Isolation, characterization, and screening of secondary metabolites from endophytic fungi isolated from Nigerian Piliostigma thonningii for antimicrobial activities

Piliostigma thonningii fungi for biological activities

  • Cyril Ogbiko Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State Nigeria https://orcid.org/0000-0002-4950-5005
  • Eooka C Jonathan Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Edo State Nigeria. https://orcid.org/0000-0002-0751-8617
  • Ikem Chinedu Joseph Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State Nigeria https://orcid.org/0000-0003-4750-4217
  • Okoye Festus Basden Chiedu Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria https://orcid.org/0000-0001-8414-2329

Abstract

Piliostigma thonningii leaves are used in Nigeria folk medicine for the treatment and management of diverse ailments. This study was carried out to investigate the antimicrobial activity of the secondary metabolites produced from endophytic fungi isolated from the leaves of Piliostigma thonningii. The isolation of endophytic fungi was carried out according to the standard procedures. The fungi were subjected to solid-state fermentation on rice medium and the secondary metabolites extracted using ethyl acetate. The fungal crude extracts were screened for antimicrobial activity against selected clinically important microbes using the agar well diffusion method. The fungus with the best antimicrobial activity was molecularly characterized and its secondary metabolites profiled using Gas Chromatography - Mass Spectroscopy to establish the correlation between the observed activity and its phytochemical composition. The fungal extracts showed antimicrobial activity with inhibitory zone diameter ranging from 2.00 to 9.00 mm. The secondary metabolites of Aspergillus fumigatus (the most bioactive endophyte) contain 50 compounds with several of them having established antimicrobial activity. The results of this study suggest that Aspergillus fumigatus an endophytic fungus associated with P. thonningii could be a promising source of novel bioactive compounds with pharmaceutical, agricultural and industrial importance.


Keywords: Antimicrobial, Endophytic fungi, GC-MS, Piliostigma thonningii

Keywords: Antimicrobial, ndophytic fungi, GC-MS, Piliostigma thonningii

Downloads

Download data is not yet available.

Author Biographies

Cyril Ogbiko, Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State Nigeria

Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State Nigeria

Eooka C Jonathan, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Edo State Nigeria.

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Edo State Nigeria.

Ikem Chinedu Joseph, Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State Nigeria

Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State Nigeria

Okoye Festus Basden Chiedu, Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

References

[1] Gouda S, Das G, Sen SK, Shin HS, Patra JK, Endophytes: A treasure house of bioactive compounds of medicinal importance, Front Microbiol, 2016; 7: 1538 – 1543 https://doi.org/10.3389/fmicb.2016.01538 PMid:27746767 PMCid:PMC5041141
[2] Cragg GM, Newman DJ, Natural products: continuing source of novel drug leads, Biochim Biophys Acta, 2013; 1830(6): 3670 – 3695 https://doi.org/10.1016/j.bbagen.2013.02.008 PMid:23428572 PMCid:PMC3672862
[3] Nwachukwu CU, Ngwoke KG, Eze PM, Eboka CJ, Okoye FBC, Secondary metabolites from Curvularia sp, an endophytic fungus isolated from the leaves of Picralima nitida Durand and Hook (Apocynaceae), Trop J Nat Prod Res, 2018; 2(5): 209 - 213. https://doi.org/10.26538/tjnpr/v2i5.2
[4] Okoye FB, Nworu CS, Debbab A, Esimone CO, Proksch P, Two new cyto¬chalasins from an endophytic fungus, KL-1.1 isolated from Psidium gua¬java leaves, Phytochem Lett, 2015; 14: 51-55. https://doi.org/10.1016/j.phytol.2015.09.004
[5] Zhao J, Shan T, Mou Y, Zhou L, Plant-derived bioactive compounds produced by endophytic fungi, Mini Rev Med Chem, 2011; 11(2):159 – 168 https://doi.org/10.2174/138955711794519492 PMid:21222580
[6] Adjanahoun E, Ahyi MRA, Ake-Assi L, Elewude JA, Dramane, K, Contribution to ethnobotanical floristic studies in Western Nigeria, Sci. Technol. Res. Comm. Lagos, 1991; pp 420.
[7] Igoli JO, Ogaji OG, Tor-Anyiin TA, Igoli NP, Traditional medicine practice amongst the Igede people of Nigeria. Part II, Afr J Trad Comp Alt Med, 2005; 2(2):134 – 152 https://doi.org/10.4314/ajtcam.v2i2.31112
[8] Jimoh FO, Oladiji AT, Preliminary studies on Piliostigma thonningii seeds: Proximate analysis, mineral composition and phytochemical screening, Afr J Biotech, 2005; 4(12): 1439 – 1442
[9] Togola AD, Diallo S, Dembélé HB, Paulsen BS, Ethnopharmacological survey of different uses of seven medicinal plants from Mali (West Africa) in the regions Doila, Kolokani and Siby, J Ethnobiol Ethnomedicine, 2005; 1: 7 – 13 https://doi.org/10.1186/1746-4269-1-7 PMid:16270940 PMCid:PMC1277087
[10] Igoli JO, Tor-Anyiin TA, Usman SS, Oluma HOA, Igoli NP, Folk medicines of the lower Benue valley of Nigeria, In V. K. Singh, J. N. Govil, S. Hashmi, and G. Singh, eds. Recent Progress in Medicinal Plants, vol. 7. Ethnomed. Pharmacog. II. Sci. Tech. Pub. USA, 2002; pp 327 - 338
[11] Ibewuike JC, Ogungbamila FO, Ogundaini AO, Okeke IN, Bohlin L, Anti-inflammatory and antibacterial activities of C-methylflavonols from Piliostigma thonningii, Phytother Res, 1997; 11(4): 281 – 284 https://doi.org/10.1002/(SICI)1099-1573(199706)11:4<281::AID-PTR281>3.0.CO;2-9
[12] Ogundaini A, Antimicrobial agents from some Nigerian plants, Nig J Nat Prod Med, 1999; 3: 26 - 31. https://doi.org/10.4314/njnpm.v3i1.11754
[13] Fakae BB, Cambell AM, Barrett J, Scott IM, Teesdale-Spittle PH, Inhibition of gluthathione S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants, Phytother Res, 2000; 14(8): 630 – 634 https://doi.org/10.1002/1099-1573(200012)14:8<630::AID-PTR773>3.0.CO;2-5 PMid:11114001
[14] Cyril O, Jonathan CE, Ighodaro I, Dabai MU, Anti-ulcer activity of methanol extract of Plantago rugelii Decne. (Plantaginaceae), Trop J Nat Prod Res, 2017; 1(2): 84 - 88 https://doi.org/10.26538/tjnpr/v1i2.7
[15] Eze PM, Ojimba NK, Abonyi DO, Chukwunwejim CR, Abba CC, Okoye FBC, Esimone CO, Antimicrobial activity of metabolites of an endophytic fungus isolated from the leaves of Citrus jambhiri (Rutaceae), Trop J Nat Prod Res, 2018; 2(3): 145 – 149 https://doi.org/10.26538/tjnpr/v2i3.9
[16] Abba CC, Nduka I, Eze PM, Ujam TN, Abonyi DO, Okoye FBC, Antimicrobial activity of secondary metabolites of endophytic Aspergillus Species Isolated from Loranthus micranthus, Afr J Pharm Res Dev, 2016; 8(2): 136-140.
[17] Ebada SS, Eze P, Okoye FBC, Esimone CO, Proksch P, The fungal endophyte Nigrospora oryzae produces quercetin monoglycosides previously known only from plants, Chem Select, 2016; 1: 2767 – 2771 https://doi.org/10.1002/slct.201600478
[18] Okezie UM, Eze PM, Okoye FBC, Ikegbunam MN, Ugwu MC, Esimone CO, Biologically active metabolites of an endophytic fungus isolated from Vernonia amygdalina, Afr J Pharm Res Dev, 2017; 9(1): 24 - 29
[19] Akpotu MO, Eze PM, Abba CC, Umeokoli BO, Nwachukwu CU, Okoye FBC, Esimone CO, Antimicrobial activities of secondary metabolites of endophytic fungi isolated from Catharanthus roseus, J Health Sci, 2017; 7(1): 15 – 22 https://doi.org/10.17532/jhsci.2017.421
[20] Akpotu MO, Eze PM, Abba CC, Nwachukwu CU, Okoye FBC, Esimone CO, Metabolites of endophytic fungi isolated from Euphorbia hirta growing in southern Nigeria, Chem Sci Rev Lett, 2017; 6(21): 12 - 19
[21] Bairagi J, Katare V, Chourey B, Delouri A, Nema S, Evaluation of In-Vitro Anti-Inflammatory Activity of Leaves of Pongamia pinnata, Asian Journal of Dental and Health Sciences. 2023; 3(1):8-10 https://doi.org/10.22270/ajdhs.v3i1.35
[22] Okoye FB, Lu S, Nworu CS, Esimone CO, Proksch P, Chaldi A, Debba A, Depsidone and diaryl ether derivatives from the fungus Corynespora cassiicola, an endophyte of Gongronema latifolium, Tetrahedron Lett, 2013; 54(32): 4210 - 4214 https://doi.org/10.1016/j.tetlet.2013.05.117
[23] Okoye FB, Nworu CS, Akah PA, Esimone CO, Debbab A, Proksch P, Inhibition of inflammatory mediators and reactive oxygen and nitrogen species by some depsidones and diaryl ether derivatives isolated from Corynespora cassiicola, an endophytic fungus of Gongronema latifolium leaves, Immunopharmacol Immunotoxicol, 2013; 35(6): 662 - 668 https://doi.org/10.3109/08923973.2013.834930 PMid:24041314
[24] Ojimba NK, Eze PM, Abba CC, Okoye FB, Esimone CO, Investigation of secondary metabolites of endophytic fungi from Loranthus micranthus Linn and Citrus jambhiri lush for their antioxidant activity, Planta Med, 2015; 81:16 https://doi.org/10.1055/s-0035-1565567
[25] Okezie UM, Eze PM, Ajaghaku DL, Okoye FB, Esimone CO, Isolation and screening of secondary metabolites from endophytic fungi of Vernonia amygdalina and Carica papaya for their cytotoxic activity, Planta Med, 2015; 81:16 https://doi.org/10.1055/s-0035-1565554
[26] Chen H, Daletos G, Okoye F, Lai D, Dai H, Proksch P, A new cytotoxic cytochalasin from the endophytic fungus Trichoderma harzianum, Nat Prod Commun, 2015; 10(4): 585 – 587 https://doi.org/10.1177/1934578X1501000412
[27] Schulz B, Wanke U, Draeger S, Aust HJ, Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilisation methods, Mycol Res, 1993; 97: 1447 – 1450 https://doi.org/10.1016/S0953-7562(09)80215-3
[28] Strobel G, Daisy B, Castillo U, Harper J, Natural products from endophytic microorganisms, J Nat Prod, 2004; 67: 257 – 268 https://doi.org/10.1021/np030397v PMid:14987067
[29] Kharwar RN, Verma VC, Strobel G, Ezra D, The endophytic fungal complex of Catharanthus roseus (L.) G. Don, Curr Sci, 2008; 95: 228 - 233
[30] Ibrahim M, Oyebanji E, Fowora M, Aiyeolemi A, Orabuchi C, Akinnawo B, Adekunle AA, Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity, BMC Complement Med Ther, 2021; 21: 98 https://doi.org/10.1186/s12906-021-03269-3 PMid:33743702 PMCid:PMC7981982
[31] Cyril O, Phytochemical, GC-MS analysis and antimicrobial activity of the methanol stem bark extract of Cassia siamea (Fabaceae), Asian J of Bioechnol, 2020; 12: 9 - 15 https://doi.org/10.3923/ajbkr.2020.9.15
[32] Eyre AW, Wang M, Oh Y, Dean RA, Identification and characterization of the core rice seed Microbiome. Phytobiomes J, 2019; 3(2): 148 – 157 https://doi.org/10.1094/PBIOMES-01-19-0009-R
[33] Shalini SV, Amutha K, Identification and molecular characterization of Aspergillus fumigatus from soil, J Med Pharm Innov, 2014; 1(4): 12 - 15
[34] Klich MA, Pitt JI, Differentiation of Aspergillus flavus from Aspergillus parasiticus and other closely related species, Trans Br Mycol Soc, 1988; 91: 99 – 108 https://doi.org/10.1016/S0007-1536(88)80010-X
[35] Henson J, French R, The polymerase chain reaction and plant disease diagnosis, Ann Rev Phytopathol, 1993; 31: 81 – 109 https://doi.org/10.1146/annurev.py.31.090193.000501 PMid:18643762
[36] Phongpaichit, S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J, Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species, FEMS Immunol Med Microbiol, 2006; 48: 367 – 372 https://doi.org/10.1111/j.1574-695X.2006.00155.x PMid:17052267
[37] Fernandes MV, Silva TAC, Pfenning LH, Costa-Neto CM, Heinrich TA, Alencar SM, Lima MA, Ikegaki M, Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L, Braz. J Pharm Sci, 2009; 45(4): 677 – 685 https://doi.org/10.1590/S1984-82502009000400010
[38] Souwalak P, Nattawut R, Vatcharin R, Jariya S, Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species, FEMS Immunol Med Microbiol, 2006; 48: 367 – 372 https://doi.org/10.1111/j.1574-695X.2006.00155.x PMid:17052267
[39] Keskın D, Ceyhan N, Uğur A, Dbeys AD, Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves, J Food Agric Environ, 2012; 10: 99 - 102
[40] Musini A, Prakash RMJ, Giri A, Phytochemical investigations and antibacterial activity of Salacia oblonga Wall ethanolic extract, Ann Phytomedicine, 2013; 2: 102 - 107
[41] Patil SA, Patil SA, Ble-González EA, Isbel SR, Hampton SM, Bugarin A, Carbazole derivatives as potential antimicrobial agents, Molecules, 2022; 27: 6575 https://doi.org/10.3390/molecules27196575 PMid:36235110 PMCid:PMC9573399
[42] Sharma, P, Rane N, Gurram VK, "Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents'', Bioorg Med Chem Lett, 2004; 14(16): 4185 – 4190 https://doi.org/10.1016/j.bmcl.2004.06.014 PMid:15261267
[43] Basavaraja HS, Sreenivasa GM, Jayachandran E, "Synthesis and biological activity of novel pyrimidino imidazolines", Indian J Heterocy Ch, 2005; 15: 69 - 73
[44[ Syafni N, Putra DP, Arbain D, 3,4-dihydroxybenzoic acid and 3,4-dihydroxybenzaldehyde from the fern Trichomanes chinense L.; isolation, antimicrobial and antioxidant properties, Indo J Chem, 2012; 12(3): 273 – 278 https://doi.org/10.22146/ijc.21342
[45] Javed, MR, Salman M, Tariq A, Tawab A, Zahoor MK, Naheed S, Shahid M, Ijaz A, Ali H, The antibacterial and larvicidal potential of bis-(2-ethylhexyl)phthalate from Lactiplantibacillus plantarum, Molecules, 2022; 27: 7220 https://doi.org/10.3390/molecules27217220 PMid:36364044 PMCid:PMC9657160
[46] Kamaruding NA, Ismail N, Sokry N, Identification of antibacterial activity with bioactive compounds from selected marine sponges, Pharmacogn J, 2020, 12(3): 493 - 502 https://doi.org/10.5530/pj.2020.12.76
[47] Lotfy WA, Mostafa SW, Adel AA, Ghanem KM, Production of di-(2-ethylhexyl) phthalate by Bacillus subtilis AD35: Isolation, purification, characterization and biological activities, Microb Pathog, 2018; 124: 89 – 100 https://doi.org/10.1016/j.micpath.2018.08.014 PMid:30121360
[48] Hoang VL, Li Y, Kim SK, Cathepsin B inhibitory activities of phthalates isolated from a marine Pseudomonas strain, Bioorg Med Chem, 2008; 18: 2083 – 2088 https://doi.org/10.1016/j.bmcl.2008.01.097 PMid:18289850
Crossmark
Statistics
88 Views | 6 Downloads
How to Cite
1.
Ogbiko C, Jonathan E, Joseph IC, Chiedu OFB. Isolation, characterization, and screening of secondary metabolites from endophytic fungi isolated from Nigerian Piliostigma thonningii for antimicrobial activities. JDDT [Internet]. 15Jun.2024 [cited 17Jul.2024];14(6):15-2. Available from: https://jddtonline.info/index.php/jddt/article/view/6510