Effects of Extraction Methods on the Physicochemical Properties and Biological Activities of heteroglycans from Hibiscus sabdariffa calyx
Abstract
The hot-water extraction method has been employed to enhance the diffusion rate of heteroglycans, thereby augmenting the extraction efficiency. This study investigates the antioxidant activities and immunological properties of water-soluble polysaccharides derived from the Hibiscus sabdariffa calyx (HWPF and LWPF). These polysaccharides were isolated through two distinct extraction methods involving hot water followed by ethanol precipitation. The physicochemical characterization was conducted through a series of experiments encompassing monosaccharide composition, ultraviolet-visible spectrum analysis, and Fourier-transform infrared (FT-IR) spectroscopy. The evaluation of antioxidative properties employed various techniques, including DPPH and ABTS radical scavenging activities, Ferric Reducing Antioxidant Power, ferrous chelating power, total reducing power, and protection against DNA damage. The assessment of anti-inflammatory potential involved the inhibition of hemolytic activity induced by a hypotonic solution and heat. Furthermore, the impact of the polysaccharides on the production of pro-inflammatory cytokines was analyzed through Luminex assay and RTPCR assay in PBMCs and LPS-stimulated RAW 264.7 cells, respectively. The findings revealed that heteroglycans (LWPF and HWPF) exhibit a content of Ara-Man-Rha-GluA-GalA (41.2:17.2:15.7:9.2:8.8) and Ara-Glu-Rha-Xyl-GluA-Man (31.5:23.8:12.16:10.4:7:6) with molecular weights of approximately 4.5 KDa and 41.3 KDa, respectively. HWPF demonstrated robust metal chelating and scavenging activities. Additionally, each fraction exhibited substantial protection of DNA against damage induced by H2O2. LWPF was observed to significantly down-regulate the expression of pro-inflammatory cytokines IL-6 and COX-2 at both transcriptional and translational levels, along with inhibiting NO production. In summary, these results indicate that the choice of extraction methods influences both the structure and biological activities of heteroglycans, providing valuable insights into the structure-activity relationship.
Keywords: Hibiscus sabdariffa, heteroglycans, hot water extraction, physicochemical properties, Antioxidant activity, Pro-inflammatory cytokines.
Keywords:
Hibiscus sabdariffa, heteroglycans, hot water extraction, physicochemical properties, Antioxidant activity, Pro-inflammatory cytokinesDOI
https://doi.org/10.22270/jddt.v14i4.6436References
Ye J., Hua X., Lyu X., Zhao W., Zhang W., Yang R., Structure and chain conformation characterization of arabinoglucan from by-product of peanut oil processing, Carbohydrate Polymers, 2021, 255:117327 https://doi.org/10.1016/j.carbpol.2020.117327 PMid:33436170
Huang K, Li Y, Tao S. Wei G., Huang Y., Chen D., Wu C. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale. Molecules.2016;21:701. https://doi.org/10.3390/molecules21060701 PMid:27248989 PMCid:PMC6272863
Cerqueira MA, Lima AMP, Souza BWS, Teixeira AJ, Renato A Moreira, António A Vicente Novel functional polysaccharides as edible coatings for cheese. J Agri Food Chem. 2009;57(4):1456-1462. https://doi.org/10.1021/jf802726d PMid:19170503
Souza BWS, Cerqueira MA, Bourbon AI. Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA. Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae.Food Hydrocol. 2012; 27:287-292. https://doi.org/10.1016/j.foodhyd.2011.10.005
Hsu BY, Kuo YC, Chen BH. Polysaccharide Isolated from Zizyphus jujuba Inhibits Interleukin-2 Production in Jurkat T Cells. J Trad Compl Med. 2014; https://doi.org/10.4103/2225-4110.124360 PMid:24860737 PMCid:PMC4003703
Marwa A, Mickael D, Marwa K Ty Marwa Ajala , Droguet M, Kraiem M, Saad HB, Boujhoud Z, Hilali A, Hatem Kallel H, Pujo JM, Amara BI, The Potential Effect of Polysaccharides Extracted from Red Alga Gelidium spinosum against Intestinal Epithelial Cell Apoptosis, Pharmaceuticals 2023, 16(3), 444 https://doi.org/10.3390/ph16030444 PMid:36986542 PMCid:PMC10059935
Arokiarajan, M.S.; Thirunavukkarasu, R.; Joseph, J.; Ekaterina, O.; Aruni, W. Advance research in biomedical applications on marine sulfated polysaccharide. Int. J. Biol. Macromol. 2022, 194, 870-88 https://doi.org/10.1016/j.ijbiomac.2021.11.142 PMid:34843816
Cheng H, Feng S, Jia X, Li Q. Zhou Y, Ding C. Structural characterization and antioxidant activities of polysaccharides extracted from Epimedium acuminatum. Carbohyd Polym. 2013; 92:63-68. https://doi.org/10.1016/j.carbpol.2012.09.051 PMid:23218266
Boudjeko T, Megnekou R, Woguia AL. Mediesse KF, Kanemoto NJE Nounga TCD. Koum O. Partial Characterization, antioxidant in vitro and immunostimulatory activities of Polysaccharides of Chromolaena odorata (Linn) leaves and Allanblackia floribunda stem bark. BMC Res Notes. 2015;8:759. https://doi.org/10.1186/s13104-015-1703-x PMid:26651330 PMCid:PMC4673734
Mediesse KF, Boudjeko T, Hasitha A Matharasala Gangadhar, Wilfred Fon Mbacham & Perumal Yogeeswari Inhibition of lipopolysaccharide (LPS)- induced neuroinflammatory response by polysaccharide fractions of Khaya grandifoliola (C.D.C.) stem bark, Cryptolepis sanguinolenta (Lindl.) Schltr and Cymbopogon citratus Stapf leaves in raw 264.7 macrophages and U87 glioblastoma cells, BMC Complementary and Alternative Medicine 2018:18:86, https://doi.org/10.1186/s12906-018-2156-2 PMid:29530027 PMCid:PMC5848566
Mediesse KF, Sipping KMT, Kouamo MMF, Obadiah K, Tassi YS, Mbacham FW, Polysaccharide fractions from Khaya grandifoliola stem bark and Cryptolepis sanguinolenta leaves: partial characterization, antioxidant and immunomodulatory effects. African Journal of Biotechnology 2018.
Sipping KMT, Mediesse KF, Kenmogne LV, Kanemoto NJE, Dieudonné Njamen D, Boudjeko T, "Polysaccharide-Rich Fractions from Ganoderma resinaceum (Ganodermataceae) as Chemopreventive Agents in N-Diethylnitrosamine-Induced Hepatocellular Carcinoma in Wistar Rats", Evidence-Based Complementary and Alternative Medicine, vol. 2022, Article ID 8198859, 15 pages, 2022. https://doi.org/10.1155/2022/8198859 PMid:35463072 PMCid:PMC9019406
Hsu HB, Liang HP, Li HM, Yuan RN, Sun J, Zhang LL. Isolation, purification, characterization and antioxidant activity of polysaccharides from the stem barks of Acanthopanax leucorrhizus. Carbohydr. Polym. 2018, 196, 359367. https://doi.org/10.1016/j.carbpol.2018.05.028 PMid:29891307
Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L. a phytochemical and pharmacological review. Food Chem. 2014;165: 424-43. https://doi.org/10.1016/j.foodchem.2014.05.002 PMid:25038696
Malacrida A., Erriquez J., Hashemi M., Rodriguez-Menendez V., Cassetti A., Cavaletti G., Milosoa M., Evaluation of antitumoral effect of Hibiscus sabdariffa extract on human breast cancer cells, Biochem Biophys Rep. 2022, 32: 101353. https://doi.org/10.1016/j.bbrep.2022.101353 PMid:36186735 PMCid:PMC9519930
Lin HH, Chan KC, Sheu JY, Hsuan SW , Wang CJ , Chen JH. Hibiscus sabdariffa leaf induces apoptosis of human prostate cancer cells in vitro and in vivo. Food Chem. 2012;132(2):880-891. https://doi.org/10.1016/j.foodchem.2011.11.057
Peng CH, Chyau CC, Chan KC, Tsung-Hsien Chan T-H, Wang C-J, Huang C-N. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. J Agric Food Chem. 2011;59(18):9901-9909. https://doi.org/10.1021/jf2022379 PMid:21870884
Kao ES, Hsu JD, Wang CJ, Su-Huei Yang, Su-Ya Cheng, Huei-Jane Lee Polyphenols extracted from Hibiscus sabdariffa L. inhibited lipopolysaccharide induced inflammation by improving antioxidative conditions and regulating cyclooxygenase-2 expression. Bios, Biotechnol Biochem. 2009;73(2):385-390. https://doi.org/10.1271/bbb.80639 PMid:19202285
Fakeye T. Toxicity and immunomodulatory activity of Hibiscus sabdariffa Linn (Family Malvaceae) in animal models. Afri J Tradit Complement Alternat Med. 2008;5(4):394-398. https://doi.org/10.4314/ajtcam.v5i4.31296
Usoh IF, Akpan EJ, Etim EO, Farombi EO. Antioxidant actions of dried flower extracts of Hibiscus sabdariffa L. on sodium arsenite - induced oxidative stress in rats. Pakistan J Nutr. 2005;4:135-141 https://doi.org/10.3923/pjn.2005.135.141
Zheng D., Zou Y., Samuel Jerry Cobbina SJ., Wei Wang W., Li Q., Chen Y., Feng W., Zou Y., Zhao T., Zhang M., Yang L., Wu X. Purification, characterization and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. J Sci Food Agric., 2017; 97: 1599-1606 https://doi.org/10.1002/jsfa.7908 PMid:27418109
Shen CY, Zhang WL, Jiang JG. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kB signaling pathways in RAW264.7 cells. J Funct Foods. 2017;34:118-129. https://doi.org/10.1016/j.jff.2017.03.060
Brunold C, Deters A, Sidler FK, et al. Polysaccharides from Hibiscus sabdariffa flowers stimulate proliferation and differentiation of human keratinocytes. Planta Med. 2004;70: 370-373. https://doi.org/10.1055/s-2004-818952 PMid:15095156
Yuan Q., Lin S., Fu Y., Nie X.R., Liu W., Su Y., Han Q.H., Zhao L., Zhang Q., Lin D.R. Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra (Abelmoschus esculentus) Int. J. Biol. Macromol. 2019;127:178-186. https://doi.org/10.1016/j.ijbiomac.2019.01.042 PMid:30639655
Wang X.T., Li P.Y., Wu L.F., Wu Y.J., Zheng Y.G., Liu C.Y., Yan Y.P., Jing S.S. Optimization of the extraction process of Anemarrhena asphodeloides polysaccharide complex enzyme and its immune activity. Food Ind. Technol. 2022;43:218-227. https://doi.org/10.13386/j.issn1002-0306.2021090249
Huang Y., Zhou C.H., Huang H.H. Characterization of crude polysaccharides from Hericium erinaceus by different extraction methods and comparison of antioxidant activity. Food Ind. Technol. 2017;38:80-86. https://doi.org/10.13386/j.issn1002-0306.2017.03.007
Jing Y., Yan M., Zhang H., Liu D., Hu B., Zhang D., Zheng Y., Wu L. Effects of Extraction Methods on the Physicochemical Properties and Biological Activities of Polysaccharides from Polygonatum sibiricum, Foods. 2023, 12(10):2088. https://doi.org/10.3390/foods12102088 PMid:37238906 PMCid:PMC10217014
Hua D, Zhang D, Huang B, Yi P, Yan C. Structural characterization and DPPH· radical scavenging activity of a polysaccharide from Guara fruits. Carbohydr Polym. 2014;103:143-7. https://doi.org/10.1016/j.carbpol.2013.12.009 PMid:24528712
Bradford M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein dye binding. Analytical Chemistry. 1976. 72: 248-254. https://doi.org/10.1006/abio.1976.9999 PMid:942051
Dubois M., Gilles K. A., Hamiltion J. K., Rebers P. A., Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 1956:28: 350-356. 23. https://doi.org/10.1021/ac60111a017
Singleton V. L and Rossi J. A. Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagent. American Journal Enology and Viticulture. 37: 1965. 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
Blumenkrantz N. et Asboe-Hansen G. New method for quantitative determination of uronic acids. Analytical Biochemistry, 1973, 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1 PMid:4269305
Medina-Meza, I. G., Aluwi, N. A., Saunders, S. R., & Ganjyal, G. M. GC-MS profiling of triterpenoid saponins from 28 quinoa varieties (Chenopodium quinoa Willd.) grown in Washington State. Journal of Agricultural and Food Chemistry, 2016:64(45), 8583-8591. https://doi.org/10.1021/acs.jafc.6b02156 PMid:27525448
York W. S., Darvill A. G., McNeil M., Stevenson T. T., Albersheim P. Methods in enzimology, Academic Press. 1985, vol. 3. 118th ed. San Diego
Chen, G., Bu, F., Chen, X., Li, C., Wang, S., Kan, J., Ultrasonic extraction, structural characterization, physicochemical properties and antioxidant activities of polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing byproducts. Int. J. Biol. Macromol. 2018:112, 656-666. https://doi.org/10.1016/j.ijbiomac.2018.02.013 PMid:29408482
Chen, C., Wang, P.P., Huang, Q., You, L.J., Liu, R.H., Zhao, M.M., Fu, X., Luo, Z.G. A comparison study on polysaccharides extracted from Fructus Mori using different methods: structural characterization and glucose entrapment. Food Funct. 2019:10,3684-3695. https://doi.org/10.1039/C9FO00026G PMid:31168531
Fan J, Wu Z, Zhao T, Yi Sun, Hong Ye H, Xu R, Zeng X. Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifolia Thumb. Carbohyd Polym. 2014;101:990-997. https://doi.org/10.1016/j.carbpol.2013.10.037 PMid:24299866
Katalinic V, Milos M, Kulisic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006;94:550-557. https://doi.org/10.1016/j.foodchem.2004.12.004 39. Vasco C, Ruales J, Kamal-Eldin A. Total phenol compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008; 111(4):816-823. https://doi.org/10.1016/j.foodchem.2008.04.054
Kong F, Zhang M, Kuang R, Chi J, Wei C. Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi (Litchi chinensis Sonn). Carbohyd Polym. 2010;81(3):612-616. https://doi.org/10.1016/j.carbpol.2010.03.021
Mediesse KF, Woguia AL, Fogue S. et al. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves. J Coas Life Med. 2014; 2(12):962-969.
Woldemichael GM, Wink M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J Agri Food Chem. 2001;49:2327-2332. https://doi.org/10.1021/jf0013499 PMid:11368598
Wang Y, Mao F, Wei X. Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea. Carbohyd Polym. 2012;88:146-153. https://doi.org/10.1016/j.carbpol.2011.11.083
Sikder MA, Rahman MA, Islam MR, A. H. M. Khurshid Alam In vitro antioxidant, reducing power, free radical scavenging and membrane stabilizing activities of Spilanthes calva. Bangladesh Pharm J. 2010;13(1):63-67. https://doi.org/10.1186/s13104-015-1618-6 PMid:26518275 PMCid:PMC4627625
Liu CJ, Liu Q, Sun JD, Jiang B, Yan J. Extraction of water-soluble polysaccharide and the antioxidant activity from Semen Cassiae. J. Food Drug Anal. 2014, 22, 492-499. https://doi.org/10.1016/j.jfda.2014.01.027 PMid:28911465 PMCid:PMC9354996
Lu MK, Jen CI, Chao CH, a sulfated galactoglucan of Laetiporus sulphureus, exhibited anti-inflammatory activities International journal of biological macromolecule 2023 Jan 31:226:1236-1247 https://doi.org/10.1016/j.ijbiomac.2022.11.237 PMid:36442562
Guo, H., Yuan, Q., Fu, Y., Liu, W., Su, Y.H., Liu, H., Wu, C.Y., Zhao, L., Zhang, Q., Lin, D.R., Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from snow chrysanthemum (coreopsis tinctoria) 2019. Polymers 11, 215 (Basel) https://doi.org/10.3390/polym11020215 PMid:30960199 PMCid:PMC6419038
Li, Z.M.; Nie, K.Y.; Wang, Z.J.; Luo, D.H. Quantitative structure activity relationship models for the antioxidant activity of polysaccharides. PLoS ONE 2016, 11, e0163536. https://doi.org/10.1371/journal.pone.0163536 PMid:27685320 PMCid:PMC5042491
Wang, Q.; Wang, F.; Xu, Z.H.; Ding, Z.Y. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation. Molecules 2017, 22, 955. https://doi.org/10.3390/molecules22060955 PMid:28608797 PMCid:PMC6152739
Jing L, Jiang JR, Liu DM, Sheng JW, Sheng J-W, Zhang W-F, Li Z-J andLiu-Ya Wei L-Y. Antioxidant Activity of Polysaccharides from Athyrium multidentatum (Doll.) Ching in d-Galactose-Induced Aging Mice via PI3K/AKT Pathway, Molecules 2019, 24(18), 3364; https://doi.org/10.3390/molecules24183364 PMid:31527444 PMCid:PMC6766938
Chen L, Hu MB. Chen ZY, Wang G Qing Su b, Yu-Jie Liu Preparation, structural characterization and neuroprotective effects of polysaccharides from the pericarp of Zanthoxylum bungeanum Maxim against H2O2-induced oxidative damage in PC12 cells South African Journal of Botany, 2021 :142-165-174 https://doi.org/10.1016/j.sajb.2021.06.026
Mounnissamy VM, Kavimani S, Balu V, Drlin QS. Evaluation of antiinflammatory and membrane stabilizing properties of ethanol extract of Canjera rehedi. Iran J Pharmacol Therapeut. 2008;6:235-237.
Debnath PC, Das A, Islam A, (2013). Membrane stabilization A possible mechanism of action for the anti-inflammatory activity of a Bangladeshi medicinal plant: Erioglossum rubiginosum (Bara Harina). Pharmacognosy Journal; 5:104-107 https://doi.org/10.1016/j.phcgj.2013.04.001
Falade OS, Otemuyiwa IO, Oladipo A, The chemical composition and membrane stability activity of some herbs used in local therapy for anemia. J Ethnopharmacol. 2005;102:15-22. https://doi.org/10.1016/j.jep.2005.04.034 PMid:16039811
Jen CI, Su CH, Lai MN, Lean-Teik Ng Comparative anti-inflammatory characterization of selected fungal and plant water soluble polysaccharides Food Science and Technology Research 2021 online ISSN: 1881-3984; https://doi.org/10.3136/fstr.27.453
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).