Review on Study of Nanoparticles in Brain Targeting for Treatment Of Alzheimer’s

  • G T Mamatha Dept of Pharmaceutics, Bharathi College of Pharmacy, Bharathinagara-571422, Mandya, Karnataka, India.
  • Satish Pavuluri Associate Professor, Institute of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala , University, Churela, Jhunjhunu, Rajasthan.

Abstract

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder, in which there is a progressive deterioration of intellectual and social functions, memory loss, personality changes and inability for self-care, and has become the fourth leading cause of death in developed countries.  Pathogenesis of AD, there is a progressive deposition of β-amyloid (Aβ)- peptide in the hippocampal and cerebral cortical regions. This deposition is associated with the presence of neurofibrillary tangles (NFTs) and senile plaques. The senile plaques deposited between the neurons consist mainly protein β amyloid. Neurofibrillary tangles deposited inside the neurons fabricated from Tau protein. Diagnosing Alzheimer's requires careful medical evaluation thorough medical history, mental status testing, physical and neurological examination tests (such as blood tests and brain imaging),  two classes of medications approved to treat AD. Cholinesterase inhibitors: Donepezil, Rivastigmine, Galantamine, NMDA receptor antagonists: Memantine. The major goal in designing nanoparticles as a delivery system are to control particle size, surface property and release of pharmacologically active agents in order to achieve the site-specific action of the drug at the therapeutic optimum rate and dose regimen of the agent to the CNS, but also the ability of the agent to access the relevant target site within the CNS. Many strategies have been developed   to deliver the drug into brain by crossing the BBB: chemical delivery systems, magnetic drug targeting or drug carrier systems such as antibodies, liposomes or nanoparticles. Among those, nanoparticles have got a great concentration as the potential targeted drug delivery systems in the brain recently.


Keywords: Alzheimer’s disease, β-amyloid, cholinesterase inhibitors, Curcumin nanoparticles.

Keywords: Alzheimer’s disease, β-amyloid, cholinesterase inhibitors, Curcumin nanoparticles

Downloads

Download data is not yet available.

Author Biographies

G T Mamatha, Dept of Pharmaceutics, Bharathi College of Pharmacy, Bharathinagara-571422, Mandya, Karnataka, India.

Dept of Pharmaceutics, Bharathi College of Pharmacy, Bharathinagara-571422, Mandya, Karnataka, India.

Satish Pavuluri, Associate Professor, Institute of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala , University, Churela, Jhunjhunu, Rajasthan.

Associate Professor, Institute of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala , University, Churela, Jhunjhunu, Rajasthan.

References

1. Chang DH, Tang XC. Comparative studies of Huprazine A, E2020 and Tacrine on behaviour and cholinesterase activities. Pharmacol Biopchem Behav. 1998; 60:377- 86. https://doi.org/10.1016/S0091-3057(97)00601-1 PMid:9632220
2. Kosasa T, Kuriya Y, Matsui K, Yarnanishi Y. Inhibitory effect of donepezil hydrochloride (E2020) on cholinesterase activity in brain and peripheral tissues of young and aged rats. Eur J Pharmacol. 1999; 386:7-13. https://doi.org/10.1016/S0014-2999(99)00741-4 PMid:10611458
3. Mir Najib Ullah SN, Afzal O, Altamimi A S Ather H, Sultana S, Almalki WH, Bharti P, Sahoo A, Dwivedi K, Khan G, Sultana S. Nanomedicines in the management of Alzheimer's disease: State -of-the-art. Biomedicines. 2023 Jun 18: 11(6): 1752. https://doi.org/10.3390/biomedicines11061752 PMid:37371847 PMCid:PMC10296528
4. Puranik N, Yadav D, Song M. Advancement in the Applications of Nanomedicines in Alzheimer's Disease: A therapeutic Perspective. Int. j. Mol. Sci. 2023 Sep 13: 24(18): 14044. https://doi.org/10.3390/ijms241814044 PMid:37762346 PMCid:PMC10530821
5. Zhang HY. One-compound-multiple targets strategy to combat Alzheimer's disease. FEBS Lett. 2005; 579: 5260-4. https://doi.org/10.1016/j.febslet.2005.09.006 PMid:16194540
6. Agamanolis DP. Neuropathology. NEOMED; 2011. [Updated June 2014; cited 2011] Available from: http://neuropathology-web.org/chapter9/chapter9bAD.html [Last accessed on 5 Feb 2016]
7. United States postal service; June 2008. Available from: http://www.nia.nih.gov/NR/rdonlyres/A01D12CE-17E3-4D3D-BCEF-9ABC4FF91900/0/TANGLES_HIGH.JPG [Last accessed on 30 Jan 2016]
8. Chang DH, Tang XC. Comparative studies of Huprazine A, E2020 and Tacrine on behavior and cholinesterase activities. Pharmacol Biopchem Behav. 1998; 60; 377-86. https://doi.org/10.1016/S0091-3057(97)00601-1 PMid:9632220
9. Khan NH, Mir M, Ngowi EE, Zafar U, Khakwani MM, Khattak S, Zhai YK, Jiang ES, Zheng M, Duan SF, Wei JS. Nanomedicine: A Promising way to manage Alzheimer's disease. Front. Bioeng. Biotechnol. 2021 Apr 9; 9:630055. https://doi.org/10.3389/fbioe.2021.630055 PMid:33996777 PMCid:PMC8120897
10. NIH meeting advances Alzheimer's research agenda. Global health matters newsletter 2015; 14(2):1-12. Available from: http://www.fic.nih.gov/News/GlobalHealthMatters/march-april-2015/Documents/fogarty-nih-global-health-matters-newsletter-march-april-2015.pdf [Last accessed on 10 Feb 2016]
11. Alzheimer's statistics, Alzheimer's.net, 2016. [available from 2000;update 2016]Available from: http://www.alzheimers.net/resources/alzheimers-statistics [Last accessed on 31 Jan 2016]
12. Zhang HY. One-compound-multiple targets strategy to combat Alzheimer's disease. FEBS Lett. 2005; 579: 5260-4. https://doi.org/10.1016/j.febslet.2005.09.006 PMid:16194540
13. Agamanolis DP. Neuropathology. NEOMED; 2011. [Updated June 2014; cited 2011] Availablefrom:http://neuropathology-web.org/chapter9/chapter9bAD.html [Last accessed on 5 Feb 2016]
14. United States postal service; June2008. Available from: http://www.nia.nih.gov/NR/rdonlyres/A01D12CE-17E3-4D3D-BCEF-9ABC4FF91900/0/TANGLES_HIGH.JPG [Last accessed on 30 Jan 2016]
15. Brauner DJ, Muir JC, Sachs GA. Treating non dementia illnesses in patient with dementia. J Am Med Assoc. 2000; 283(24): 3230-5. https://doi.org/10.1001/jama.283.24.3230 PMid:10866871
16. Slattum PW, Johnson MA. Caregiver burden in Alzheimer's disease. Consult Pharm. 2004; 19(4): 352-62. https://doi.org/10.4140/TCP.n.2004.352 PMid:16553479
17. Mohamed S, Rosenheck R, Lyketsos K. Caregiver burden in Alzhimer disease: cross-sectional and longitudinal patient correlates. Am J Geriatr Psychiatry. 2010; 18(10): 917-27. https://doi.org/10.1097/JGP.0b013e3181d5745d PMid:20808108 PMCid:PMC3972419
18. Parihar MS, Hemnani T. Alzheimer's diseasepathogesis and therapeutic interventions. J Clin Neurosci. 2004; 11(5): 456-67. https://doi.org/10.1016/j.jocn.2003.12.007 PMid:15177383
19. Clark CM, Karlawish JM. Alzheimer's disease: current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med. 2003; 138(5): 400-10. https://doi.org/10.7326/0003-4819-138-5-200303040-00010 PMid:12614093
20. Scott LJ, Goa KL. Galantamine: a review of its use in Alzheimer's disease. Drugs. 2000; 60(5): 1095-122.https://doi.org/10.2165/00003495-200060050-00008 PMid:11129124
21. Information on Aricept®, Pfizer. Available from: www.aricept.com/ [Last accessed on 15 Feb 2016]
22. Black SE, Doody R, Li H. Donepezil preserves cognition and global function in patient with severe Alzheimer disease. Neurol. 2007;69(5): 459-69. https://doi.org/10.1212/01.wnl.0000266627.96040.5a PMid:17664405
23. Gautheir S. Cholinergic adverse effects of cholinesterase inhibitors in Alzheimer's disease: epidemiology and management. Drug Aging. 2001;18(11): 853-62. https://doi.org/10.2165/00002512-200118110-00006 PMid:11772125
24. Information on Exelon®. Available from: http://www.pharma.us.novartis.com/product/pi/pdf/Exelon.pdf [Last accessed on 15 Feb 2016]
25. Alzheimer's disease medications. NIH publication; Nov 2008. [Updated Jan 2014] Available from: www.nia.nih.gov/.../alzheimers_disease_fact_sheet_0.pdf [Last accessed on 15 Feb 2016]
26. Information on Razadyne® ER, Ortho-McNeil Neurologics Inc. Available from: www.ortho-mcneilneurologics.com/products_razadyneer.html [Last accessed on 31 Jan 2016]
27. Seltzer B. Galantamine-er for the treatment of mild-to-moderate Alzheimer's disease. Clin Interv Aging. 2010; 5: 1-6. https://doi.org/10.2147/CIA.S4819
28. Winblad B, Poritis N. Memantine in severe dementia: results of the M- best study (benefit and efficiency in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry. 1999; 14: 135-46. https://doi.org/10.1002/(SICI)1099-1166(199902)14:2<135::AID-GPS906>3.0.CO;2-0
29. Reiseberg B, Doody R, Stoffler A. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med 2003; 348: 1333-41. https://doi.org/10.1056/NEJMoa013128 PMid:12672860
30. Tariot PN, Farlow MR, Grossberg GT. Memantine treatment in patiens with moderate to severe Alzheimer disease already Donepezil. A randomized controlled trial. J Am Med Assoc. 2004; 291: 317-24. https://doi.org/10.1001/jama.291.3.317 PMid:14734594
31. Thassu D, Pathak Y, Deleers M. Nanoparticulate drug delivery systems: An overview. Informa Healthcare USA, Inc; 2007. p. 1-33. https://doi.org/10.1201/9781420008449-1
32. Suphiya P, Ranjita M, Sanjeeb KS. Nanoparticles: a boom to drug delivery, therapeutics, diagnostics and imaging. Nanomed. 2011; 63(2): 1-20.
33. Sonal PA, Bhushan RR, Sunil BR, Sunil PP. Nano Suspension: At a Glance. Int J Pharm Sci. 2011; 3(1): 947-60.
34. Murray CB, Kagan CR. Synthesis and characterisation of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000; 30: 545-610. https://doi.org/10.1146/annurev.matsci.30.1.545
35. Nagaraju P, Krishnachaithanya K, Srinivas VD, Padma SV. Nanosuspensions: A promising drug delivery systems. Int J Pharm Sci Nanotech. 2010; 2(4): 679-84. https://doi.org/10.37285/ijpsn.2009.2.4.1
36. Dheivanai S L, Jeevaprakash G, Nallathambi R, Selva Kumar S, Senthilvelan S. Formulation, development and evaluation of Abacavir loaded polymethacrylic acid nanoparticles. Int J Pharm. 2012; 3(3): 265-7.
37. Kopecek J. Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Biopharm. 2003; 20: 1-16. https://doi.org/10.1016/S0928-0987(03)00164-7 PMid:13678788
38. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001; 73: 137-72. https://doi.org/10.1016/S0168-3659(01)00299-1 PMid:11516494
39. Muller-Goymann CC. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur J Pharm Biopharm. 2004; 58: 343-56. https://doi.org/10.1016/j.ejpb.2004.03.028 PMid:15296960
40. Sunitha R, Harika D, Kumar AP, Prabha KS, Prasanna PM. A review: nanoparticles as specified carriers in targeted brain drug delivery system. Am J Pharm Res. 2011; 1(2): 121-34.
41. Bala SH, Kumar MN. Plga nanoparticles in drug delivery: The state of the art. Crit Rev Ther Drug Carrier Syst. 2004; 21(5): 387-422. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20 PMid:15719481
42. Kumar MS, Santhi K. Targeted delivery of tacrine into brain with polysorbate80- coated poly (n-butylcynoacrylate) nanoparticles. Eur J Pharm Biopharm. 2008 ;(70): 75-84. https://doi.org/10.1016/j.ejpb.2008.03.009 PMid:18472255
43. Vidyavathi M, Sandya P, Sarika B. Nanotechnology in Development of Drug Delivery System. Int J Pharm Sci Res. 2012; 3(1): 84-96.
44. Kreuter J. Nanoparticles as drug delivery system, Encyclopedia of nanoscience and nanotechnology, H. S. Nalwa (Editor), American Scientific Publishers, Stevenson Ranch, Calif., 2004: 161-8
45. Nahar M, Dutta T, Murugesan S, Asthana A, Mishra D, Rajkumar V et al.Functional polymeric nanoparticles: An efficient and promising tool for active delivery of bioactive. Crit Rev Ther Drug Carrier Syst. 2006;23(4): 259-318. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v23.i4.10 PMid:17341200
46. Sai Hunuman sag. "NANOPARTICLES" pharmmainfo.net. [Accessed on 31 Jan 2016].
47. Vyas SP, Khar RK. Targeted and controlled drug delivery- novel carrier system. 2nd ed. New Delhi: CBS Publishers; 2002. p. 331-81.
48. Ekambaram P, Sathali AH, Priyanka K. Solid Lipid Nanoparticles: a Review. Sci Rev Chemic Commun. 2012;2(l): 80-102.
49. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saaettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm. 2002;238: 241-5. https://doi.org/10.1016/S0378-5173(02)00080-7 PMid:11996827
50. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for brain targeted brain drug delivery. Adv Drug Del Rev. 2007;59(6): 454-77. https://doi.org/10.1016/j.addr.2007.04.011 PMid:17570559
51. Rupenagunta A, Somasundaram I, Ravichandiram V, Kausalya J. Solid lipid nanoparticles-a versatile carrier system. J Pharma Res. 2011;4(7): 2069-75.
52. Fahr A, Liu X. Drug delivery strategies for poorly water soluble drugs. Expert Opin Drug Del. 2007;4(4): 403-16. https://doi.org/10.1517/17425247.4.4.403 PMid:17683253
53. Yadav P, Soni G, Mahor R, Alok S, Singh P, Verma A. Solid lipid nanoparticles: an effective and promising drug delivery system- a review. Int J Pharm Sci Res. 2014;5(3): 1152-62.
54. Mukherjee S, Ray S, Thakur R. Solid lipid nanoparticles: A modern formulation approach in drug delivery. Indian J Pharm Sci. 2009;71(4): 349-58.
https://doi.org/10.4103/0250-474X.57282 PMid:20502539 PMCid:PMC2865805
55. Schwarz C, Mehnert W, Lucks J, Muller R. Solid lipid nanoparticles (SLN) for controlled drug delivery I. Production characterization and sterilization. J Control Res. 1994;30(1): 83-96. https://doi.org/10.1016/0168-3659(94)90047-7
Crossmark
Statistics
83 Views | 103 Downloads
How to Cite
1.
Mamatha GT, Pavuluri S. Review on Study of Nanoparticles in Brain Targeting for Treatment Of Alzheimer’s. JDDT [Internet]. 15Jun.2024 [cited 17Jul.2024];14(6):251-6. Available from: https://jddtonline.info/index.php/jddt/article/view/6600