Synthesis and characterizations of Hg (II) Complex of Macrocyclic complexes compounds Tetradecahydrodibenzo hexaazacyclooctadecine with HgX2 (X= Cl, Br) by Hirshfeld analysis and antimicrobial activity

  • Anil Kumar Pal Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002
  • Amit Jaiswal Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002
  • Dharmendra Kumar Sahu Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002
  • Ranjeet Kumar Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Abstract

This study examines the synthesis and characterization of a macrocyclic complex molecule having the general formula [M-LX2], where M =Hg (II) with schiff base Tetradecahydrodibenzo hexaazacyclooctadecine ligands. Resulted from the interaction between mercury and the diethyl triamine and benzene- 1, 2 diol in an ethanolic solution. Schiff base and its novel mercury (II) Complexes were studied vibrational in the solid state using spectral, 1H-NMR, IR, UV, and antimicrobial activity approaches. We were able to establish the coordination mode of the metal in complexes by comparing the changes in the ligands' and complexes' FT-IR and UV-Visible spectra.


Keywords: MERCURY (II), Schiff bases, IR, 1H-NMR, PXRD Spectroscopy.

Keywords: MERCURY (II), Schiff bases, IR, 1H-NMR, PXRD Spectroscopy

Downloads

Download data is not yet available.

Author Biographies

Anil Kumar Pal, Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Amit Jaiswal, Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Dharmendra Kumar Sahu, Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Ranjeet Kumar, Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

Department of Chemistry, C.M.P. Degree College, Prayagraj, Uttar Pradesh, India -211002

References

1. Kolthoff, I. M., Stricks, W., & Morren, L. Amperometric mercurimetric titration of sulfhydryl groups in biologically important substances. Analytical Chemistry, 1954; 26(2): 366-372. https://doi.org/10.1021/ac60086a025
2. Prudenté, C. K., Sirios, R. S., & Cote, S., Synthesis and application of organomercury haptens for enzyme-linked immunoassay of inorganic and organic mercury. Analytical biochemistry, 2010; 404(2): 179-185. https://doi.org/10.1016/j.ab.2010.05.021
3. Xiao, D., Yao, W., & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Physical review letters, 2007; 99(23): 236809. https://doi.org/10.1103/PhysRevLett.99.236809
4. Ashraf, M. A., Maah, M. J., Yusoff, I., Wajid, A., & Mahmood, K. Sand mining effects, causes and concerns: A case study from Bestari Jaya, Selangor, Peninsular Malaysia. Scientific Research and Essays, 2011; 6(6): 1216-1231.
5. Vigato, P. A., & Tamburini, S. The challenge of cyclic and acyclic Schiff bases and related derivatives. Coordination Chemistry Reviews, 2004; 248(17-20): 1717-2128. https://doi.org/10.1016/j.cct.2003.09.003
6. Salvat, Antonnacci, Fortunato, Suarez, & Godoy. Screening of some plants from Northern Argentina for their antimicrobial activity, Letters in applied microbiology, 2001; 32(5): 293-297. https://doi.org/10.1046/j.1472-765X.2001.00923.x
7. Kim, S., Lotz, B., Lindrud, M., Girard, K., Moore, T., Nagarajan, K., & Kiang, S. Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation, Organic process research & development, 2005; 9(6): 894-901. https://doi.org/10.1021/op050091q
8. J. Yang, M. A. Cohen Stuart and M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms, Chem. Soc. Rev., 2014; 43:8271-8298 https://doi.org/10.1039/C4CS00185K PMid:25231624
9. Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busqué and D. Ruiz-Molina, "The Chemistry behind Catechol-Based Adhesion, Angew. Chem., Int. Ed., 2019; 58: 696-714. https://doi.org/10.1002/anie.201801063 PMid:29573319
10. 4. d'Ischia, M., & Ruiz-Molina, D. Bioinspired catechol-based systems: chemistry and applications, Biomimetics, 2017; 2(4): 25 https://doi.org/10.3390/biomimetics2040025
11. Lee, B. P., Birkedal, H., & Lee, H. Catechol and Polyphenol Chemistry for Smart Polymers, Frontiers in Chemistry, 2019; 7: 883. https://doi.org/10.3389/fchem.2019.00883 PMid:31921791 PMCid:PMC6932949
12. 6. Priemel, T., Palia, R., Babych, M., Thibodeaux, C. J., Bourgault, S., & Harrington, M. J. Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA, Proceedings of the National Academy of Sciences, 2020; 117(14): 7613-7621 https://doi.org/10.1073/pnas.1919712117 PMid:32209666 PMCid:PMC7149395
13. Ferretti, A., Prampolini, G., & d'Ischia, M. Noncovalent interactions in catechol/ammonium-rich adhesive motifs: Reassessing the role of cation-π complexes?, Chemical Physics Letters, 2021; 779: 138815. https://doi.org/10.1016/j.cplett.2021.138815
14. Favre, H. A., & Powell, W. H. Nomenclature of organic chemistry: IUPAC recommendations and preferred names, Royal Society of Chemistry. 2013;
15. Lander, J. J., & Svirbely, W. J. The Dipole Moments of Catechol, Resorcinol and Hydroquinone1. Journal of the American Chemical Society, 1945; 67(2): 322-324. https://doi.org/10.1021/ja01218a051
16. Slip, T., & Prevention, F. NIOSH Bibliography of Communication and Research Products 2010.
17. Soukup, R. W. Chemiegeschichtliche Daten organischer Substanzen.
18. Zheng, L. T., Ryu, G. M., Kwon, B. M., Lee, W. H., & Suk, K. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity, European Journal of Pharmacology, 2008; 588(1): 106-113. https://doi.org/10.1016/j.ejphar.2008.04.035
19. Fiege, H., Voges, H. W., Hamamoto, T., Umemura, S., Iwata, T., Miki, H., & Paulus, W. Phenol derivatives, Ullmann's encyclopedia of industrial chemistry, 2000; https://doi.org/10.1002/14356007.a19_313
20. Yam, K. C., D'Angelo, I., Kalscheuer, R., Zhu, H., Wang, J. X., Snieckus, V, & Eltis, L. D. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis, PLoS pathogens, 2009; 5(3): e1000344. https://doi.org/10.1371/journal.ppat.1000344
21. Saiz‐Poseu, J., Mancebo‐Aracil, J., Nador, F., Busqué, F., & Ruiz‐Molina, D. The chemistry behind catechol‐based adhesion, Angewandte Chemie International Edition, 2019; 58(3): 696-714. https://doi.org/10.1002/anie.201801063
22. Yang, J., Stuart, M. A. C., & Kamperman, M. Jack of all trades: versatile catechol crosslinking mechanisms, Chemical Society Reviews, 2014; 43(24): 8271-8298. https://doi.org/10.1039/C4CS00185K
23. Kim, J., Lee, C., & Ryu, J. H., Adhesive catechol-conjugated hyaluronic acid for biomedical applications: A mini review, Applied Sciences, 2020; 11(1): 21. https://doi.org/10.3390/app11010021
24. Katir, N., Marcotte, N., Michlewska, S., Ionov, M., El Brahmi, N., Bousmina, M., & El Kadib, A.. Dendrimer for templating the growth of porous catechol-coordinated titanium dioxide frameworks: toward hemocompatible nanomaterials, ACS Applied Nano Materials, 2019; 2(5): 2979-2990. https://doi.org/10.1021/acsanm.9b00382
25. Sedó, J., Saiz‐Poseu, J., Busqué, F., & Ruiz‐Molina, D. Catechol‐based biomimetic functional materials. Advanced Materials, 2013; 25(5): 653-701. https://doi.org/10.1002/adma.201202343
26. Joshi, S., Kathuria, H., Verma, S., & Valiyaveettil, S. Functional catechol-metal polymers via interfacial polymerization for applications in water purification, ACS applied materials & interfaces, 2020; 12(16): 19044-19053. https://doi.org/10.1021/acsami.0c03133
27. Zhang, W., Wang, R., Sun, Z., Zhu, X., Zhao, Q., Zhang, T., & Lee, B. P. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications, Chemical Society Reviews, 2020; 49(2): 433-464. https://doi.org/10.1039/C9CS00285E
28. Razaviamri, S., Wang, K., Liu, B., & Lee, B. P. Catechol-based antimicrobial polymers, Molecules, 2021; 26(3): 559. https://doi.org/10.3390/molecules26030559 PMid:33494541 PMCid:PMC7865322
29. Maier, G. P., Bernt, C. M., & Butler, A. Catechol oxidation: considerations in the design of wet adhesive materials, Biomaterials science, 2018; 6(2): 332-339. https://doi.org/10.1039/C7BM00884H PMid:29265138
30. Pinnataip, R., & Lee, B. P. Oxidation chemistry of catechol utilized in designing stimuli-responsive adhesives and antipathogenic biomaterials, ACS omega, 2021; 6(8): 5113-5118. https://doi.org/10.1021/acsomega.1c00006 PMid:33681552 PMCid:PMC7931183
31. Ito, S., Sugumaran, M., & Wakamatsu, K. Chemical reactivities of ortho-quinones produced in living organisms: Fate of quinonoid products formed by tyrosinase and phenoloxidase action on phenols and catechols, International Journal of Molecular Sciences, 2020; 21(17): 6080. https://doi.org/10.3390/ijms21176080 PMid:32846902 PMCid:PMC7504153
32. Nolan, E. M., & Lippard, S. J. Tools and tactics for the optical detection of mercuric ion. Chemical reviews, 2008; 108(9): 3443-3480. https://doi.org/10.1021/cr068000q PMid:18652512
33. Giri, D., Bankura, A., & Patra, S. K. Poly (benzodithieno-imidazole-alt-carbazole) based π-conjugated copolymers: Highly selective and sensitive turn-off fluorescent probes for Hg2+, Polymer, 2018; 158: 338-353. https://doi.org/10.1016/j.polymer.2018.10.069
34. Liu, Y., Lv, X., Zhao, Y., Chen, M., Liu, J., Wang, P., & Guo, W. A naphthalimide-rhodamine ratiometric fluorescent probe for Hg2+ based on fluorescence resonance energy transfer, Dyes and pigments, 2012; 92(3): 909-915. https://doi.org/10.1016/j.dyepig.2011.07.020
35. Gong, Y. J., Zhang, X. B., Chen, Z., Yuan, Y., Jin, Z., Mei, L., ... & Yu, R. Q. An efficient rhodamine thiospirolactam-based fluorescent probe for detection of Hg 2+ in aqueous samples, Analyst, 2012; 137(4): 932-938. https://doi.org/10.1039/C2AN15935J PMid:22179782
36. Srivastava, P., Ali, R., Razi, S. S., Shahid, M., Patnaik, S., & Misra, A. A simple blue fluorescent probe to detect Hg2+ in semiaqueous environment by intramolecular charge transfer mechanism, Tetrahedron Letters, 2013; 54(28): 3688-3693. https://doi.org/10.1016/j.tetlet.2013.05.014
37. Zou, Q., & Tian, H. Chemodosimeters for mercury (II) and methylmercury (I) based on 2, 1, 3-benzothiadiazole, Sensors and Actuators B: Chemical, 2010; 149(1): 20-27. https://doi.org/10.1016/j.snb.2010.06.040
38. Lavis, L. D., & Raines, R. T. Bright ideas for chemical biology, ACS chemical biology, 2008; 3(3): 142-155. https://doi.org/10.1021/cb700248m PMid:18355003 PMCid:PMC2802578
39. Shen, Y., Zhang, Y., Zhang, X., Zhang, C., Zhang, L., Jin, J., ... & Yao, S. A new turn-on fluorescent sensor based on NBD for highly selective detection of Hg 2+ in aqueous media and imaging in live cells, Analytical Methods, 2014; 6(13): 4797-4802. https://doi.org/10.1039/c4ay00729h
40. Xu, Z. H., Hou, X. F., Xu, W. L., Guo, R., & Xiang, T. C. A highly sensitive and selective fluorescent probe for Hg2+ and its imaging application in living cells. Inorganic Chemistry Communications, 2013; 34: 42-46. https://doi.org/10.1016/j.inoche.2013.05.008
41. Yan, F., Cao, D., Yang, N., Wang, M., Dai, L., Li, C., & Chen, L. A rhodamine based fluorescent probe for Hg2+ and its application to cellular imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013; 106: 19-24.https://doi.org/10.1016/j.saa.2012.12.079
42. Clegg, W., and A. J. Scott. "CCDC 1575175: Experimental Crystal Structure Determination." CSD Commun , 2017;
43. R. Kumar, P. Singh, S. Parsons, & A.K. Tewari, Experimental and Theoretical Study for the Assessment of the Conformational Analysis of Pyrazolone Derivatives: Employing Quantitative Analysis for Intermolecular Interactions, ChemistrySelect 2 2017; 6331-6337. https://doi.org/10.1002/slct.201700764
44. Garbisch Jr, E. W. Cyclohex-2-ene-1, 4-dione, Journal of the American Chemical Society, 1965; 87(21): 4971-4972. https://doi.org/10.1021/ja00949a063
45. Bauer, A. W., PERRY, D. M., & KIRBY, W. M. Single-disk antibiotic-sensitivity testing of staphylococci: An analysis of technique and results, AMA archives of internal medicine, 1959; 104(2): 208-216. https://doi.org/10.1001/archinte.1959.00270080034004 PMid:13669774
46. Bonev, B., Hooper, J., & Parisot, J., Journal of antimicrobial chemotherapy, 2008; 61(6): 1295-1301. https://doi.org/10.1093/jac/dkn090 PMid:18339637
47. Catalano, A., Sinicropi, M. S., Iacopetta, D., Ceramella, J., Mariconda, A., Rosano, C., & Longo, P., Applied Sciences, 2021; 11(13): 6027. https://doi.org/10.3390/app11136027
48. Rosu, T., Pahontu, E., Maxim, C., Georgescu, R., Stanica, N., & Gulea, A. Polyhedron, 2011; 30(1): 154-162. https://doi.org/10.1016/j.poly.2010.10.001
49. Joseyphus, R. S., Shiju, C., Joseph, J., Dhanaraj, C. J., & Arish, D., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014; 133: 149-155. https://doi.org/10.1016/j.saa.2014.05.050 PMid:24934973
50. Olalekan, T. E., & Shoetan, I. O., The Pacific Journal of Science and Technology, 2015; 16(1); 227-228.
51. Rosu, T., Pahontu, E., Pasculescu, S., Georgescu, R., Stanica, N., Curaj, A., & Leabu, M., European journal of medicinal chemistry, 2010; 45(4): 1627-1634. https://doi.org/10.1016/j.ejmech.2009.12.015 PMid:20096975
52. Shiju, C., Arish, D., Bhuvanesh, N., & Kumaresan, S., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015; 145: 213-222. https://doi.org/10.1016/j.saa.2015.02.030 PMid:25782179
53. Joseyphus, R. S., & Joseph, J. Investigations on biomedical applications of some Schiff base metal (II) complexes.
54. Gull, P., & Hashmi, A. A. Advanced Chemistry Letters, 2015; 2(1): 36-41. https://doi.org/10.1166/acl.2015.1053
55. Shiju, C., Arish, D., & Kumaresan, S., Arabian Journal of Chemistry, 2017; 10: S2584-S2591. https://doi.org/10.1016/j.arabjc.2013.09.036
56. Emara, A. A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010; 77(1): 117-125. https://doi.org/10.1016/j.saa.2010.04.036 PMid:20627808
57. Joseyphus, R. S., Shiju, C., Joseph, J., Dhanaraj, C. J., & Arish, D., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014; 133: 149-155. https://doi.org/10.1016/j.saa.2014.05.050 PMid:24934973
Crossmark
Statistics
67 Views | 5 Downloads
How to Cite
1.
Pal AK, Jaiswal A, Sahu DK, Kumar R. Synthesis and characterizations of Hg (II) Complex of Macrocyclic complexes compounds Tetradecahydrodibenzo hexaazacyclooctadecine with HgX2 (X= Cl, Br) by Hirshfeld analysis and antimicrobial activity. JDDT [Internet]. 15Mar.2024 [cited 19Apr.2024];14(3):115-21. Available from: https://jddtonline.info/index.php/jddt/article/view/6476