Encapsulation Methods and Releasing Mechanisms of Encapsulated Active Drug

  • Kakwokpo Clémence N’GUESSAN-GNAMAN Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0009-0002-1530-0500
  • Nakognon Awa TUO-KOUASSI Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0000-0002-9276-9655
  • Ismael DALLY Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0009-0001-7088-0483
  • Sandrine AKA-ANY-GRAH Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0009-0007-5221-9943
  • Rosine Désirée CHOUGOUO KENGNE-NKUITCHOU Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0000-0002-2239-8561
  • Arthur José LIA Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0009-0008-4220-2790
  • Apo Laurette ANIN Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0009-0007-4407-5652
  • Alain N’GUESSAN Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire https://orcid.org/0009-0003-3289-6606

Abstract

Substances of plant origin are chemically unstable and easily oxidized by external conditions. However, they have to remain in their bioactive form when they are used in food, pharmaceutical, nutraceutical and cosmetic industries. Encapsulation method is an effective technique that should protect them preventing the degradation of these active substances and thus prevent them from losing their activities.


In this review, the strategies for encapsulating plant substances and their preparation methods including emulsification, atomization, coaxial electrospray system, lyophilization, coacervation, in situ polymerization, melt extrusion, supercritical fluid technology, fluidized bed coating etc. were discussed. The release mechanisms of plant active substances were also presented.


The choice of an appropriate encapsulation technique and wall material depends on the final use of the product and the processing conditions involved. The use of liposomes, ethosomes, phytosomes, emulsions, microspheres, microcapsules, solid lipid nanoparticles including formulations based on plant substances has enhanced their therapeutic effects. With the use of all these encapsulation systems, the formulation is delivered in a targeted manner, giving it an on-site effect, and the bioavailability of the formulation is also improved. With these new drug delivery systems, actives and extracts used in herbal formulations exhibit improved stability, sustained release from the formulation, protection against toxicity, and improved therapeutic efficacy.


Keywords : nanoparticles, bioactive substance, formulation

Keywords: nanoparticles, bioactive substance, formulation

Downloads

Download data is not yet available.

Author Biographies

Kakwokpo Clémence N’GUESSAN-GNAMAN, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Nakognon Awa TUO-KOUASSI, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Ismael DALLY, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Sandrine AKA-ANY-GRAH, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Rosine Désirée CHOUGOUO KENGNE-NKUITCHOU, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Arthur José LIA, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Apo Laurette ANIN, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Alain N’GUESSAN, Laboratoire des sciences du médicament, sciences analytiques et santé publique, Unité de formation et de recherche des sciences pharmaceutiques et biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

Laboratoire des Sciences du Médicament, Sciences Analytiques et Santé Publique, Unité de formation et de recherche des Sciences Pharmaceutiques et Biologiques, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire

References

1. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, et al. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr Rev Food Sci Food Saf. 2016;15(1):143‑82. DOI: https://doi.org/10.1111/1541-4337.12179
2. Velasco J, Dobarganes C, Márquez-Ruiz G. Variables affecting lipid oxidation in dried microencapsulated oils. Grasas Aceites. 30 sept 2003;54(3):304‑14. DOI : https://doi.org/10.3989/gya.2003.v54.i3.246
3. Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 1 oct 2010;81(7):680‑9. DOI: https://doi.org/10.1016/j.fitote.2010.05.001
4. Devi VK, Jain N, Valli KS. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev. janv 2010;4(7):27‑31.DOI: https://doi.org/10.4103/0973-7847.65322
5. Martins E, Poncelet D, Rodrigues RC, Renard D. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. J Microencapsul. déc 2017;34(8):754‑71. DOI: https://doi.org/10.1080/02652048.2017.1403495
6. Ruiz Ruiz JC, Ortiz Vazquez EDLL, Segura Campos MR. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods. Crit Rev Food Sci Nutr. 3 mai 2017;57(7):1423‑34. DOI: https://doi.org/10.1080/10408398.2014.1002906
7. Sagiri SS, Anis A, Pal K. Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polym-Plast Technol Eng. 11 févr 2016;55(3):291‑311. DOI: http://dx.doi.org/10.1080/03602559.2015.1050521
8. Wakil A, Mackenzie G, Diego-Taboada A, Bell JG, Atkin SL. Enhanced bioavailability of eicosapentaenoic acid from fish oil after encapsulation within plant spore exines as microcapsules. Lipids. juill 2010;45(7):645‑9. DOI: https://doi.org/10.1007/s11745-010-3427-y
9. Calvo P, Castaño ÁL, Hernández MT, González-Gómez D. Effects of microcapsule constitution on the quality of microencapsulated walnut oil. Eur J Lipid Sci Technol. 2011;113(10):1273‑80. DOI: http://dx.doi.org/10.1002/ejlt.201100039
10. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int. 1 nov 2007;40(9):1107‑21. DOI: https://doi.org/10.1016/j.foodres.2007.07.004
11. Fang Z, Bhandari B. Encapsulation of polyphenols – a review. Trends Food Sci Technol. 1 oct 2010;21(10):510‑23.DOI: https://doi.org/10.1016/j.tifs.2010.08.003
12. Richard J, Benoît JP. Microencapsulation. In: Techniques de l’Ingénieur Génie des procédés, [Internet]. 2000 [cité 31 mai 2023]. p. 1‑20. Disponible sur: https://www.techniques-ingenieur.fr/base-documentaire/archives-th12/archives-formulation-tiajc/archive-1/microencapsulation-j2210/
13. Poncelet D, Dreffier C. Les méthodes de microencapsulation de A Z (ou presque). Microencapsul Sci Aux Technol. 1 janv 2007;23‑33.
14. Chaturvedi M, Kumar M, Sinhal A, Saifi A. Recent development in novel drug delivery systems of herbal drugs. Int J Green Pharm IJGP [Internet]. 2011 [cité 31 mai 2023];5(2). Disponible sur: https://www.greenpharmacy.info/index.php/ijgp/article/view/182
15. Dhiman A, Nanda A, Ahmad S. Novel herbal drug delivery system (NHDDS): the need of hour. Int Proc Chem Biol Environ Eng IPCBEE. 2012;49:171‑5.
16. Kulkarni G. HERBAL DRUG DELIVERY SYSTEMS: AN EMERGING AREA IN HERBAL DRUG RESEARCH. In 2011 [cité 31 mai 2023]. Disponible sur: https://www.semanticscholar.org/paper/HERBAL-DRUG-DELIVERY-SYSTEMS%3A-AN-EMERGING-AREA-IN-Kulkarni/9d2003647347dd84997489817e76fbf712764c8c
17. Sarangi MK, Padhi, S. Novel Herbal Drug Delivery System: An Overview : Archives of Medicine and Health Sciences. 2018;6(1):171.DOI: http://dx.doi.org/10.4103/amhs.amhs_88_17
18. Chan ES, Yim ZH, Phan SH, Mansa RF, Ravindra P. Encapsulation of herbal aqueous extract through absorption with ca-alginate hydrogel beads. Food Bioprod Process. juin 2010;88(2‑3):195‑201. DOI: http://dx.doi.org/10.1016/j.fbp.2009.09.005
19. Chao P, Deshmukh M, Kutscher HL, Gao D, Sundara Rajan S, Hu P, et al. Pulmonary targeting microparticulate camptothecin delivery system: anti-cancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs. janv 2010;21(1):10.1097/CAD.0b013e328332a322.
20. Garg R, Gupta GD. Gastroretentive Floating Microspheres of Silymarin: Preparation and In Vitro Evaluation. Trop J Pharm Res [Internet]. 2010 [cité 20 mai 2023];9(1). Disponible sur: https://www.ajol.info/index.php/tjpr/article/view/52037
21. You J, Cui F de, Han X, Wang Y sheng, Yang L, Yu Y wei, et al. Study of the preparation of sustained-release microspheres containing zedoary turmeric oil by the emulsion-solvent-diffusion method and evaluation of the self-emulsification and bioavailability of the oil. Colloids Surf B Biointerfaces. 1 mars 2006;48(1):35‑41.DOI: https://doi.org/10.1016/J.COLSURFB.2005.12.011
22. Xiao L, Zhang Y, Xu J, Jin X. Preparation of floating rutin-alginate-chitosan microcapsule. Chin Tradit Herb Drugs [Internet]. 1994 [cité 22 nov 2023]; Disponible sur:
23. Natarajan V, Krithica N, Madhan B, Sehgal PK. Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. J Pharm Sci. janv 2011;100(1):195‑205.DOI: https://doi.org/10.1002/jps.22266
24. Gavini E, Alamanni MC, Cossu M, Giunchedi P. Tabletted microspheres containing Cynara scolymus (var. Spinoso sardo) extract for the preparation of controlled release nutraceutical matrices. J Microencapsul. août 2005;22(5):487‑99.DOI: https://doi.org/10.1080/02652040500099919
25. Engel RH, Riggi SJ, Fahrenbach MJ. Insulin: Intestinal Absorption as Water-in-Oil-in-Water Emulsions. Nature. août 1968;219(5156):856‑7.DOI: https://doi.org/10.1038/219856a0
26. Jiao J, Rhodes DG, Burgess DJ. Multiple emulsion stability: pressure balance and interfacial film strength. J Colloid Interface Sci. 15 juin 2002;250(2):444‑50. DOI: https://doi.org/10.1006/jcis.2002.8365
27. Dams SS, Walker IM. [5] Multiple emulsions as targetable delivery systems. In: Methods in Enzymology [Internet]. Academic Press; 1987 [cité 1 juin 2023]. p. 51‑64. (Drug and Enzyme Targeting Part B; vol. 149). Disponible sur: https://www.sciencedirect.com/science/article/pii/0076687987490435
28. Lee GS, Lee DH, Pyo HB. Preparation and characterization of encapsulation of multiple lipid carrier (MLC) using vegetable fat. J Ind Eng Chem. 25 mai 2011;17(3):421‑6. DOI:http://dx.doi.org/10.1016/j.jiec.2011.05.017
29. Cournarie F, Savelli MP, Rosilio V, Bretez F, Vauthier C, Grossiord JL, et al. Insulin-loaded W/O/W multiple emulsions: comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. nov 2004;58(3):477‑82.
30. Kita Y, Matsumoto S, Yonezawa D. Viscometric method for estimating the stability of W/O/W-type multiple-phase emulsions. J Colloid Interface Sci. 15 oct 1977;62(1):87‑94. DOI: https://doi.org/10.1016/0021-9797(77)90068-6
31. Morais JM, Rocha-Filho PA, Burgess DJ. Relationship between rheological properties and one-step W/O/W multiple emulsion formation. Langmuir ACS J Surf Colloids. 7 déc 2010;26(23):17874‑81. DOI: https://doi.org/10.1021/la103358n
32. Rajesh K, Murugesan SK, Nanjaian M. Multiple Emulsions: A Review. Scribd. 2012;2(1):9‑19.
33. Can Karaca A, Low N, Nickerson M. Encapsulation of Flaxseed Oil Using a Benchtop Spray Dryer for Legume Protein–Maltodextrin Microcapsule Preparation. J Agric Food Chem. 29 mai 2013;61(21):5148‑55. https://doi.org/10.1021/jf400787j
34. Durante M, Lenucci MS, Laddomada B, Mita G, Caretto S. Effects of sodium alginate bead encapsulation on the storage stability of durum wheat (Triticum durum Desf.) bran oil extracted by supercritical CO2. J Agric Food Chem. 24 oct 2012;60(42):10689‑95. DOI:https://doi.org/10.1021/jf303162m
35. Rubilar M, Morales E, Contreras K, Ceballos C, Acevedo F, Villarroel M, et al. Development of a soup powder enriched with microencapsulated linseed oil as a source of omega-3 fatty acids. Eur J Lipid Sci Technol. 2012;114(4):423‑33.DOI: https://doi.org/10.1002/ejlt.201100378
36. Gomes MTMS, Santos DT, Meireles M a. A. Trends in particle formation of bioactive compounds using supercritical fluids and nanoemulsions. Food Public Health. 2012;2(5):142‑52. doi: 10.5923/j.fph.20120205.05
37. Li X, Anton N, Ta TMC, Zhao M, Messaddeq N, Vandamme TF. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery. Int J Nanomedicine. 2011;6:1313‑25.DOI: https://doi.org/10.2147/ijn.s20353
38. Hernandez E. Structured lipids as delivery systems. In: Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals. 2008. p. 135‑48.
39. Martins E, Poncelet D, Renard D. A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique. React Funct Polym. mai 2017;114:49‑57. DOI: http://dx.doi.org/10.1016/j.reactfunctpolym.2017.03.006
40. Martins E, Renard D, Adiwijaya Z, Karaoglan E, Poncelet D. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology. J Microencapsul. févr 2017;34(1):82‑90. DOI: https://doi.org/10.1080/02652048.2017.1284278
41. Martins E, Renard D, Davy J, Marquis M, Poncelet D. Oil core microcapsules by inverse gelation technique. J Microencapsul. 2015;32(1):86‑95.DOI: https://doi.org/10.3109/02652048.2014.985342
42. Hom FS, Veresh SA, Ebert WR. Soft Gelatin Capsules II: Oxygen Permeability Study of Capsule Shells. J Pharm Sci. 1 mai 1975;64(5):851‑7.DOI: https://doi.org/10.1002/jps.2600640528
43. Liu S, Low NH, Nickerson MT. Entrapment of Flaxseed Oil Within Gelatin-Gum Arabic Capsules. J Am Oil Chem Soc. 2010;87(7):809‑15.DOI: http://dx.doi.org/10.1007/s11746-010-1560-7
44. Lidert Z. Microencapsulation: an overview of the technology landscape. Dans R.R. Meyer (dirs). Delivery System Handbook for Personal Care and Cosmetic Products [Internet]. Meyer Rosen. 2005 [cité 23 nov 2023]. 181‑190 p. Disponible sur: https://shop.elsevier.com/books/delivery-system-handbook-for-personal-care-and-cosmetic-products/rosen/978-0-8155-1504-3
45. Vasisht N. Chapter 2 - Factors and Mechanisms in Microencapsulation. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R, éditeurs. Microencapsulation in the Food Industry [Internet]. San Diego: Academic Press; 2014 [cité 23 nov 2023]. p. 15‑24. Disponible sur: https://www.sciencedirect.com/science/article/pii/B9780124045682000029
46. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid-Based Complement Altern Med ECAM. 2014;2014:651593.DOI: https://doi.org/10.1155/2014/651593
47. Nimesh S, Gupta N. Perspectives and Challenges of Nanomedicine in Gene Silencing. Pharm Technol. 2 mars 2014;38(3):30‑5.
48. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 1 nov 2002;54 Suppl 1:S131-155.DOI: https://doi.org/10.1016/s0169-409x(02)00118-7
49. McClements DJ, Decker EA, Park Y, Weiss J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr. juin 2009;49(6):577‑606. DOI:https://doi.org/10.1080/10408390902841529
50. Roccia P, Martínez ML, Llabot JM, Ribotta PD. Influence of spray-drying operating conditions on sunflower oil powder qualities. Powder Technol. mars 2014;254:307‑13. DOI: http://dx.doi.org/10.1016/j.powtec.2014.01.044
51. Zuidam NJ, Shimoni E. Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. In: Zuidam NJ, Nedovic V, éditeurs. New York, NY: Springer New York; 2010 [cité 11 déc 2023]. p. 3‑29. Disponible sur: http://link.springer.com/10.1007/978-1-4419-1008-0_2
52. Gallo L, Llabot JM, Allemandi D, Bucalá V, Piña J. Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technol. 10 mars 2011;208(1):205‑14.DOI: http://dx.doi.org/10.1016/j.powtec.2010.12.021
53. Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. avr 2013;115(4):443‑51 DOI: http://dx.doi.org/10.1016/j.jfoodeng.2012.03.033
54. Heinzelmann K, Franke K, Jensen B, Haahr AM. Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques. Eur J Lipid Sci Technol. 2000;102(2):114‑21. DOI: http://dx.doi.org/10.1002/(SICI)1438-9312(200002)102:2%3C114::AID-EJLT114%3E3.0.CO;2-0
55. Heinzelmann K, Franke K, Velasco J, Marquez-Ruiz G. Microencapsulation of fish oil by freeze-drying techniques and influence of process parameters on oxidative stability during storage. Eur Food Res Technol Z Lebensm-Unters -Forsch A. 1 janv 2000;211(4):234‑9.
56. Oetjen Freeze-drying (2nd ed). Wiley-VCH Verlag Gmbh & Co. KGaA. - Recherche Google [Internet]. [cité 11 déc 2023]. Disponible sur: https://www.google.com/search?q=Oetjen+Freeze-drying+%282nd+ed%29.+Wiley-VCH+Verlag+Gmbh+%26+Co.+KGaA.&client=firefox-b-d&sca_esv=589766361&ei=m_t2ZbLXK-CTkdUPlM6miA0&ved=0ahUKEwjykPPFrIeDAxXgSaQEHRSnCdEQ4dUDCBA&uact=5&oq=Oetjen+Freeze-drying+%282nd+ed%29.+Wiley-VCH+Verlag+Gmbh+%26+Co.+KGaA.&gs_lp=Egxnd3Mtd2l6LXNlcnAiQE9ldGplbiBGcmVlemUtZHJ5aW5nICgybmQgZWQpLiBXaWxleS1WQ0ggVmVybGFnIEdtYmggJiBDby4gS0dhQS5IAFAAWABwAHgAkAEAmAEAoAEAqgEAuAEDyAEA-AEB4gMEGAAgQQ&sclient=gws-wiz-serp
57. Krokida MK, Philippopoulos C. Volatility of apples during air and freeze drying. J Food Eng. 1 mars 2006;73(2):135‑41.DOI: http://dx.doi.org/10.1016/j.jfoodeng.2005.01.012
58. Desobry SA, Netto FM, Labuza TP. Comparison of Spray-drying, Drum-drying and Freeze-drying for β-Carotene Encapsulation and Preservation. J Food Sci. 1997;62(6):1158‑62. DOI: https://doi.org/10.1111/j.1365-2621.1997.tb12235.x
59. Sinha VR, Agrawal MK, Kumria R, Bhinge JR. Influence of operational variables on properties of piroxicam pellets prepared by extrusion-spheronization: A technical note. AAPS PharmSciTech. mars 2007;8(1):E137‑41.DOI: https://doi.org/10.1208/pt0801020
60. Maji TK, Baruah I, Dube S, Hussain MR. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresour Technol. mars 2007;98(4):840‑4.DOI: https://doi.org/10.1016/j.biortech.2006.03.005
61. Latha MS, Rathinam K, Mohanan PV, Jayakrishnan A. Bioavailability of theophylline from glutaraldehyde cross-linked casein microspheres in rabbits following oral administration. J Controlled Release. 1 avr 1995;34(1):1‑7.DOI: http://dx.doi.org/10.1080/02652040110105391
62. Lazko J, Popineau Y, Legrand J. Soy glycinin microcapsules by simple coacervation method. Colloids Surf B Biointerfaces. 15 août 2004;37(1‑2):1‑8.DOI: https://doi.org/10.1016/j.colsurfb.2004.06.004
63. Mauguet MC, Legrand J, Brujes L, Carnelle G, Larre C, Popineau Y. Gliadin matrices for microencapsulation processes by simple coacervation method. J Microencapsul. 2002;19(3):377‑84. DOI: https://doi.org/10.1080/02652040110105346
64. Mohanty B, Bohidar HB. Systematic of Alcohol-Induced Simple Coacervation in Aqueous Gelatin Solutions. Biomacromolecules. 1 juill 2003;4(4):1080‑6.DOI: https://doi.org/10.1021/bm034080l
65. Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2005;12(1):41‑57.DOI: https://doi.org/10.1080/10717540590889781
66. Rivier M, Méot JM, Ferré T, Briard M. Le séchage des mangues [Internet]. éditions Quae; 2009 [cité 6 mai 2023]. Disponible sur: https://www.quae-open.com/product/11/9782759203420/le-sechage-des-mangues
67. Weiβ G, Knoch A, Laicher A, Stanislaus F, Daniels R. Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP) II. Microencapsulation of ibuprofen. Int J Pharm. 19 sept 1995;124(1):97‑105.DOI: https://doi.org/10.1016/0378-5173(95)00084-V
68. Wu KG, Xiao Q. Microencapsulation of Fish Oil by Simple Coacervation of Hydroxypropyl Methylcellulose. Chin J Chem. 2005;23(11):1569‑72.DOI: https://doi.org/10.1002/CJOC.200591569
69. Burgess DJ, Carless JE. Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation. J Colloid Interface Sci. 1 mars 1984;98(1):1‑8.
70. F W, R de V, P S, Cg de K. Complex coacervation of whey proteins and gum arabic. Biomacromolecules [Internet]. avr 2003 [cité 23 mai 2023];4(2). Disponible sur: https://pubmed.ncbi.nlm.nih.gov/12625724/
71. Saravanan M, Rao KP. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydr Polym. 2010;3(80):808‑16. DOI: http://dx.doi.org/10.1016/j.carbpol.2009.12.036
72. Singh ON, Burgess J. Characterization of albumin-alginic acid complex coacervation. J Pharm Pharmacol. oct 1989;41(10):670‑3.DOI https://doi.org/10.1111/j.2042-7158.1989.tb06338.x
73. Thimma RT, Tammishetti S. Study of complex coacervation of gelatin with sodium carboxymethyl guar gum: microencapsulation of clove oil and sulphamethoxazole. J Microencapsul. 2003;20(2):203‑10.DOI: http://dx.doi.org/10.1080/00914037.2011.553851
74. Tsung M, Burgess DJ. Preparation and stabilization of heparin/gelatin complex coacervate microcapsules. J Pharm Sci. mai 1997;86(5):603‑7. DOI: https://doi.org/10.1021/js9603257
75. Schmitt C, Sanchez C, Thomas F, Hardy J. Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium. Food Hydrocoll. 1 nov 1999;13(6):483‑96.DOI https://doi.org/10.1016/S0268-005X(99)00032-6
76. Hwang DS, Waite JH, Tirrell M. Promotion of osteoblast proliferation on complex coacervation-based hyaluronic acid - recombinant mussel adhesive protein coatings on titanium. Biomaterials. févr 2010;31(6):1080‑4.DOI: https://doi.org/10.1016/j.biomaterials.2009.10.041
77. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul. mai 2010;27(3):187‑97. DOI: https://doi.org/10.3109/02652040903131301
78. Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. févr 2001;22(3):231‑41.DOI: https://doi.org/10.1016/s0142-9612(00)00178-2
79. Tiwari S, Verma P. Microencapsulation technique by solvent evaporation method (Study of effect of process variables | [Internet]. [cité 11 déc 2023]. Disponible sur: https://www.academia.edu/43594980/Microencapsulation_technique_by_solvent_evaporation_method_Study_of_effect_of_process_variables
80. Yuliani S, Torley P, D’Arcy B, Nicholson T, Bhandari B. Extrusion of mixtures of starch and D-limonene encapsulated with B-cyclodextrin: Flavour retention and physical properties. Food Res Int. 2006;39(3):318‑31.DOI: http://dx.doi.org/10.1016/j.foodres.2005.08.005
81. Zhang L, Huang J, Si T, Xu RX. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices. nov 2012;9(6):595‑612. DOI: https://doi.org/10.1586/erd.12.58
82. Xie J, Ng WJ, Lee LY, Wang CH. Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J Colloid Interface Sci. 15 janv 2008;317(2):469‑76. DOI: https://doi.org/10.1016/j.jcis.2007.09.082
83. Xi J, Zhang Q, Myers D, Sun Y, Cao G. Hollow hemispherical titanium dioxide aggregates fabricated by coaxial electrospray for dye-sensitized solar cell application. J Nanophotonics. 1 janv 2012;6:063519.
84. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañán-Calvo AM. Micro/nano encapsulation via electrified coaxial liquid jets. Science. 1 mars 2002;295(5560):1695‑8. DOI: https://doi.org/10.1126/science.1067595
85. Almeida AP, Rodríguez-Rojo S, Serra AT, Vila-Real H, Simplicio AL, Delgadilho I, et al. Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innov Food Sci Emerg Technol. 1 oct 2013;20:140‑5. DOI: http://dx.doi.org/10.1016/j.ifset.2013.07.009
86. Parhi R, Suresh P. Supercritical Fluid Technology: A Review. J Adv Pharm Sci Technol. 30 janv 2013;1(1):13‑36.
87. Hwang JS, Kim JN, Wee YJ, Yun JS, Jang HG, Kim SH, et al. Preparation and characterization of melamine-formaldehyde resin microcapsules containing fragrant oil. Biotechnol Bioprocess Eng. 1 août 2006;11(4):332‑6.DOI: http://dx.doi.org/10.1007/BF03026249
88. Poncelet ET D. Fluid-Bed Coating. In: Encapsulated and Powdered Foods. CRC Press; 2005.
89. Dima C, Pătraşcu L, Cantaragiu A, Alexe P, Dima Ş. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem. 15 mars 2016;195:39‑48. DOI: https://doi.org/10.1016/j.foodchem.2015.05.044
90. Ye Q, Asherman J, Stevenson M, Brownson E, Katre NV. DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release Off J Control Release Soc. 14 févr 2000;64(1‑3):155‑66.DOI: https://doi.org/10.1016/s0168-3659(99)00146-7
91. Siegel RA, Rathbone MJ. Overview of controlled release mechanisms. In: Fundamentals and Applications of Controlled Release Drug Delivery [Internet]. Springer US; 2012 [cité 23 mai 2023]. p. 19‑43. Disponible sur: http://www.scopus.com/inward/record.url?scp=84975838730&partnerID=8YFLogxK
92. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci Off J Eur Fed Pharm Sci. mai 2001;13(2):123‑33.DOI: https://doi.org/10.1016/s0928-0987(01)00095-1
93. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release Off J Control Release Soc. 15 juin 2001;73(2‑3):121‑36. DOI: https://doi.org/10.1016/s0168-3659(01)00248-6
94. Siepmann J, Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev. 11 juin 2001;48(2‑3):229‑47.DOI: https://doi.org/10.1016/s0169-409x(01)00116-8
95. Averina E, Allémann E. Encapsulation of alimentary bioactive oils of the Baikal Lake area into pH-sensitive micro- and nanoparticles. Lebensm-Wiss Ie Technol [Internet]. 2013 [cité 23 mai 2023]; Disponible sur: http://dx.doi.org/10.1016/j.lwt.2013.01.020
96. McClements DJ, Li Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci. 15 sept 2010;159(2):213‑28. DOI: https://doi.org/10.1016/j.cis.2010.06.010
97. Ayala-Zavala JF, Soto-Valdez H, González-León A, Álvarez-Parrilla E, Martín-Belloso O, González-Aguilar GA. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2008;3‑4(60):359‑68. DOI: http://dx.doi.org/10.1007%2Fs10847-007-9385-1
98. Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release Off J Control Release Soc. 20 juill 2012;161(2):351‑62.DOI: https://doi.org/10.1016/j.jconrel.2011.10.006
99. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110‑1.
100. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 11 juin 2001;48(2‑3):139‑57. DOI: https://doi.org/10.1016/s0169-409x(01)00112-0
Crossmark
Statistics
96 Views | 12 Downloads
How to Cite
1.
N’GUESSAN-GNAMAN K, TUO-KOUASSI N, DALLY I, AKA-ANY-GRAH S, CHOUGOUO KENGNE-NKUITCHOU R, LIA A, ANIN A, N’GUESSAN A. Encapsulation Methods and Releasing Mechanisms of Encapsulated Active Drug. JDDT [Internet]. 15Jan.2024 [cited 25Feb.2024];14(1):155-68. Available from: https://jddtonline.info/index.php/jddt/article/view/6356

Most read articles by the same author(s)