi.org/10.2174/1381612822666160923112816 PMid:27669968
15. Zhang C, Liu J, Zhong JF, Zhang X. Engineering car-t cells. Biomarker research. 2017 Dec;5:1-6. https://doi.org/10.1186/s40364-017-0102-y PMid:28652918 PMCid:PMC5482931
16. Ramos CA, Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy.Expert opinion on biological therapy. 2011 Jul 1;11(7):855-73. https://doi.org/10.1517/14712598.2011.573476 PMid:21463133 PMCid:PMC3107373
17. Cantrell DA. T-cell antigen receptor signal transduction. Immunology. 2002 Apr;105(4):369. https://doi.org/10.1046/j.1365-2567.2002.01391.x PMid:11985657 PMCid:PMC1782684
18. Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary andcostimulatory signaling in T cells from a single gene product. The Journal of Immunology. 1998 Sep15;161(6):2791-7. https://doi.org/10.4049/jimmunol.161.6.2791 PMid:9743337
19. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancerdiscovery. 2013 Apr 1;3(4):388-98. https://doi.org/10.1158/2159-8290.CD-12-0548 PMid:23550147 PMCid:PMC3667586
20. Chmielewski M, Hombach AA, Abken H. Of CAR s and TRUCK s: chimeric antigen receptor (CAR)T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological reviews.2014 Jan;257(1):83-90. https://doi.org/10.1111/imr.12125 Mid:24329791
21. Kubin M, Kamoun M, Trinchieri G. Interleukin 12 synergizes with B7/CD28 interaction in inducingefficient proliferation and cytokine production of human T cells. The Journal of experimentalmedicine. 1994 Jul 1;180(1):211 https://doi.org/10.1084/jem.180.1.211 PMid:7516408 PMCid:PMC2191554
22. Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H,Forget MA, Datar V. Tethered IL-15 augments antitumor activity and promotes a stem-cell memorysubset in tumor-specific T cells. Proceedings of the National Academy of Sciences. 2016 Nov29;113(48):E7788-97. https://doi.org/10.1073/pnas.1610544113 PMid:27849617 PMCid:PMC5137758
23. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, Grewal N,Spiess PJ, Antony PA, Palmer DC, Tagaya Y. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proceedings of the National Academy of Sciences. 2004 Feb 17;101(7):1969-74. https://doi.org/10.1073/pnas.0307298101 PMid:14762166 PMCid:PMC357036
24. Chmielewski M, Abken H. CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectorsthat exhibit augmented activity against advanced solid tumors. Cell reports. 2017 Dec12;21(11):3205-19. https://doi.org/10.1016/j.celrep.2017.11.063 PMid:29241547
25. Tokarew N, Ogonek J, Endres S, von Bergwelt-Baildon M, Kobold S. Teaching an old dog newtricks: next-generation CAR T cells. British journal of cancer. 2019 Jan 8;120(1):26-37. https://doi.org/10.1038/s41416-018-0325-1 PMid:30413825 PMCid:PMC6325111
26. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C,Olszewska M, Borquez-Ojeda O. CD19-targeted T cells rapidly induce molecular remissions in adultswith chemotherapy-refractory acute lymphoblastic leukemia. Science translational medicine. 2013Mar 20;5(177):177ra38-. https://doi.org/10.1126/scitranslmed.3005930 PMid:23515080 PMCid:PMC3742551
27.Hartmann J, Schüßler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO molecular medicine. 2017Sep;9(9):1183-97. https://doi.org/10.15252/emmm.201607485 PMid:28765140 PMCid:PMC5582407
28.Jin C, Yu D, Hillerdal V, Wallgren A, Karlsson-Parra A, Essand M.Allogeneic lymphocyte-licensed DCs expand T cells with improved antitumoractivity and resistance to oxidative stress and immunosuppressive factors.Molecular Therapy-Methods & Clinical Development. 2014 Jan 1;1. https://doi.org/10.1038/mtm.2014.1 PMid:26015949 PMCid:PMC4362340
29.Li N, Ho M. Development of Glypican-2 Targeting Single-DomainAntibody CAR T Cells for Neuroblastoma. In Single-Domain Antibodies:Methods and Protocols 2022 Feb 14 (pp. 451-468). New York, NY: SpringerUS. https://doi.org/10.1007/978-1-0716-2075-5_23 PMid:35157288
30.Makita S, Yoshimura K, Tobinai K. Clinical development of anti‐CD 19chimeric antigen receptor T‐cell therapy for B‐cell non‐Hodgkin lymphoma.Cancer science. 2017 Jun;108(6):1109-18. https://doi.org/10.1111/cas.13239 PMid:28301076 PMCid:PMC5480083
31.Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D. Safeengineering of CAR T cells for adoptive cell therapy of cancer using long‐termepisomal gene transfer. EMBO molecular medicine. 2016 Jul;8(7):702-11. https://doi.org/10.15252/emmm.201505869 PMid:27189167 PMCid:PMC4931286
32. Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing inhaematological disorders with CRISPR/Cas9. British journal of haematology.2019 Jun;185(5):821-35. https://doi.org/10.1111/bjh.15851 PMid:30864164
33. Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R,Restifo NP. Increased intensity lymphodepletion and adoptiveimmunotherapy-how far can we go?. Nature clinical practice Oncology. 2006Dec 1;3(12):668-81. https://doi.org/10.1038/ncponc0666 PMid:17139318 PMCid:PMC1773008
34.Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B,Wright JF, Milone MC. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.New England Journal of Medicine. 2013 Apr 18;368(16):1509-18. https://doi.org/10.1056/NEJMoa1215134 PMid:23527958 PMCid:PMC4058440
35.Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-OjedaO, Olszewska M, Qu J. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cellacute lymphoblastic leukemia. Science translational medicine. 2014 Feb 19;6(224):224ra25-.
36.Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M,Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cellsexpressing an anti-CD19 chimeric antigen receptor. Journal of clinical oncology. 2015 Feb2;33(6):540. https://doi.org/10.1200/JCO.2014.56.2025 PMid:25154820 PMCid:PMC4322257
37.Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, ZitvogelL, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy.Oncoimmunology. 2013 Oct 1;2(10):e25771. https://doi.org/10.4161/onci.25771 PMid:24286020 PMCid:PMC3841205
38.Kim JV, Latouche JB, Rivière I, Sadelain M. The ABCs of artificial antigen presentation. Naturebiotechnology. 2004 Apr 1;22(4):403-10. https://doi.org/10.1038/nbt955 PMid:15060556
39.Singh H, Huls H, Kebriaei P, Cooper LJ. A new approach to gene therapy using Sleeping Beauty togenetically modify clinical‐grade T cells to target CD 19. Immunological reviews. 2014Jan;257(1):181-90. Odendahl, M, Grigoleit, GU, Bönig, H, Neuenhahn, M, Albrecht, J, Anderl, Fet al. (2014). Clinicalscale isolation of 'minimally manipulated' cytomegalovirus-specific donorlymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy16: 1245-1256. https://doi.org/10.1016/j.jcyt.2014.05.023 PMid:25108651
40. Freimüller, C, Stemberger, J, Artwohl, M, Germeroth, L, Witt, V, Fischer, G et al. (2015). Selectionof adenovirus-specific and Epstein-Barr virus-specific T cells with major h
41.Freimüller C, Stemberger J, Artwohl M, Germeroth L, Witt V, Fischer G, Tischer S, Eiz-Vesper B,Knippertz I, Dörrie J, Schaft N. Selection of adenovirus-specific and Epstein-Barr virus-specific T-cells with major histocompatibility class I streptamers under Good Manufacturing Practice(GMP)-compliant conditions. Cytotherapy. 2015 Jul 1;17(7):989-1007. https://doi.org/10.1016/j.jcyt.2015.03.613 PMid:25866178
42. Bashour KT, Graef P, Stemberger C, Lothar G, Odegard V and Ramsborg CG (2015). Functionalcharacterization of a T cell stimulation reagent for the production of therapeutic chimeric antigenreceptor T cells. ASH 57th Annual Meeting & Exposition, Orlando, FL. https://doi.org/10.1182/blood.V126.23.1901.1901
43. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, King PD, Larson S, Weiss M,Rivière I, Sadelain M. Eradication of systemic B-cell tumors by genetically targeted human Tlymphocytes co-stimulated by CD80 and interleukin-15. Nature medicine. 2003 Mar 1;9(3):279-86. https://doi.org/10.1038/nm827 PMid:12579196
44. Deichmann A, Schmidt M. Biosafety considerations using gamma-retroviral vectors in gene therapy.Current gene therapy. 2013 Dec 1;13(6):469-77. https://doi.org/10.2174/15665232113136660004 PMid:24195605
45. Ghani K, Wang X, de Campos-Lima PO, Olszewska M, Kamen A, Riviere I, Caruso M. Efficienthuman hematopoietic cell transduction using RD114-and GALV-pseudotyped retroviral vectorsproduced in suspension and serum-free media. Human gene therapy. 2009 Sep 1;20(9):966-74. https://doi.org/10.1089/hum.2009.001 PMid:19453219 PMCid:PMC2861952
46. Miller AD, Garcia JV, Von Suhr N, Lynch CM, Wilson C, Eiden MV. Construction and properties ofretrovirus packaging cells based on gibbon ape leukemia virus. Journal of virology. 1991May;65(5):2220-4. https://doi.org/10.1128/jvi.65.5.2220-2224.1991 PMid:1850008 PMCid:PMC240569
47. Bonini C, Grez M, Traversari C, Ciceri F, Marktel S, Ferrari G, Dinauer M, Sadat M, Aiuti A, DeolaS, Radrizzani M. Safety of retroviral gene marking with a truncated NGF receptor. Nature medicine.2003 Apr 1;9(4):367-9. https://doi.org/10.1038/nm0403-367 PMid:12669036
48. Brenner MK, Heslop HE. Is retroviral gene marking too dangerous to use?. Cytotherapy. 2003 Jan1;5(3):190-3. https://doi.org/10.1080/14653240310001307 PMid:12850996
49. Macpherson JL, Boyd MP, Arndt AJ, Todd AV, Fanning GC, Ely JA, Elliott F, Knop A, Raponi M,Murray J, Gerlach W. Long‐term survival and concomitant gene expression of ribozyme‐transducedCD4+ T‐lymphocytes in HIV‐infected patients. The Journal of Gene Medicine: A cross‐disciplinaryjournal for research on the science of gene transfer and its clinical applications. 2005 May;7(5):552-64. https://doi.org/10.1002/jgm.705 PMid:15655805
50. Muul LM, Tuschong LM, Soenen SL, Jagadeesh GJ, Ramsey WJ, Long Z, Carter CS, GarabedianEK, Alleyne M, Brown M, Bernstein W. Persistence and expression of the adenosine deaminase genefor 12 years and immune reaction to gene transfer components: long-term results of the first clinicalgene therapy trial. Blood, The Journal of the American Society of Hematology. 2003 Apr1;101(7):2563-9. https://doi.org/10.1182/blood-2002-09-2800 PMid:12456496
51. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, Vogel AN, Kalos M, RileyJL, Deeks SG, Mitsuyasu RT. Decade-long safety and function of retroviral-modified chimericantigen receptor T cells. Science translational medicine. 2012 May 2;4(132):132ra53-. https://doi.org/10.1126/scitranslmed.3003761 PMid:22553251 PMCid:PMC4368443
52. Wang X, Olszewska M, Qu J, Wasielewska T, Bartido S, Hermetet G, Sadelain M, Riviere I. Large-scale clinical-grade retroviral vector production in a fixed-bed bioreactor. Journal of Immunotherapy.2015 Apr 1;38(3):127-35. https://doi.org/10.1097/CJI.0000000000000072 PMid:25751502 PMCid:PMC4353472
53. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. In vivo genedelivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996 Apr12;272(5259):263-7. https://doi.org/10.1126/science.272.5259.263 PMid:8602510
54. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M. Viral vectors: a look back andahead on gene transfer technology. New Microbiologica. 2013;36(1):1-22.
55. Ni Y, Sun S, Oparaocha I, Humeau L, Davis B, Cohen R, Binder G, Chang YN, Slepushkin V,Dropulic B. Generation of a packaging cell line for prolonged large‐scale production of high‐titerHIV‐1‐based lentiviral vector. The Journal of Gene Medicine: A cross‐disciplinary journal forresearch on the science of gene transfer and its clinical applications. 2005 Jun;7(6):818-34. https://doi.org/10.1002/jgm.726 PMid:15693055
56. Throm RE, Ouma AA, Zhou S, Chandrasekaran A, Lockey T, Greene M, De Ravin SS, Moayeri M,Malech HL, Sorrentino BP, Gray JT. Efficient construction of producer cell lines for a SIN lentiviralvector for SCID-X1 gene therapy by concatemeric array transfection. Blood, The Journal of theAmerican Society of Hematology. 2009 May 21;113(21):5104-10. https://doi.org/10.1182/blood-2008-11-191049 PMid:19286997 PMCid:PMC2686181
57. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation.Molecular therapy. 2006 Jan 1;13(1):151-9. https://doi.org/10.1016/j.ymthe.2005.07.688 PMid:16140584 PMCid:PMC1473967
58. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS, Park MY, Kim TG. Adoptive immunotherapy usinghuman peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimericimmune receptor in ovarian cancer xenograft model. Cancer gene therapy. 2009 Jun;16(6):489-97. https://doi.org/10.1038/cgt.2008.98 PMid:19096447
59. Rowley J, Monie A, Hung CF, Wu TC. Expression of IL‐15RA or an IL‐15/IL‐15RA fusion on CD8+T cells modifies adoptively transferred T‐cell function in cis. European journal of immunology. 2009Feb;39(2):491-506. https://doi.org/10.1002/eji.200838594
PMid:19180469 PMCid:PMC3004157
60. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL,Albelda SM, Kalos M. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cellsinduce antitumor activity in solid malignancies. Cancer immunology research. 2014 Feb 1;2(2):112-20. https://doi.org/10.1158/2326-6066.CIR-13-0170 PMid:24579088 PMCid:PMC3932715
61. Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, Potrel P, Bas C,Lemaire L, Galetto R, Lebuhotel C. Multiplex genome-edited T-cell manufacturing platform for "off-the-shelf" adoptive T-cell immunotherapies. Cancer research. 2015 Sep 15;75(18):3853-64. https://doi.org/10.1158/0008-5472.CAN-14-3321 PMid:26183927
62. https://www.cancer.gov/about-cancer/treatment/research/car-t-cells
63. Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, Nagase F, Kurosawa Y.Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochemical and biophysical research communications. 1987 Dec 31;149(3):960-8. https://doi.org/10.1016/0006-291X(87)90502-X PMid:3122749
64. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules asfunctional receptors with antibody-type specificity. Proceedings of the National Academy ofSciences. 1989 Dec;86(24):10024-8. https://doi.org/10.1073/pnas.86.24.10024 PMid:2513569 PMCid:PMC298636
65. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxiclymphocytes through chimeric single chains consisting of antibody-binding domains and the gammaor zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy ofSciences. 1993 Jan 15;90(2):720-4. https://doi.org/10.1073/pnas.90.2.720 PMid:8421711 PMCid:PMC45737
66. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, RiordanGS, Whitlow M. Single-chain antigen-binding proteins. Science. 1988 Oct 21;242(4877):423-6. https://doi.org/10.1126/science.3140379 PMid:3140379
67. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, Ridge RJ,Bruccoleri RE, Haber E, Crea R. Protein engineering of antibody binding sites: recovery of specificactivity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proceedings of theNational Academy of Sciences. 1988 Aug;85(16):5879-83. https://doi.org/10.1073/pnas.85.16.5879 PMid:3045807 PMCid:PMC281868
68. Eshhar Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunology,Immunotherapy. 1997 Nov;45:131-6. https://doi.org/10.1007/s002620050415 PMid:9435856 PMCid:PMC11037636
69. Moritz D, Wels W, Mattern J, Groner B. Cytotoxic T lymphocytes with a grafted recognitionspecificity for ERBB2-expressing tumor cells. Proceedings of the National Academy of Sciences.1994 May 10;91(10):4318-22. https://doi.org/10.1073/pnas.91.10.4318 PMid:7910405 PMCid:PMC43776
70. Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R, Rosenberg SA, Eshhar Z. Lysisof ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of anantibody variable region and the Fc receptor gamma chain. The Journal of experimental medicine.1993 Jul 1;178(1):361-6. https://doi.org/10.1084/jem.178.1.361 PMid:8315392 PMCid:PMC2191075
71. Hwu P, Yang JC, Cowherd R, Treisman J, Shafer GE, Eshhar Z, Rosenberg SA. In vivo antitumoractivity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer research. 1995 Aug1;55(15):3369-73.
72. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE,Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC. A phase I study on adoptiveimmunotherapy using gene-modified T cells for ovarian cancer. Clinical cancer research. 2006 Oct15;12(20):6106-15. https://doi.org/10.1158/1078-0432.CCR-06-1183 PMid:17062687 PMCid:PMC2154351
73. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G,Oosterwijk E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytesgenetically retargeted against carbonic anhydrase IX: first clinical experience. Journal of clinicaloncology: official journal of the American Society of Clinical Oncology. 2006 May 1;24(13):e20-2. https://doi.org/10.1200/JCO.2006.05.9964 PMid:16648493
74. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA, Qian X, James SE, Raubitschek A,Forman SJ, Gopal AK. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantlecell lymphoma using genetically modified autologous CD20-specific T cells. Blood, The Journal ofthe American Society of Hematology. 2008 Sep 15;112(6):2261-71. https://doi.org/10.1182/blood-2007-12-128843 PMid:18509084 PMCid:PMC2532803
75. Park JR, DiGiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, Meechoovet HB, Bautista C,Chang WC, Ostberg JR, Jensen MC. Adoptive transfer of chimeric antigen receptor re-directedcytolytic T lymphocyte clones in patients with neuroblastoma. Molecular therapy. 2007 Apr1;15(4):825-33. https://doi.org/10.1038/sj.mt.6300104 PMid:17299405
76. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, Huls MH, Liu E, Gee AP, Mei Z,Yvon E. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence andantitumor activity in individuals with neuroblastoma. Nature medicine. 2008 Nov;14(11):1264-70. https://doi.org/10.1038/nm.1882 PMid:18978797 PMCid:PMC2749734
77. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annual reviewof immunology. 1996 Apr;14(1):233-58. https://doi.org/10.1146/annurev.immunol.14.1.233 PMid:8717514
78. Krause A, Guo HF, Latouche JB, Tan C, Cheung NK, Sadelain M. Antigen-dependent CD28signaling selectively enhances survival and proliferation in genetically modified activated humanprimary T lymphocytes. The Journal of experimental medicine. 1998 Aug 17;188(4):619-26. https://doi.org/10.1084/jem.188.4.619 PMid:9705944 PMCid:PMC2213361
79. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity andproliferation directed by a single chimeric TCRζ/CD28 receptor. Nature biotechnology. 2002 Jan1;20(1):70-5. https://doi.org/10.1038/nbt0102-70 PMid:11753365
80. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP,Mei Z, Liu H. CD28 costimulation improves expansion and persistence of chimeric antigenreceptor-modified T cells in lymphoma patients. The Journal of clinical investigation. 2011 May2;121(5):1822-6. https://doi.org/10.1172/JCI46110 PMid:21540550 PMCid:PMC3083795
81. Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimericreceptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series withsignals from the TCRζ chain. The Journal of Immunology. 2004 Jan 1;172(1):104-13. https://doi.org/10.4049/jimmunol.172.1.104 PMid:14688315
82. Imai CM, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL, Campana D. Chimericreceptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblasticleukemia. Leukemia. 2004 Apr;18(4):676-84. https://doi.org/10.1038/sj.leu.2403302 PMid:14961035
83. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, Samanta M, Lakhal M, GlossB, Danet-Desnoyers G, Campana D. Chimeric receptors containing CD137 signal transductiondomains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Moleculartherapy. 2009 Aug 1;17(8):1453-64. https://doi.org/10.1038/mt.2009.83 PMid:19384291 PMCid:PMC2805264
84. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, Maric I,Raffeld M, Nathan DA, Lanier BJ, Morgan RA. Eradication of B-lineage cells and regression oflymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19.Blood, The Journal of the American Society of Hematology. 2010 Nov 18;116(20):4099-102. https://doi.org/10.1182/blood-2010-04-281931 PMid:20668228 PMCid:PMC2993617
85. Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S,Borquez-Ojeda O, Olszewska M. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, TheJournal of the American Society of Hematology. 2011 Nov 3;118(18):4817-28. https://doi.org/10.1182/blood-2011-04-348540 PMid:21849486 PMCid:PMC3208293
86. Sahu M, Satapathy T, Bahadur S, Saha S, Purabiya P, Kaushik S, Netam AK, Prasad J. Preparation methods for nanoparticle: A smart carrier system for treatment of cancer. March. 2018 Mar 19;7(19):216-6.
87. Satapathy T, kumar Panda P. Gastric Cancer: An Overview. Journal of Advanced Pharmaceutical Research. 2012;3(3):49-57.
88.Khan MA, Satapathy T, Sen K, Sahu S, Pradhan B, Gupta A, Satapathy A, Satapathy A. Pharmacological Targeting of Ferroptosis in Cancer Treatment. JDDT. 2024;14(2):205-21. https://doi.org/10.22270/jddt.v14i2.6371
89. https://www.cancer.gov/about-cancer/treatment/research/car-t-cells
90.Satapathy T, Kaushik S, Netam AK, Prasad J, Rao SP, Sahu MK, Baghel P. NANO DELIVERY: A SMART CARRIER FOR TREATMENT OF OVARIAN CANCER.
91. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphomadiagnosis and therapy. Experimental hematology & oncology. 2012 Dec;1:1-7. https://doi.org/10.1186/2162-3619-1-36 PMid:23210908 PMCid:PMC3520838
92. Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25 yearsin the making. Blood reviews. 2016 May 1;30(3):157-67. https://doi.org/10.1016/j.blre.2015.10.003 PMid:26574053
93. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimericantigen receptor for the selective treatment of T-cell malignancies. Blood, TheJournal of the American Society of Hematology. 2015 Aug 20;126(8):983-92. https://doi.org/10.1182/blood-2015-02-629527 PMid:26056165 PMCid:PMC4543231
94. Pinz K, Liu H, Golightly M, Jares A, Lan F, Zieve GW, Hagag N, Schuster M,Firor AE, Jiang X, Ma Y. Preclinical targeting of human T-cell malignanciesusing CD4-specific chimeric antigen receptor (CAR)-engineered T cells.Leukemia. 2016 Mar;30(3):701-7. https://doi.org/10.1038/leu.2015.311 PMid:26526988
95. Nanda BL, Antioxidant and anticancer activity of edible flowers, Journal of Drug Delivery and Therapeutics. 2019;9(3-s)290-295.
96. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A,Marcucci KT, Shen A, Gonzalez V, Ambrose D. Chimeric antigen receptor Tcells persist and induce sustained remissions in relapsed refractory chroniclymphocytic leukemia. Science translational medicine. 2015 Sep2;7(303):303ra139-. https://doi.org/10.1126/scitranslmed.aac5415
97. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO,Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M.Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cellmalignancies can be effectively treated with autologous T cells expressing ananti-CD19 chimeric antigen receptor. Journal of clinical oncology. 2015 Feb2;33(6):540. https://doi.org/10.1200/JCO.2014.56.2025 PMid:25154820 PMCid:PMC4322257
98. Norelli M, Casucci M, Bonini C, Bondanza A. Clinical pharmacology of CAR-T cells: Linking cellular pharmacodynamics to pharmacokinetics and antitumoreffects. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2016 Jan1;1865(1):90-100. https://doi.org/10.1016/j.bbcan.2015.12.001 PMid:26748354
99. Frey NV, Gill S, Hexner EO, Schuster S, Nasta S, Loren A, Svoboda J,Stadtmauer E, Landsburg DJ, Mato A, Levine BL. Long-term outcomes from arandomized dose optimization study of chimeric antigen receptor modified Tcells in relapsed chronic lymphocytic leukemia. Journal of Clinical Oncology.2020 Sep 9;38(25):2862. https://doi.org/10.1200/JCO.19.03237 PMid:32298202 PMCid:PMC8265376
100. Mancikova V, Smida M. Current state of CAR T-cell therapy in chroniclymphocytic leukemia. International Journal of Molecular Sciences. 2021 May24;22(11):5536. https://doi.org/10.3390/ijms22115536 PMid:34073911 PMCid:PMC8197365
101. Parajapati SK, Maurya SD, Das MK, Tilak VK, Verma KK, Dhakar RC, Potential application of dendrimers in drug delivery: A concise review and update, Journal of Drug Delivery and Therapeutics, 2016;6(2):71-88 https://doi.org/10.22270/jddt.v6i2.1195
102. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA,Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM. Axicabtageneciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. NewEngland Journal of Medicine. 2017 Dec 28;377(26):2531-44.
103. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, Brogdon JL,Pruteanu-Malinici I, Bhoj V, Landsburg D, Wasik M. Chimeric antigenreceptor T cells in refractory B-cell lymphomas. New England Journal ofMedicine. 2017 Dec 28;377(26):2545-54. https://doi.org/10.1056/NEJMoa1708566 PMid:29226764 PMCid:PMC5788566
104. Abramson JS, Chen YB. More on anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma. The New England Journal of Medicine. 2017 Nov1;377(21):2102-. https://doi.org/10.1056/NEJMc1712460
105. Fry TJ, Stetler-Stevenson M, Shah NN, Yuan CM, Yates B, Delbrook C, ZhangL, Lee III DW, Stroncek D, Mackall CL. Clinical activity and persistence ofanti-CD22 chimeric antigen receptor in children and young adults withrelapsed/refractory acute lymphoblastic leukemia (ALL). Blood. 2015 Dec3;126(23):1324. https://doi.org/10.1182/blood.V126.23.1324.1324
106. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, Lindgren CG,Lin Y, Pagel JM, Budde LE, Raubitschek A. CD20-specific adoptiveimmunotherapy for lymphoma using a chimeric antigen receptor with bothCD28 and 4-1BB domains: pilot clinical trial results. Blood, The Journal of theAmerican Society of Hematology. 2012 Apr 26;119(17):3940-50. https://doi.org/10.1182/blood-2011-10-387969 PMid:22308288 PMCid:PMC3350361
107. Bird SA, Boyd K. Multiple myeloma: an overview of management.Palliative care and social practice. 2019 Sep;13:1178224219868235. https://doi.org/10.1177/1178224219868235 PMid:32215370 PMCid:PMC7065505
108. Heffner LT, Jagannath S, Zimmerman TM, Lee KP, Rosenblatt J, Lonial S,Lutz RJ, Czeloth N, Osterroth F, Ruehle M, Beelitz MA. BT062, an antibody-drug conjugate directed against CD138, given weekly for 3 weeks in each 4week cycle: safety and further evidence of clinical activity. Blood. 2012 Nov16;120(21):4042. https://doi.org/10.1182/blood.V120.21.4042.4042
109. Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ, Brudno JN, Stetler-Stevenson M, Feldman SA, Hansen BG, Fellowes VS. T cells expressing ananti-B-cell maturation antigen chimeric antigen receptor cause remissions ofmultiple myeloma. Blood, The Journal of the American Society of Hematology.2016 Sep 29;128(13):1688-700. https://doi.org/10.1182/blood-2016-04-711903 PMid:27412889 PMCid:PMC5043125
110. Garfall AL, Maus MV, Hwang WT, Lacey SF, Mahnke YD, Melenhorst JJ,Zheng Z, Vogl DT, Cohen AD, Weiss BM, Dengel K. Chimeric antigenreceptor T cells against CD19 for multiple myeloma. New England Journal ofMedicine. 2015 Sep 10;373(11):1040-7. https://doi.org/10.1056/NEJMoa1504542 PMid:26352815 PMCid:PMC4646711
111. Okoye AA, Picker LJ. CD 4+ T‐cell depletion in HIV infection: mechanismsof immunological failure. Immunological reviews. 2013 Jul;254(1):54-64. https://doi.org/10.1111/imr.12066 PMid:23772614 PMCid:PMC3729334
112. Charrot S, Hallam S. CAR-T cells: future perspectives. Hemasphere. 2019Apr 1;3(2):e188. https://doi.org/10.1097/HS9.0000000000000188 PMid:31723827 PMCid:PMC6746028
113. Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, Zhang YL, WangFX, Zhang PY, Lei B, Gu LF. A phase 1, open-label study of LCAR-B38M, achimeric antigen receptor T cell therapy directed against B cell maturationantigen, in patients with relapsed or refractory multiple myeloma. Journal ofhematology & oncology. 2018 Dec;11:1-8. https://doi.org/10.1186/s13045-018-0681-6 PMid:30572922 PMCid:PMC6302465
114. Churchill MJ, Deeks SG, Margolis DM, Siliciano RF, Swanstrom R. HIVreservoirs: what, where and how to target them. Nature Reviews Microbiology.2016 Jan;14(1):55-60. https://doi.org/10.1038/nrmicro.2015.5 PMid:26616417
115. Kim Y, Anderson JL, Lewin SR. Getting the "kill" into "shock and kill":strategies to eliminate latent HIV. Cell host & microbe. 2018 Jan 10;23(1):14-26. https://doi.org/10.1016/j.chom.2017.12.004 PMid:29324227 PMCid:PMC5990418
116. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. Tcells with chimeric antigen receptors have potent antitumor effects and canestablish memory in patients with advanced leukemia. Science translationalmedicine. 2011 Aug 10;3(95):95ra73-. https://doi.org/10.1126/scitranslmed.3002842 PMCid:PMC3393096
117. Spivak AM, Andrade A, Eisele E, Hoh R, Bacchetti P, Bumpus NN, EmadF, Buckheit III R, McCance-Katz EF, Lai J, Kennedy M. A pilot studyassessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clinical infectious diseases. 2014Mar 15;58(6):883-90. https://doi.org/10.1093/cid/cit813 PMid:24336828 PMCid:PMC3935499
118. Zhen A, Peterson CW, Carrillo MA, Reddy SS, Youn CS, Lam BB, ChangNY, Martin HA, Rick JW, Kim J, Neel NC. Long-term persistence and functionof hematopoietic stem cell-derived chimeric antigen receptor T cells in anonhuman primate model of HIV/AIDS. PLoS pathogens. 2017 Dec28;13(12):e1006753. https://doi.org/10.1371/journal.ppat.1006753 PMid:29284044 PMCid:PMC5746250
Crossmark
Statistics
138 Views | 21 Downloads
How to Cite
1.
Rathi D, Patel N, Satapathy T. Chimeric Antigen Receptor T-Cells (CAR T-Cells): An Engineered Targeted Therapy for Treatment of Cancer. JDDT [Internet]. 15Jun.2024 [cited 17Jul.2024];14(6):274-86. Available from: https://jddtonline.info/index.php/jddt/article/view/6601