Niosomal Drug Delivery System used in Tuberculosis
Abstract
Niosomes are artificially manufactured vesicles made of Cholesterol and Non-ionic surfactant. Their capacity to encapsulate a broad variety of pharmaceuticals and shield them from deterioration has piqued interest in drug delivery. Niosomes have demonstrated a possible use in the administration of anti-tuberculosis medications. Worldwide, tuberculosis is a serious public health concern. Even with advances in science and technology, tuberculosis remains a persistent problem.Niosomes can encapsulate anti-TB drugs, protecting them from enzymatic degradation and allowing for sustained release. Research in this field is on-going, with scientists working on optimizing niosomal formulations for tuberculosis treatment. It's important to consult current scientific literature for the latest advancements. Some anti-tubercular drugs face challenges in terms of absorption and bioavailability. Niosomal delivery systems can help address these issues. While niosomal drug delivery systems show promise, it's crucial to note that they are still an area of active research and specific formulations and protocols may vary. Patients should always consult with their healthcare providers for the most appropriate and up-to-date treatment options for tuberculosis. Niosomes can encapsulate both hydrophilic and lipophilic drugs, offering advantages such as increased drug stability, prolonged circulation time, controlled release, and targeted delivery. They have applications in various fields including pharmaceuticals, cosmetics, and agriculture.
Keywords: Tuberculosis, Niosomes, Drug delivery system
Keywords:
Tuberculosis, Niosomes, Drug delivery systemDOI
https://doi.org/10.22270/jddt.v14i3.6475References
Sangboonruang S, Semakul N, Suriyaprom S, Kitidee K, Khantipongse J, Intorasoot S, Tharinjaroen CS, Wattananandkul U, Butr-Indr B, Phunpae P, Tragoolpua K. Nano-Delivery System of Ethanolic Extract of Propolis Targeting Mycobacterium tuberculosis via Aptamer-Modified-Niosomes. Nanomaterials. 2023 Jan 8;13(2):269. https://doi.org/10.3390/nano13020269 PMid:36678022 PMCid:PMC9861461
Grotz E, Tateosian N, Amiano N, Cagel M, Bernabeu E, Chiappetta DA, Moretton MA. Nanotechnology in tuberculosis: state of the art and the challenges ahead. Pharmaceutical Research. 2018 Nov;35:1-22. https://doi.org/10.1007/s11095-018-2497-z PMid:30238168
Haddadian A, Robattorki FF, Dibah H, Soheili A, Ghanbarzadeh E, Sartipnia N, Hajrasouliha S, Pasban K, Andalibi R, Ch. MH, Azari A. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Scientific reports. 2022 Dec 19;12(1):21938. https://doi.org/10.1038/s41598-022-26400-x PMid:36536030 PMCid:PMC9763330
Abdelbary A, Essam T, Abd El-Salam RM, AlyKassem AA. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin (antifungal). Drug Dev Ind Pharm. 2011;37:149-508. https://doi.org/10.3109/03639045.2011.587431 PMid:21707323
Suárez I, Fünger SM, Kröger S, Rademacher J, Fätkenheuer G, Rybniker J, "The Diagnosis and Treatment of Tuberculosis" DtschArzteblInt, 2019; 116(43):729-735. https://doi.org/10.3238/arztebl.2019.0729 PMid:31755407
Peña DA, Rosetta AI, Hernández Del Pino RE, Amiano NO, Pasquinelli V, Pellegrini JM, et al. Mycobacterium tuberculosis dormancy antigen differentiates latently infected Bacillus Chalmette-Guerin vaccinated individuals. Biomedicine. 2015;2(8):882-8. https://doi.org/10.1016/j.ebiom.2015.05.026 PMid:26425695 PMCid:PMC4563115
Gogna A, Pradhan GR, Sinha RS, Gupta B, "Tuberculosis presenting as deep vein thrombosis" Postgrad Med J, 1999; 75(880):104-105. https://doi.org/10.1136/pgmj.75.880.104 https://doi.org/10.1136/pgmj.75.880.104 PMid:10448473 PMCid:PMC1741133
Porcel JM, Leung CC, Restrepo MI, Lee P. Year in review 2011: respiratory infections, tuberculosis, pleural diseases, bronchoscopic intervention and imaging. Respirology. 2012;17(3):573-82. https://doi.org/10.1111/j.1440-1843.2012.02128.x PMid:22248294 PMCid:PMC4066650
Al-Tawfiq JA, "Multifocal systemic tuberculosis: the many faces of an old nemesis" Med SciMonit, 2007; 13(4):56-60
Maiolini, M.; Gause, S.; Taylor, J.; Steakin, T.; Shipp, G.; Lamichhane, P.; Deshmukh, B.; Shinde, V.; Bishayee, A.; Deshmukh, R.R. The war against tuberculosis: A review of natural compounds and their derivatives. Molecules 2020, 25, 3011. https://doi.org/10.3390/molecules25133011 PMid:32630150 PMCid:PMC7412169
Bouzeyen, R.; Javid, B. Therapeutic vaccines for tuberculosis: An overview. Front. Immunol. 2022, 13, 878471. https://doi.org/10.3389/fimmu.2022.878471 PMid:35812462 PMCid:PMC9263712
Allue-Guardia, A.; Garcia, J.I.; Torrelles, J.B. Evolution of drug-resistant Mycobacterium tuberculosis strains and their adaptation to the human lung environment. Front. Microbiol. 2021, 12, 612675. https://doi.org/10.3389/fmicb.2021.612675 PMid:33613483 PMCid:PMC7889510
Huang, Z.; Klodzinska, S.N.; Wan, F.; Nielsen, H.M. Nanoparticle-mediated pulmonary drug delivery: State of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv. Transl. Res. 2021, 11, 1634-1654. https://doi.org/10.1007/s13346-021-00954-1 PMid:33694082 PMCid:PMC7945609
Zabaiou, N.; Fouache, A.; Trousson, A.; Baron, S.; Zellagui, A.; Lahouel, M.; Lobaccaro, J.A. Biological properties of propolis extracts: Something new from an ancient product. Chem. Phys. Lipids 2017, 207, 214-222. https://doi.org/10.1016/j.chemphyslip.2017.04.005 PMid:28411017
Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phytother. Res. 2016, 30, 894-905. https://doi.org/10.1002/ptr.5605 PMid:26988443
Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695-1703. https://doi.org/10.1016/j.sjbs.2018.08.013 PMid:31762646 PMCid:PMC6864204
Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253-260. https://doi.org/10.1016/j.jep.2010.10.032 PMid:20970490
Pando, D.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation and characterization of niosomes containing resveratrol. J. Food Eng. 2013, 117, 227-234. https://doi.org/10.1016/j.jfoodeng.2013.02.020
Lo, C.T.; Jahn, A.; Locascio, L.E.; Vreeland, W.N. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir ACS J. Surf. Colloids 2010, 26, 8559-8566. https://doi.org/10.1021/la904616s PMid:20146467
Obeid, M.A.; Elburi, A.; Young, L.C.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. Formulation of non-ionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Mol. Pharm. 2017, 14, 2450-2458. https://doi.org/10.1021/acs.molpharmaceut.7b00352 PMid:28570823
Obeid, M.A.; Khadra, I.; Mullen, A.B.; Tate, R.J.; Ferro, V.A. the effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int. J. Pharm. 2017, 516, 52-60. https://doi.org/10.1016/j.ijpharm.2016.11.015 PMid:27836752
Pardakhty, A.; Varshosaz, J.; Rouholamini, A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int. J. Pharm. 2007, 328, 130-141. https://doi.org/10.1016/j.ijpharm.2006.08.002 PMid:16997517
Bhagyashree, K.; Seema, T.; Ankur, G.; Dada, P.; Deepa, P.; Ismail, M.; Basavan, D. Development and biological evaluation of Gymnema sylvestre extract-loaded nonionic surfactant-based niosomes. Nanomedicine 2013, 8, 1295-1305. https://doi.org/10.2217/nnm.12.162 PMid:23259778
Zarei, M.; Norouzian, D.; Honarvar, B.; Mohammadi, M.; Shamabadi, H.E.; Akbarzadeh, A. Paclitaxel Loaded Niosome Nanoparticle Formulation Prepared via Reverse Phase Evaporation Method: An in vitro Evaluation. Pak. J. Biol. Sci. 2013, 16, 295-298. https://doi.org/10.3923/pjbs.2013.295.298 PMid:24498794
Jain, S.; Vyas, S.P. Mannosylated niosomes as adjuvant-carrier system for oral mucosal immunization. J. Liposome Res. 2006, 16, 331-345. https://doi.org/10.1080/08982100600992302 PMid:17162576
Shegokar, R.; Al, S.L.; Mitri, K. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharm. Sci. 2011, 14, 100-116. https://doi.org/10.18433/J3M59P PMid:21501557
Bragagni, M.; Mennini, N.; Ghelardini, C.; Mura, P. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting. J. Pharm. Pharm. Sci. 2012, 15, 184-196. https://doi.org/10.18433/J3230M PMid:22365096
Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces 2015, 128, 398-404. https://doi.org/10.1016/j.colsurfb.2015.02.037 PMid:25766923
Chowdhury, P.; Uma Shankar, M.S. Formulation and evaluation of Rifampicin and Ofloxacin niosomes for Drug-resistant TB on Logarithmic-phase cultures of Mycobacterium tuberculosis. Int. J. Rev. Life Sci. 2016, 3, 628-633.
Amiri, B.; Ahmadvand, H.; Farhadi, A.; Najmafshar, A.; Chiani, M.; Norouzian, D. Delivery of vinblastine-containing niosomes results in potent in vitro/in vivo cytotoxicity on tumor cells. Drug Dev. Ind. Pharm. 2018, 44, 1371-1376. https://doi.org/10.1080/03639045.2018.1451880 PMid:29532687
Pham, T.T.; Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. Liposome and niosome preparation using a membrane contactor for scale-up. Colloids Surf. B Biointerfaces 2012, 94, 15-21. https://doi.org/10.1016/j.colsurfb.2011.12.036 PMid:22326648
Alsarra, I.A.; Bosela, A.A.; Ahmed, S.M.; Mahrous, G.M. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur. J. Pharm. Bio pharm. 2005, 59, 485-490. https://doi.org/10.1016/j.ejpb.2004.09.006 PMid:15760729
Changsan N, Chan HK, Separovic F, Srichana T. Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation. J Pharm Sci. 2009;98(2):628-39. https://doi.org/10.1002/jps.21441 PMid:18484099
Manca ML, Sinico C, Maccioni AM, Diez O, Fadda AM, Manconi M. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics. 2012;4(4):590-606. https://doi.org/10.3390/pharmaceutics4040590 PMid:24300372 PMCid:PMC3834926
Chimote G, Banerjee R .In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis .J Biomed Mater Res B Appl Biomater. 2010;94(1):1-10. https://doi.org/10.1002/jbm.b.31608 PMid:20524179
Booysen LL, Colombo L, Brooks E, Hansen R, Gilliland J, Gruppo V, et al.In vivo/in vitro pharmacokinetic and pharmacodynamics study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int J Pharm. 2013;444(1-2):10-7. https://doi.org/10.1016/j.ijpharm.2013.01.038 PMid:23357255
Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Ear J Pharm Sci. 2003;18(2):113-20. https://doi.org/10.1016/S0928-0987(02)00251-8 PMid:12594003
Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R. Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin. Chem Phys Lipids. 2015;193:11-7. https://doi.org/10.1016/j.chemphyslip.2015.09.008 PMid:26409629
Singh H, Bhandari R, Kaur IP. Encapsulation of rifampicin in a solid lipid Nano particulate system to limit its degradation and interaction with isoniazid at acidic pH.Int J Pharm. 2013;446(1-2): 106-11. https://doi.org/10.1016/j.ijpharm.2013.02.012 PMid:23410991
Singh H, Jindal S. Singh, Sharma G, Kaur IP. Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety. Int J Pharm. 2015;485(1-2):138-51. https://doi.org/10.1016/j.ijpharm.2015.02.050 PMid:25769294
Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin. 2011 Jul 1;34(7):945-53. https://doi.org/10.1248/bpb.34.945 PMid:21719996
Yoshida H, Lehr CM, Kok W, Junginger HE, Verhoef JC, Bouwstra JA. Niosomes for oral delivery of peptide drugs. Journal of controlled release. 1992 Jul 1;21(1-3):145-53. https://doi.org/10.1016/0168-3659(92)90016-K
Moazeni E, Gilani K, Sotoudegan F, Pardakhty A, Najafabadi AR, Ghalandari R, Fazeli MR, Jamalifar H. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. Journal of microencapsulation. 2010 Nov 1;27(7):618-27. https://doi.org/10.3109/02652048.2010.506579 PMid:20681747 44)
VARMA JR, REDDY MK, KUMAR CP, REDDY AK, RAJU PP. Indian Journal of Novel Drug Delivery. Indian Journal of Novel Drug delivery. 2011 Oct;3(4):238-46.
Pardakhty A, Moazeni E. Nano-niosomes in drug, vaccine and gene delivery: a rapid overview. Nanomedicine Journal. 2013;1(1):1-2.
Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin. 2011 Jul 1;34(7):945-53. https://doi.org/10.1248/bpb.34.945 PMid:21719996
Kaur IP, Rana C, Singh M, Bhushan S, Singh H, Kakkar S. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. Journal of ocular pharmacology and therapeutics. 2012 Oct 1;28(5):484-96. https://doi.org/10.1089/jop.2011.0176 PMid:22694593
Siew A, Le H, Thiovolet M, Gellert P, Schatzlein A, Uchegbu I. Enhanced oral absorption of hydrophobic and hydrophilic drugs using quaternary ammonium palmitoyl glycol chitosan nanoparticles. Molecular pharmaceutics. 2012 Jan 1;9(1):14-28. https://doi.org/10.1021/mp200469a PMid:22047066
Azmin MN, Florence AT, Handjani-Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS. The effect of niosomes and polysorbate 80 on the metabolism and excretion of methotrexate in the mouse. Journal of microencapsulation. 1986 Jan 1;3(2):95-100. https://doi.org/10.3109/02652048609031563 PMid:3508183
Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin. 2011 Jul 1;34(7):945-53. https://doi.org/10.1248/bpb.34.945 PMid:21719996
Pardakhty A, Varshosaz J, Rouholamini A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. International journal of pharmaceutics. 2007 Jan 10;328(2):130-41 53. Anna, M. https://doi.org/10.1016/j.ijpharm.2006.08.002 PMid:16997517
Katharina, L. Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol. Biosci. 2014, 14, 458-477. https://doi.org/10.1002/mabi.201300551 PMid:24616298
Rinaldi, F.; Hanieh, P.N.; Chan, L.K.N. Chitosan Glutamate-Coated Niosomes A Proposal for Nose-to-Brain Delivery. Pharmaceutics 2018, 10, 38. https://doi.org/10.3390/pharmaceutics10020038 PMid:29565809 PMCid:PMC6027090
Tangri, P.; Khurana, S. Niosomes: Formulation and evaluation. Int. J. Biopharm. 2011, 2, 47-53.
Shi, B.; Fang, C.; Pei, Y. Stealth PEG-PHDCA niosomes: effects of chain length of PEG and particle size on niosomes surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. J. Pharm. Sci. 2006, 95, 1873-1887. https://doi.org/10.1002/jps.20491 PMid:16795003
Dan, N. Chapter 2-Core-shell drug carriers: Liposomes, polymersomes, and niosomes. Nanostructure. Drug Deliv. 2017, 63-105. https://doi.org/10.1016/B978-0-323-46143-6.00002-6
Celia, C.; Trapasso, E.; Cosco, D.; Paolino, D.; Fresta, M. Turbiscan lab expert analysis of the stability of twosomes and ultra deformable liposomes containing a bilayer fluidizing agent. Colloids Surf. B Biointerfaces 2009, 72, 155-160. https://doi.org/10.1016/j.colsurfb.2009.03.007 PMid:19376689
Mahale, N.B.; Thakkar, P.D.; Mali, R.G.; Walunj, D.R.; Chaudhari, S.R. Niosomes: Novel sustained release Nonionic stable vesicular systems -An overview. Adv. Colloid Interface Sci. 2012, 183-184, 46-54. https://doi.org/10.1016/j.cis.2012.08.002 PMid:22947187
Junyaprasert, V.B.; Singhsa, P.; Jintapattanakit, A. Influence of chemical penetration enhancers on skin permeability of ellagic acid-loaded niosomes. Asian J. Pharm. Sci. 2013, 8, 110-117. https://doi.org/10.1016/j.ajps.2013.07.014
Sarthak, M.; Chiranjib, B.; Surajit, G.; Jagannath, K.; Nilmoni, S. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: A comparative study of different microenvironments. J. Phys. Chem. B 2013, 117, 6957. https://doi.org/10.1021/jp403724g PMid:23682632
Jiradej, M.; Narinthorn, K.; Worapaka, M.; Friedrich, G.T.; Werner, R.G.; Aranya, M. Enhancement of transdermal absorption, gene expression and stability of tyrosinase plasmid (pMEL34)-loaded elastic cationic niosomes: Potential application in vitiligo treatment. J. Pharm. Sci. 2010, 99, 3533-3541. https://doi.org/10.1002/jps.22104 Mid:20213835
Attia, N.; Mashal, M.; Grijalvo, S.; Eritja, R.; Zárate, J.; Puras, G.; Pedraz, J.L. Stem cell-based gene delivery mediated by cationic niosomes for bone regeneration. Nanomed. Nanotechnol. Biol. Med. 2017, 14, 521-531. https://doi.org/10.1016/j.nano.2017.11.005 PMid:29157978
Dufes, C.; Gaillard, F.; Uchegbu, I.F.; Schätzlein, A.G.; Olivier, J.C.; Muller, J.M. Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int. J. Pharm. 2004, 285, 77-85. https://doi.org/10.1016/j.ijpharm.2004.07.020 PMid:15488681
Wilkhu, J. Non-Ionic Surfactant Technology for the Delivery and Administration of Sub-Unit Flu Antigens.Ph.D. Thesis, Aston University, Birmingham, UK, 2013.
Rentel, C.O.; Bouwstra, J.A.; Naisbett, B.; Junginger, H.E. Niosomes as a novel peroral vaccine delivery system. Int. J. Pharm. 1999, 186, 161-167. https://doi.org/10.1016/S0378-5173(99)00167-2 PMid:10486434
Taymouri, S.; Varshosaz, J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv. Biomed. Res. 2016, 5, 48. https://doi.org/10.4103/2277-9175.178781 PMid:27110545 PMCid:PMC4817389
Wang, J.; Sui, M.; Fan, W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab. 2010, 11, 129-141. https://doi.org/10.2174/138920010791110827 PMid:20359289
. Salem, H.F.; Kharshoum, R.M.; Elela, F.I.A.; Amr, G.F.; Abdellatif, K.R.A. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv. Transl. Res. 2018, 8,633-644. https://doi.org/10.1007/s13346-018-0499-3 PMid:29488171
Juliano, R.L. Micro-particulateDrug Carriers. In Directed Drug Delivery; Springer Nature: Basel, Switzerland, 1985. https://doi.org/10.1007/978-1-4612-5186-6_9
Shilpa, S.; Srinivasan, B.P.; Chauhan, M. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int. J. Drug Deliv. 2011, 3, 14-24. https://doi.org/10.5138/ijdd.2010.0975.0215.03050
Khaksa, G.; D'Souza, R.; Lewis, S.; Udupa, N. Pharmacokinetic study of niosome encapsulated insulin. Indian J. Exp. Biol. 2000, 38, 901.
Ning, M.; Guo, Y.; Pan, H.; Yu, H.; Gu, Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: Studies in rats. Drug Deliv. 2005, 12, 399-407. https://doi.org/10.1080/10717540590968891 PMid:16253956
Pardakhty, A.; Moazeni, E.; Varshosaz, J.; Hajhashemi, V.A.; Najafabadi, A.R. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. Daru J. Pharm. Sci. 2011, 19, 404-411.
Yoshida, H.; Lehr, C.M.; Kok, W.; Junginger, H.E.; Verhoef, J.C.; Bouwstra, J.A. Niosomes for oral delivery of peptide drugs. J. Control. Release 1992, 21, 145-153. https://doi.org/10.1016/0168-3659(92)90016-K
Yvonne, P.; Mohammed, A.R.; Kirby, D.J.; Mcneil, S.E.; Bramwell, V.W. Vaccine adjuvant systems: Enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 2000, 364, 272-280. https://doi.org/10.1016/j.ijpharm.2008.04.036 PMid:18555624
Mahato, R.I.; Rolland, A.; Tomlinson, E. Cationic Lipid-Based Gene Delivery Systems: Pharmaceutical Perspectives. Pharm. Res. 1997, 14, 853-859. https://doi.org/10.1023/A:1012187414126 PMid:9244140
Mintzer, M.A.; Simanek, E.E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259-302. https://doi.org/10.1021/cr800409e PMid:19053809
Jain, S. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int. J. Pharm. 2005, 296, 80-86. https://doi.org/10.1016/j.ijpharm.2005.02.016 PMid:15885458
Yang, C.; Gao, S.; Song, P.; Dagnaes-Hansen, F.; Jakobsen, M.; Kjems, J. Theranostic Niosomes for Efficient siRNA/microRNA Delivery and Activatable Near-Infrared Fluorescent Tracking of Stem Cells. Acs Appl. Mater. Interfaces 2018, 10, 19494-19503. https://doi.org/10.1021/acsami.8b05513 PMid:29767944
Mayr, J.; Grijalvo, S.; Bachl, J.; Pons, R.; Eritja, R.; Díaz, D.D. Transfection of Antisense Oligonucleotides Mediated by Cationic Vesicles Based on Non-Ionic Surfactant and Polycations Bearing Quaternary Ammonium Moieties. Int. J. Mol. Sci. 2017, 18, 1139. https://doi.org/10.3390/ijms18061139 PMid:28587106 PMCid:PMC5485963
Hume, L.R. A Comparative Study of Niosomes (Non-Ionic Surfactant Vesicles) and Liposomes: Their Stability in Biological Environments. Doctoral Dissertation, University of Strathclyde, Glasgow, Scotland, 1987.
Rogerson, A.; Cummings, J.; Willmott, N.; Florence, A.T. The distribution of doxorubicin in mice following administration in niosomes. J. Pharm. Pharm. 2011, 40, 337-342. https://doi.org/10.1111/j.2042-7158.1988.tb05263.x PMid:2899629
Uchegbu, I.F.; Double, J.A.; Turton, J.A.; Florence, A.T. Distribution, Metabolism and Tumoricidal Activity of Doxorubicin Administered in Sorbitan Monostearate (Span 60) Niosomes in the Mouse. Pharm. Res. 1995, 12, 1019-1024. https://doi.org/10.1023/A:1016210515134 PMid:7494796
Azmin, M.N.; Florence, A.T.; Handjani-Vila, R.M.; Stuart, J.F.; Vanlerberghe, G.; Whittaker, J.S. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J. Pharm. Pharm. 2011, 37, 237-242. https://doi.org/10.1111/j.2042-7158.1985.tb05051.x PMid:2860220
Ke, P.C.; Lin, S.; Parak, W.J.; Davis, T.P.; Caruso, F. A Decade of the Protein Corona. Acs Nano 2017, 11, 11773-11776. https://doi.org/10.1021/acsnano.7b08008 PMid:29206030
Daniele, M.; Paolo, B.; Eugene, M.; Dawson, K.A.; Monopoli, M.P. Surfactant titration of nanoparticle-protein corona. Anal. Chem. 2014, 86, 12055-12063. https://doi.org/10.1021/ac5027176 PMid:25350777
Marilena, H.; Zahraa, A.A.; Mariarosa, M.; Collins, R.F.; Kenneth, D.; Kostas, K. In Vivo Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles. ACS Nano 2015, 9, 8142-8156. https://doi.org/10.1021/acsnano.5b03300 PMid:26135229
Tommy, C.; Iseult, L.; Stina, L.; Tord, B.R.; Eva, T.; Hanna, N.; Dawson, K.A.; Sara, L. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050-2055. https://doi.org/10.1073/pnas.0608582104 PMid:17267609 PMCid:PMC1892985
Published
Abstract Display: 676
PDF Downloads: 574
PDF Downloads: 96 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.