Ethanolic Stem-Bark Extract of Blighia unijugata Possesses Anti-Hyperglycemic and Anti-Hyperlipidemic Activity in a Streptozotocin-Induced Diabetes Model

  • HOPE KORSHIE FIADJOE Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX
  • George Assumeng Koffuor Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

Introduction: The global rise in the incidence of diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), and its associated complications have become a public health threat. Besides hyperglycemia, hyperlipidemia has been associated with diabetes due to the defect in insulin secretion and/or action. Medicinal plants are being investigated to discover drug alternatives with better efficacies, lesser adverse effects, and cost-effectiveness. This work investigated the anti-hyperglycemic and anti-hyperlipidemic activity of ethanolic stem bark extract of Blighia unijugata (EBU) in streptozotocin (STZ)-induced diabetic Sprague- Dawley (SD) rats.


Method: T2DM was induced in male SD rats by a single intraperitoneal injection of STZ (50 mg/kg in 0.1 M citrate buffer, pH 4.5) and confirmed 72 hours later. EBU (100 and 200 mg/kg) and glibenclamide (5 mg/kg) were administered orally to the diabetic rats (n = 5) for 28 days. The effect of the treatments on fasting blood glucose (FBG), lipid profile, atherogenic predictor indices, and body weight were assessed.


Results: EBU treatments significantly reduced (p≤0.001) elevated blood glucose, total cholesterol, triglycerides, and Very Low-Density Lipoprotein cholesterol (VLDL-c, p≤0.001) but increased High-Density Lipoprotein cholesterol (HDL, p≤0.05) compared to the diabetic control. Also, all the atherogenic risk predictor indices were significantly reduced (p≤0.001). In addition, EBU treatment mitigated the significant weight loss (p≤0.01) associated with the diabetic state when compared to the normal control.


Conclusion: These findings first report the anti-hyperglycemic, anti-hyperlipidemic, and anti-atherogenic properties of the stem bark of ethanolic extract of Blighia unijugata, and can be further studied and used as an anti-diabetic and anti-hyperlipidemic agent.


Keywords: Blighia unijugata; hyperglycemia; atherogenic index; hyperlipidemia; diabetes

Keywords: Blighia unijugata, hyperglycemia, atherogenic index, hyperlipidemia, diabetes

Downloads

Download data is not yet available.

Author Biographies

HOPE KORSHIE FIADJOE, Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX

Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

George Assumeng Koffuor, Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Prof. George A. Koffuor was a associate professor and former head of Pharmacology Department at the faculty of Pharmacy, Kwame Nkrumah University of Science and Technology, Ghana 

References

1. Mohan V, Khunti K, Chan SP, Filho FF, Tran NQ, Ramaiya K, et al. Management of Type 2 Diabetes in Developing Countries: Balancing Optimal Glycaemic Control and Outcomes with Affordability and Accessibility to Treatment. Diabetes Ther. 2020;11(1):15-35. https://doi.org/10.1007/s13300-019-00733-9 PMid:31773420 PMCid:PMC6965543
2. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377-90. https://doi.org/10.1038/s41581-020-0278-5 PMid:32398868 PMCid:PMC9639302
3. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific Reports. 2020;10(1):14790. https://doi.org/10.1038/s41598-020-71908-9 PMid:32901098 PMCid:PMC7478957
4. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Bärnighausen T, et al. Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care. 2018;41(5):963-70. https://doi.org/10.2337/dc17-1962 PMid:29475843
5. Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: Current situation and perspectives. European Journal of Preventive Cardiology. 2019;26(2_suppl):7-14. https://doi.org/10.1177/2047487319881021 PMid:31766915
6. Petersmann A, Müller-Wieland D, Müller UA, Landgraf R, Nauck M, Freckmann G, et al. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2019;127(S 01):S1-s7. https://doi.org/10.1055/a-1018-9078 PMid:31860923
7. Oloyede OBA, T.O.; Abdussalam, A.F.; Adeleye, A.O. Blighia sapida leaves halt elevated blood glucose,.pdf. 2014.
8. Srinivasan S, Pari L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chemico-Biological Interactions. 2012;195(1):43-51. https://doi.org/10.1016/j.cbi.2011.10.003 PMid:22056647
9. P.A. Akah JAA, O.A. Salawu, T.C. Okoye, N.V. Offiah Effects of Vernonia amygdalina on biochemical and hematological parameters in diabetic rats. Asian Journal of Medical Sciences. 2009;1(3):108-13.
10. Athyros VG, Doumas M, Imprialos KP, Stavropoulos K, Georgianou E, Katsimardou A, et al. Diabetes and lipid metabolism. Hormones (Athens). 2018;17(1):61-7. https://doi.org/10.1007/s42000-018-0014-8 PMid:29858856
11. Bahiru E, Hsiao R, Phillipson D, Watson KE. Mechanisms and Treatment of Dyslipidemia in Diabetes. Curr Cardiol Rep. 2021;23(4):26. https://doi.org/10.1007/s11886-021-01455-w PMid:33655372
12. Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014;63(12):1469-79. https://doi.org/10.1016/j.metabol.2014.08.010 PMid:25242435
13. Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018;25(9):771-82. https://doi.org/10.5551/jat.RV17023 PMid:29998913 PMCid:PMC6143775
14. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17(1):83. https://doi.org/10.1186/s12933-018-0728-6 PMid:29884191 PMCid:PMC5994068
15. Kane JP, Pullinger CR, Goldfine ID, Malloy MJ. Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Curr Opin Pharmacol. 2021;61:21-7. https://doi.org/10.1016/j.coph.2021.08.013 PMid:34562838
16. Setiyorini E, Qomaruddin MB, Wibisono S, Juwariah T, Setyowati A, Wulandari NA, et al. Complementary and alternative medicine for glycemic control of diabetes mellitus: A systematic review. J Public Health Res. 2022;11(3):22799036221106582. https://doi.org/10.1177/22799036221106582 PMid:35911428 PMCid:PMC9335474
17. Usai R, Majoni S, Rwere F. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review. Front Pharmacol. 2022;13:980819. https://doi.org/10.3389/fphar.2022.980819 PMid:36091798 PMCid:PMC9449367
18. Kumar S, Mittal A, Babu D, Mittal A. Herbal Medicines for Diabetes Management and its Secondary Complications. Curr Diabetes Rev. 2021;17(4):437-56. https://doi.org/10.2174/18756417MTExfMTQ1z PMid:33143632
19. Salehi B, Ata A, N VAK, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules. 2019;9(10). https://doi.org/10.3390/biom9100551 PMid:31575072 PMCid:PMC6843349
20. Obeng EA. Blighia unijugata Baker. [Internet] Record from PROTA4U. Lemmens, R.H.M.J., Louppe, D. & Oteng-Amoako, A.A. (Editors). 2010. PROTA (Plant Resources of Tropical Africa / Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. http://www.prota4u.org/search.asp .
21. Burkill HM. The useful plants of West Tropical Africa. 2nd Edition. Volume 5, Families S-Z, Addenda. 2000. Royal Botanic Gardens, Kew, United Kingdom. 686 pp.
22. Hyde M, Wursten B, Ballings P, Coates Palgrave M. Flora of zimbabwe: species information: Blighia unijugata. CITIS Harare; 2002.
23. Offor CE, Onwe NJ, Agbafor KN, Nwangwu SCO, editors. Determination of Proximate and Vitamin Compositions of Blighia unijugata Leaves2015.
24. Agbafor KN, Offor C, Engwa G. Haemoglobin Level, Total White Blood Cell and Packed Cell Volume In The Albino Rats Treated With Aqueous Extract Of Fresh Leave Of Blighia Unijugata. Journal of Environmental Science, Toxicology and Food Technology. 2015;9(2):134-7.
25. Chhabra S, Mahunnah R, Mshiu E. Plants used in traditional medicine in Eastern Tanzania. V. Angiosperms (Passifloraceae to Sapindaceae). Journal of Ethnopharmacology. 1991;33(1-2):143-57. https://doi.org/10.1016/0378-8741(91)90173-B PMid:1943163
26. Ongarora DS. Phytochemical investigation and antimicrobial activity of Blighia unijugata bak (sapindaceae): University Of Nairobi; 2009.
27. Obasi N, Igbochi A. Antibacterial activity of a chemical isolate from stem bark of Blighia unijugata. African Journal of Pharmacology and Pharmaceutical Science. 1992;23:4750-61.
28. Adewuyi A, Oderinde RA, Omotosho M. Comparative Study of the Antibacterial and Cyctotoxicity of the Essential Oils from the Leaves, Stem Bark and Roots of Blighia unijugata Baker (Sapinadaceae). Medicinal and Aromatic Plant Science and Biotechnology. 2009;3:97-9.
29. Sofidiya MO, Jimoh FO, Aliero AA, Afoloyan A, Odukoya OA, Familoni OB. Evaluation of antioxidant and antibacterial properties of six Sapindaceae members. 2012.
30. Sonibare MA. Antioxidant and cytotoxicity evaluations of two species of Blighia providing clues to species diversity. Electronic Journal of Environmental, Agricultural and Food Chemistry (EJEAFChe). 2011;10(10):2960-71.
31. Ajiboye C, Moronkola D, Akinwumi A. Hydrogen Peroxide Free Radical Scavenging Activities of Leaf, Stem Bark, Root, Flower and Fruit of Blighia unijugata Baker (Sapindaceae) Extracts. Journal of Chemical and Pharmaceutical Research. 2017;9:8-12.
32. Agboola O, Ajayi G, Adesegun S, Adesanya S. Comparative molluscicidal activities of fruit pericarp, leaves, seed and stem bark of blighia unijugata baker. Pharmacognosy Journal. 2011;3(25):63-6. https://doi.org/10.5530/pj.2011.25.11
33. Anto F, Aryeetey M, Anyorigiya T, Asoala V, Kpikpi J. The relative susceptibilities of juvenile and adult Bulinus globosus and Bulinus truncatus to the molluscicidal activities in the fruit of Ghanaian Blighia sapida, Blighia unijugata and Balanites aegyptiaca. Annals of Tropical Medicine & Parasitology. 2005;99(2):211-7. https://doi.org/10.1179/136485905X24229 PMid:15814040
34. Paul YA, Etienne EE. Hypotensive effects of a butanol active fraction from leaves of blighia unijugata bak.(sapindaceae) on arterial blood pressure of rabbit. 2013.
35. Claude YAP, Etienne EE. Research Article Acute Toxicity in Mice and Effects of a Butanol Extract from the Leaves of Blighia Unijugata Bak.(Sapindaceae) on Electrocardiogram of Rabbits.
36. Osuala FN, Odoh UE, Onuigbo V, Ohadoma SC. Pharmacognostic Screening and Anti-inflammatory Investigation of the Methanol extract of stem bark of Blighia unijugata Baker (Sapindaceae). Journal of Drug Delivery and Therapeutics. 2020;10(4):146-52. https://doi.org/10.22270/jddt.v10i4.4167
37. Bakre AG, Olayemi JO, Ojo OR, Odusanya ST, Agu GA, Aderibigbe AO. Antidepressant-like effect of ethanol extract of Blighia unijugata Bak. (Sapindaceae) leaves in acute and chronic models of depression in mice. Niger J Physiol Sci. 2019;34(2):191-9.
38. Koffuor GA, Annan K, Kyekyeku JO, Fiadjoe HK, Enyan E. Effect of ethanolic stem bark extract of blighia unijugata (sapindaceae) on monosodium glutamate-induced uterine leiomyoma in Sprague-Dawley rats. British Journal of Pharmaceutical Research. 2013;3(4):880. https://doi.org/10.9734/BJPR/2013/5402
39. Oderinde RA, Ajayi I, Adewuyi A. Preliminary toxicological evaluation and effect of the seed oil of Hura crepitans and Blighia unijugata Bak. on the lipid profile of rat. EJEAFChe. 2009;8(3):209-17.
40. Oloyede O, Ajiboye T, Abdussalam A, Adeleye A. Blighia sapida leaves halt elevated blood glucose, dyslipidemia and oxidative stress in alloxan-induced diabetic rats. Journal of ethnopharmacology. 2014;157:309-19. https://doi.org/10.1016/j.jep.2014.08.022 PMid:25172468
41. Sofowora A. Phytochemical screening of medicinal plants and traditional medicine in Africa. Ibadan, Nigeria: Spectrum Books Limited; 1993:150-156.
42. Evans WC. Trease and Evans' pharmacognosy: Elsevier Health Sciences; 2009.
43. Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies. 2020;8(2):603-8. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
44. Sridevi M, Kalaiarasi P, Pugalendi K. Antihyperlipidemic activity of alcoholic leaf extract of Solanum surattense in streptozotocin-diabetic rats. Asian Pacific Journal of Tropical Biomedicine. 2011;1(2):S276-S80. https://doi.org/10.1016/S2221-1691(11)60171-8
45. Ramachandran S, Rajasekaran A, Manisenthilkumar K. Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark in diabetic rats. Asian Pacific journal of tropical biomedicine. 2012;2(4):262-8. https://doi.org/10.1016/S2221-1691(12)60020-3 PMid:23569911
46. Balogun FO, Ashafa AOT. Aqueous root extracts of Dicoma anomala (Sond.) extenuates postprandial hyperglycaemia in vitro and its modulation on the activities of carbohydrate-metabolizing enzymes in streptozotocin-induced diabetic Wistar rats. South African Journal of Botany. 2017;112:102-11. https://doi.org/10.1016/j.sajb.2017.05.014
47. Gao J, Han Y-L, Jin Z-Y, Xu X-M, Zha X-Q, Chen H-Q, et al. Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats. Carbohydrate Polymers. 2015;124:25-34. https://doi.org/10.1016/j.carbpol.2015.01.068 PMid:25839790
48. Dickson RA, Harley BK, Berkoh D, Ngala RA, Titiloye N, Fleischer T. Antidiabetic and haematological effect of Myrianthus arboreus P. Beauv. Stem bark extract in streptozotocin-induced diabetic rats. 2016.
49. Ene BA. Hypolipidemic effect of biflavonoid fraction from root bark, stem bark, and seed of garcinia kola on poloxamer 407 induced hyperlipidemic rats 2014.
50. Machaba KE. Evaluation of the in vivo anti-hyperlipidemic activity of the triterpene from the stem bark of Protorhus longifolia (Benrh.) Engl: University of Zululand; 2014. https://doi.org/10.1186/1476-511X-13-131 PMid:25127687 PMCid:PMC4246574
51. Kamesh V, Sumathi T. Antihypercholesterolemic effect of Bacopa monniera linn. on high cholesterol diet induced hypercholesterolemia in rats. Asian Pacific Journal of Tropical Medicine. 2012;5(12):949-55. https://doi.org/10.1016/S1995-7645(12)60180-1 PMid:23199712
52. Kumar R, Pate DK, Prasad SK, Sairam K, Hemalatha S. Antidiabetic activity of alcoholic leaves extract of Alangium lamarckii Thwaites on streptozotocin-nicotinamide induced type 2 diabetic rats. Asian Pacific journal of tropical medicine. 2011;4(11):904-9. https://doi.org/10.1016/S1995-7645(11)60216-2 PMid:22078954
53. Kumar R, Patel D, Prasad SK, Sairam K, Hemalatha S. Antidiabetic activity of alcoholic root extract of Caesalpinia digyna in streptozotocin-nicotinamide induced diabetic rats. Asian Pacific Journal of tropical biomedicine. 2012;2(2):S934-S40. https://doi.org/10.1016/S2221-1691(12)60340-2
54. Mohammed RS, Abdulsalam MM, Kntapo FM. Hypoglycemic Effect of Anthocleista djalonensis and Blighi unijugata. Nigerian Journal of Chemical Research. 2023;28(1):025-39. https://doi.org/10.4314/njcr.v28i1.3
55. Tran N, Pham B, Le L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology (Basel). 2020;9(9). https://doi.org/10.3390/biology9090252 PMid:32872226 PMCid:PMC7563488
56. Khalivulla SI, Mohammed A, Mallikarjuna K. Novel Phytochemical Constituents and their Potential to Manage Diabetes. Curr Pharm Des. 2021;27(6):775-88. https://doi.org/10.2174/1381612826666201222154159 PMid:33355047
57. Singh SK, Kesari AN, Gupta RK, Jaiswal D, Watal G. Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats. Journal of Ethnopharmacology. 2007;114(2):174-9. https://doi.org/10.1016/j.jep.2007.07.039 PMid:17889469
58. Firdous SM. Phytochemicals for treatment of diabetes. Excli j. 2014;13:451-3.
59. Oh YS. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes. Evidence-Based Complementary and Alternative Medicine. 2015;2015:629863. https://doi.org/10.1155/2015/629863 PMid:26587047 PMCid:PMC4637477
60. Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Chapter Five - Effects of phytochemicals against diabetes. In: Toldrá F, editor. Advances in Food and Nutrition Research. 89: Academic Press; 2019. p. 209-38. https://doi.org/10.1016/bs.afnr.2019.02.006 PMid:31351526
61. Ahangarpour A, Sayahi M, Sayahi M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes Metab Syndr. 2019;13(1):854-7. https://doi.org/10.1016/j.dsx.2018.11.051 PMid:30641821
62. Gong X, Li X, Xia Y, Xu J, Li Q, Zhang C, et al. Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends in Food Science & Technology. 2020;103:304-20. https://doi.org/10.1016/j.tifs.2020.07.026
63. Liu Y, Liu C, Kou X, Wang Y, Yu Y, Zhen N, et al. Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review. Foods. 2022;11(18). https://doi.org/10.3390/foods11182774 PMid:36140902 PMCid:PMC9497508
Crossmark
Statistics
59 Views | 12 Downloads
How to Cite
1.
FIADJOE HK, Koffuor GA. Ethanolic Stem-Bark Extract of Blighia unijugata Possesses Anti-Hyperglycemic and Anti-Hyperlipidemic Activity in a Streptozotocin-Induced Diabetes Model. JDDT [Internet]. 15Jan.2024 [cited 25Feb.2024];14(1):56-4. Available from: https://jddtonline.info/index.php/jddt/article/view/6369