DNA tetrahedron as nanoparticulated delivery system in combating diseases
Abstract
Many diseases suffer from drug resistance and nucleic acid cargo delivery. To optimize pharmaceutics and to enhance their efficiency of cellular uptake, DNA nanomaterial tetrahedrons, owing to their precise control in size, shape, excellent biocompatibility and cellular permeability, reduced cytotoxicity, good stability, ease synthesis and multiple sites for targeting design, have attracted attention for targeting cargos delivery. Their nanostructural binding efficiency with many cargos depends on their electrostatic attractions among free electrons of phosphate oxygen, sugar and base nitrogen. Self-assembled DNA tetrahedrons (DTs) alone also can regulate cellular processes to some extent, especially, on migration, differentiation, proliferation and autophagy, and their modifications with the attachment of aptamers, peptides, nucleic acids, antibodies, different low-molecular-weight drugs and other components, make them a novel targeted delivery system as effective nanomedicine. This review demonstrates the current progress of DTs towards their synthesis, characterization, biomedical applications, biodistribution, elimination and toxicity as possible nanoparticulated delivery system.
Keywords: Diseases; Drug resistance; DNA tetrahedron; nanoparticulated delivery system; Nanomedicine
Keywords:
Diseases, Drug resistance, DNA tetrahedron, nanoparticulated delivery system, NanomedicineDOI
https://doi.org/10.22270/jddt.v14i2.6326References
Subbiah V. The next generation of evidence-based medicine. Nat Med. 2023; 29:49-58. https://doi.org/10.1038/s41591-022-02160-z PMid:36646803
Pene F, Courtine E, Cariou A, Mira JP. Toward theranostics. Crit Care Med. 2009; 37:S50-S58. https://doi.org/10.1097/CCM.0b013e3181921349 PMid:19104225
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010; 62: 1052-63. https://doi.org/10.1016/j.addr.2010.08.004 PMid:20709124 PMCid:PMC3769170
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer. 2023; 22:169. https://doi.org/10.1186/s12943-023-01865-0 PMid:37814270 PMCid:PMC10561438
Hu CMJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 2011; 108:10980-85. https://doi.org/10.1073/pnas.1106634108 PMid:21690347 PMCid:PMC3131364
Campora S, Ghersi G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnol Rev. 2022; 11:2595-631. https://doi.org/10.1515/ntrev-2022-0148
Al-Jamal WT, Kostarelos K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011; 44:1094-104. https://doi.org/10.1021/ar200105p PMid:21812415
Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005; 4:581-93. https://doi.org/10.1038/nrd1775 PMid:16052241
Duncan B, Kim C, Rotello VM. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Cont Rel. 2010; 148: 122-7. https://doi.org/10.1016/j.jconrel.2010.06.004 PMid:20547192 PMCid:PMC2952284
Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery and cancer therapy. Mater today. 2011; 14: 316-23. https://doi.org/10.1016/S1369-7021(11)70161-4
Bobo D, Robinson KJ, Islam J, Theerecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm Res. 2016; 33:2373-87. https://doi.org/10.1007/s11095-016-1958-5 PMid:27299311
Keles E, Song Y, Du D, Dong WJ, Lin Y. Recent progress in nanomaterials for gene delivery applications. Biomater Sci. 2016; 4: 1291-309. https://doi.org/10.1039/C6BM00441E PMid:27480033
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Cont Rel. 2006; 114: 100-9. https://doi.org/10.1016/j.jconrel.2006.04.014 PMid:16831482
Zelphahi O, Uyechi LS, Barron LG, Szoka FC. Effect of serum components on the physic-chemical properties of cationic lipid / oligonucleotide complexes and on their interactions with cells. Biochim Biophys Acta, Lipids lipid Metab. 1998; 1390:119-33. https://doi.org/10.1016/S0005-2760(97)00169-0 PMid:9507083
Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 2006; 6:1121-25. https://doi.org/10.1021/nl060162e PMid:16771565
Mandal AK. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. Int J Polym Mater Polym Biomater. 2021; 70(4):287-97. https://doi.org/10.1080/00914037.2020.1713780
Chen JH, Seeman NC. Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 1991; 350:631-3. https://doi.org/10.1038/350631a0 PMid:2017259
Mei Q, Wei X, Su F, Liu Y, Youngbull C, Johnson R, et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 2011; 11(4):1477-82. https://doi.org/10.1021/nl1040836 PMid:21366226 PMCid:PMC3319871
Fakhoury JJ, McLaughlin CK, Edwardson TW, Conway JW, Sleiman HF. Development and characterization of gene silencing DNA cages. Biomacromol. 2014; 15(1):276-82. https://doi.org/10.1021/bm401532n PMid:24328173
Goodman RP, Berry RM, Tuberfield AJ. The single-step synthesis of a DNA tetrahedron. Chem Commun. 2004; 12:1372-3. https://doi.org/10.1039/b402293a PMid:15179470
Goodman RP, Schaap IA, Tardin CF, Erben CM, Berry RM, Schmidt CF, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science. 2005; 310 (5754): 1661-5. https://doi.org/10.1126/science.1120367 PMid:16339440
Walsh AS, Yin H, Erben CM, Wood MJA, Turberfield AJ. DNA cage delivery to mammalian cells. ACS Nano. 2011; 5 (7):5427-32. https://doi.org/10.1021/nn2005574 PMid:21696187
Liang L, Li J, Li Q, Huamg Q, Shi J, Yan H, et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew Chem Int Ed. 2014; 53 (30):7745-50. https://doi.org/10.1002/anie.201403236 PMid:24827912
Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012; 7 (6):389-93. https://doi.org/10.1038/nnano.2012.73 PMid:22659608 PMCid:PMC3898745
Xia ZW, Wang P, Liu XW, Liu T, Yan YN, Yan J, et al. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochem. 2016; 55 (9):1326-31. https://doi.org/10.1021/acs.biochem.5b01181 PMid:26789283
Park BW, Zhang HT, Wu C, Berezov A, Zhang X, Dua R, et al. Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo. Nat Biotechnol. 2000; 18 (2):194-8. https://doi.org/10.1038/72651 PMid:10657127
Berezov A, Zhang HT, Greene MI, Murali R. Disabling erbB receptors with rationally designed exocyclic mimetics of antibodies: structure-function analysis. J Med Chem. 2001; 44 (16):2565-74. https://doi.org/10.1021/jm000527m PMid:11472210
Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol. 1997; 15 (8):772-7. https://doi.org/10.1038/nbt0897-772 PMid:9255793
Ronnmark J, Gronlund H, Uhlen M, Nygren PA. Human immunoglobulin A (IgA)-specific ligands from combinatorial engineering of protein A. Eur J Biochem. 2002; 269 (11):2647-55. https://doi.org/10.1046/j.1432-1033.2002.02926.x PMid:12047372
Orlova A, Rosik D, Sandstrom M, Lundqvist H, Einarsson L, Tolmachev V. Evaluation of [(111/114m)In]CHX-A''-DTPA-ZHER2:342, an affibody ligand coniugate for targeting of HER2-expressing malignant tumors. Q J Nucl Med Mol Imag. 2007; 51 (4):314-23.
Tran T, Engfeldt T, Orlova A, Sandstrom M, Feldwisch J, Abrahmsen L, et al. (99m)Tc-maEEE-Z(HER2:342), an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjugate Chem. 2007; 18 (6):1956-64. https://doi.org/10.1021/bc7002617 PMid:17944527
Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel. 2004; 17 (5):455-62. https://doi.org/10.1093/protein/gzh053 PMid:15208403
Orlova A, Magnusson M, Eriksson TLJ, Nilsson M, Larsson B, Hoiden-Guthenberg I, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res. 2006; 66 (8):4339-48. https://doi.org/10.1158/0008-5472.CAN-05-3521 PMid:16618759
Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic acids Res. 2009; 37:866-76. https://doi.org/10.1093/nar/gkn967 PMid:19103663 PMCid:PMC2647295
Ferreira CS, Matthews CS, Missailidis S. DNA aptamers that bind to MUC1 tumor marker: design and characterization of MUC1-binding single stranded DNA aptamers. Tumor Biol. 2006; 27:289-301. https://doi.org/10.1159/000096085 PMid:17033199
Hu Y, Duan J, Zhan Q, Wang F, Lu X, Yang XD. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS One. 2012; 7:e31970. https://doi.org/10.1371/journal.pone.0031970 PMid:22384115 PMCid:PMC3284512
Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H, et al. Novel aptamer-nanoparticle bioconjugate enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One. 2011; 6:e24077. https://doi.org/10.1371/journal.pone.0024077 PMid:21912664 PMCid:PMC3164674
Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 2008; 26:442-9. https://doi.org/10.1016/j.tibtech.2008.04.006 PMid:18571753
Kin KR, Kim Dr, Lee T, Yhee JY, Kim BS, Kwon IC, et al. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun (Camb). 2013; 49:2010-2. https://doi.org/10.1039/c3cc38693g PMid:23380739
Bagalkot V, Farokhzad OC, Langer R, Jon S. An aptamer-doxorubicin physical conjugate as a novel targeted drug delivery platform. Angew Chem Int Ed Engl. 2006; 45: 8149-52. https://doi.org/10.1002/anie.200602251 PMid:17099918
Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA. 1997; 94:10833-37. https://doi.org/10.1073/pnas.94.20.10833 PMid:9380720 PMCid:PMC23500
Rottenfusser S, Tuma E, Endres S, Hartmann G. Plasmacytoid dendritic cells: the key to CpG. Hum Immunol. 2002:63:1111-9. https://doi.org/10.1016/S0198-8859(02)00749-8 PMid:12480254
Fonseca DE, Kline JN. Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Deliv Rev. 2009; 61:256-62. https://doi.org/10.1016/j.addr.2008.12.007 PMid:19167442
Kim MG, Park JY, Miao W, Lee J, Oh YK. Polyaptamer DNA nanothread-anchored, reduced graphene oxide nanosheets for targeted delivery. Biomater. 2015; 48:129. https://doi.org/10.1016/j.biomaterials.2015.01.009 PMid:25701038
Ni Q, Zhang F, Zhang Y, Zhu G, Wang Z, Teng Z, et al. In situ shRNA synthesis on DNA-poly lactide nanoparticles to treat multidrug resistant breast cancer. Adv Mater. 2018; 30:1705737. https://doi.org/10.1002/adma.201705737 PMid:29333658
Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano. 2014; 8 (7):6633. https://doi.org/10.1021/nn502058j PMid:24963790
Bujold KE, Hsu JCC, Sleiman HF. Optimized DNA "Nanosuitcases" for encapsulation and conditional release of siRNA. J Am Chem Soc. 2016; 138(42): 14030-8. https://doi.org/10.1021/jacs.6b08369 PMid:27700075
Shao X, Lin S, Peng Q, Shi S, Wei X, Zhang T, et al. DNA nanostructures: Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small. 2017; 13:12. https://doi.org/10.1002/smll.201602770 PMid:28112870
Ma W, Shao X, Zhao D, Li Q, Liu M, Zhou T, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interface. 2018; 10 (9):7892-900. https://doi.org/10.1021/acsami.8b00833 PMid:29424522
Zhang Q, Lin S, Shi S, Zhang T, Ma Q, Tian T, et al. Anti-inflammatory and anti-oxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl Mater Interface. 2018; 10 (4):3421-30. https://doi.org/10.1021/acsami.7b17928 PMid:29300456
Xie X, Shao X, Ma W, Zhao D, Shi S, Li Q, et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale. 2018; 10 (12):5457-65. https://doi.org/10.1039/C7NR09692E PMid:29484330
El-Sagheer AH, Brown T. Click chemistry with DNA. Chem Soc Rev. 2010; 39:1388-405. https://doi.org/10.1039/b901971p PMid:20309492
Li J, Fan C, Pei H, Shi J, Huang Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv Mater. 2013; 25:4386-96. https://doi.org/10.1002/adma.201300875 PMid:23765613
Jiang G, Zhang M, Yue B, Yang M, Carter C, Al-Quran SZ, et al. PTK7: A new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res. 2012; 36 (11): 1347-53. https://doi.org/10.1016/j.leukres.2012.07.004 PMid:22898210 PMCid:PMC3447106
Yazdian-Robati R, Arab A, Ramezani M, Abnous K, Taghdisi SM. Application of aptamers in treatment and diagnosis of leukemia. Int J Pharm. 2017; 529:44. https://doi.org/10.1016/j.ijpharm.2017.06.058 PMid:28648578
Wang YM, Wu Z, Liu SJ, Chu X. Structure-switching aptamer triggering hybridization chain reaction on the cell surface for activatable theranostics. Anal Chem. 2015; 87:6470-74. https://doi.org/10.1021/acs.analchem.5b01634 PMid:26044187
Xiang D, Zheng C, Zhou SF, Qiao S, Tran PH, Pu C, et al. Superior performance of aptamer in tumor penetration over antibody. Implication of aptamer-based theranostics in solid tumors. Theranostics. 2015; 5:1083-97. https://doi.org/10.7150/thno.11711 PMid:26199647 PMCid:PMC4508498
Dou S, Virostko J, Greiner DL, Powers AC, Liu G. A feasible approach to evaluate the relative reactivity of NHS-ester activated group with primary amine-derivatized DNA analogue and non-derivatized impurity. Nucleosides Nucleotides Nucleic Acids. 2015; 34 (2):69-78. https://doi.org/10.1080/15257770.2014.958236 PMid:25621701 PMCid:PMC4398971
Chen S, Wang L, Fahmi NE, Benkovic SJ, Hecht SM. Two pyrenylalanines in dihydrofolate reductase form an excimer enabling the study of protein dynamics. J Am Chem Soc. 2012; 134 (46):18883-5. https://doi.org/10.1021/ja307179q PMid:23116258 PMCid:PMC3546169
Chen S, Fahmi NE, Wang L, Bhattacharya C, Benkovic SJ, Hecht SM. Detection of dihydrofolate reductase conformational change by FRET using two fluorescent amino acids. J Am Chem Soc. 2013; 135 (35):12924-7. https://doi.org/10.1021/ja403007r PMid:23941571 PMCid:PMC3785542
Chen S, Zhang Y, Hecht SM. p-Thiophenylalanine-induced DNA cleavage and religation activity of a modified vaccinia topoisomerase IB. Biochem. 2011; 50 (43):9340-51. https://doi.org/10.1021/bi201291p PMid:21942719
Chen S, Hecht SM. Synthesis of pdCpAs and transfer RNAs activated with derivatives of aspartic acid and cysteine. Bioorg Med Chem. 2008; 16 (19): 9023-31. https://doi.org/10.1016/j.bmc.2008.08.036 PMid:18790645
Agudelo D, Bourassa P, Berube G, Tajmir-Riahi HA. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol. 2014; 66:144-50. https://doi.org/10.1016/j.ijbiomac.2014.02.028 PMid:24560949
Lee DS, Qian H, Tay CY, Leong DT. Cellular processing and destinies of artificial DNA nanostructures. Chem Soc Rev. 2016; 45 (15):4199-225. https://doi.org/10.1039/C5CS00700C PMid:27119124
Hu Y, Chen Z, Zhang H, Li M, Hou Z, Luo X, et al. Development of DNA tetrahedron based drug delivery system. Drug Deliv. 2017; 24(1):1295-301. https://doi.org/10.1080/10717544.2017.1373166 PMid:28891335 PMCid:PMC8241089
Jorge AF, Eritja R. Overview of DNA self-assembling: Progress in biomedical applications. Pharmaceut. 2018; 10:268. https://doi.org/10.3390/pharmaceutics10040268 PMid:30544945 PMCid:PMC6320858
Chen N, Qin S, Yang X, Wang Q, Huang J, Wang K. "Sense and treat" DNA nanodevice for synergistic destruction of circulating tumor cells. ACS Appl Mater Interface. 2016; 8 (40):26552-8. https://doi.org/10.1021/acsami.6b08695 PMid:27653943
Kim KR, Bang D, Ahn DR. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy. Biomater Sci UK. 2016; 4 (4):605-9. https://doi.org/10.1039/C5BM00467E PMid:26674121
Kang JK, Kim KR, Lee H, Ahn DR, Ko YT. In vitro and in vivo behavior of DNA tetrahedron as tumor-targeting nanocarriers for doxorubicin delivery. Colloids Surf B Biointerface. 2017; 157:424-31. https://doi.org/10.1016/j.colsurfb.2017.06.014 PMid:28645043
Dai BD, Hu Y, Duan JH, Yang XD. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget. 2016; 7:38257-69. https://doi.org/10.18632/oncotarget.9431 PMid:27203221 PMCid:PMC5122387
Sun P, Zhang N, Tang Y, Yang Y, Chu X, Zhao Y. SL2B aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer. Int J Nanomed. 2017; 12:2657-72. https://doi.org/10.2147/IJN.S132929 PMid:28435250 PMCid:PMC5388264
Kim KR, Kim HY, Lee YD, Ha JS, Kang JH, Jeong H, et al. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Rel. 2016; 243:121-31. https://doi.org/10.1016/j.jconrel.2016.10.015 PMid:27746274
Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interface. 2014; 6 (24):21822-31. https://doi.org/10.1021/am502591c PMid:24941440
Jorge A, Avino A, Pais A, Eritja R, Fabrega C. DNA-based nanoscaffolds as vehicles for 5-fluoro-2׳-deoxyuridine oligomers in colorectal cancer therapy. Nanoscale. 2018; 10:7238-49. https://doi.org/10.1039/C7NR08442K PMid:29632908
Li J, Pei H, Zhu B, Liang L, Wei M, He Y, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano. 2011; 5 (11):8783-9. https://doi.org/10.1021/nn202774x PMid:21988181
Liu X, Xu Y, Yu T, Clifford C, Liu Y, Yan H, et al. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett. 2012; 12(8): 4254-9. https://doi.org/10.1021/nl301877k PMid:22746330 PMCid:PMC3808986
Keum JW, Ahn JH, Bermudez H. Design, assembly, and activity of antisense DNA nanostructures. Small. 2011; 7:3529-35. https://doi.org/10.1002/smll.201101804 PMid:22025353
Readman JB, Dickson G, Coldham NG. Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucleic Acid Ther. 2017; 27:176-81. https://doi.org/10.1089/nat.2016.0644 PMid:28080251
Charoenphol P, Bermudez H. Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharmaceut. 2014; 11(5):1721-5. https://doi.org/10.1021/mp500047b PMid:24739136 PMCid:PMC4018137
Kim KR, Lee T, Kim BS, Ahn DR. Utilizing the bioorthogonal base-pairing system of L-DNA to design ideal DNA nanocarriers for enhanced delivery of nucleic acid cargos. Chem Sci. 2014; 5:1533-7. https://doi.org/10.1039/C3SC52601A
Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010; 4 (8):4539-50. https://doi.org/10.1021/nn100690m PMid:20731437 PMCid:PMC3899722
Matsuzaki H, Schmied BM, Ulrich A, Standop J, Scvhneider MB, Batra SK, et al. Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and actinomycin D induces apoptosis even in TRAIL-resistant human pancreatic cancer cells. Clin Cancer Res. 2001; 7 (2):407-14.
Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013; 341 (6148):1233151. https://doi.org/10.1126/science.1233151 PMid:23845947 PMCid:PMC4375961
Kim KR, Kim DR, Lee T, Yhee JY, Kim BS, Kwon IC, et al. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun. 2013; 49 (20):2010-12. https://doi.org/10.1039/c3cc38693g PMid:23380739
Lee SY, Kim KR, Bang D, Bae SW, Kim HJ, Ahn DR. Biophysical and chemical handles to control the size of DNA nanoparticles produced by rolling circle amplification. Biomater Sci. 2016; 4(9):1314-7. https://doi.org/10.1039/C6BM00296J PMid:27464359
Karpel-Massler G, Ishida CT, Bianchetti E, Shu C, Perez-Lorenzo R, Horst B, et al. Inhibition of mitochondrial matrix chaperones and antiapoptotic Bcl-2 family proteins empower antitumor therapeutic responses. Cancer Res. 2017; 77(13): 3513-26. https://doi.org/10.1158/0008-5472.CAN-16-3424 PMid:28522750 PMCid:PMC5503474
Li Q, Zhao D, Shao X, Lin S, Xie X, Liu M, et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl Mater Interface. 2017; 9(42):36695-701. https://doi.org/10.1021/acsami.7b13328 PMid:28991436
Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chen Soc Rev. 2016; 45(9):2583-602. https://doi.org/10.1039/C5CS00645G PMid:26954935
Ouyang X, Li J, Liu H, Zhao B, Yan J, Ma Y, et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small. 2013; 9(18):3082-7. https://doi.org/10.1002/smll.201300458 PMid:23613456
Yan Z, Yang Y, Wei X, Zhong J, Wei D, Liu L, et al. Tumor-penetrating peptide mediation: An effective strategy for improving the transport of liposomes in tumor tissue. Mol Pharm. 2014; 11(1):218-25. https://doi.org/10.1021/mp400393a PMid:24325555
Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA. 1999; 96(1):91-6. https://doi.org/10.1073/pnas.96.1.91 PMid:9874777 PMCid:PMC15098
Zhang Y, Jiang S, Zhang D, Bai X, Hecht SM, Chen S. DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem Commun. 2017; 53 (3):573-6. https://doi.org/10.1039/C6CC08495H PMid:27975087
Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004; 10 (9):909-15. https://doi.org/10.1038/nm1100 PMid:15340416 PMCid:PMC1435696
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011; 480 (7378):480-9. https://doi.org/10.1038/nature10673
PMid:22193102 PMCid:PMC3967235
Li W, Luo L, Huang J, Wang Q, Liu J, Xiao X, et al. Self-assembled DNA nanocentipedes as multivalent vehicles for enhanced delivery of CpG oligonucleotides. Chem Commun (Camb). 2017; 53 (40):5565-8. https://doi.org/10.1039/C7CC01128H PMid:28475186
Niemeyer CM, Sano T, Smith CL, Cantor CR. Oligonucleotide-directed self-assembly of proteins: Semisynthetic DNA-streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res. 1994; 22:5530-9. https://doi.org/10.1093/nar/22.25.5530 PMid:7530841 PMCid:PMC310113
Rosen CB, Kodal AL, Nielsen JS, Schaffert DH, Scavenius C, Okholm AH, et al. Template-directed covalent conjugation of DNA to native antibodies, transferin and other metal-binding proteins. Nat Chem. 2014; 6 (9):804-9. https://doi.org/10.1038/nchem.2003 PMid:25143216
Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009; 61 (3):195-204. https://doi.org/10.1016/j.addr.2008.12.008 PMid:19211030
Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA. 1999; 96 (16):9305-10. https://doi.org/10.1073/pnas.96.16.9305 PMid:10430938 PMCid:PMC17777
Weber PC, Pantoliano MW, Thompson LD. Crystal structure and ligand-binding studies of a screened peptide complexed with streptavidin. Biochem. 1992; 31(39):9350-4. https://doi.org/10.1021/bi00154a004 PMid:1390720
Hendrickson WA, Pahler A,. Smith JL, Satow Y, Merritt EA, Phizackerley RP. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci USA. 1989; 86(7):2190-4. https://doi.org/10.1073/pnas.86.7.2190 PMid:2928324 PMCid:PMC286877
Voigt NV, Tørring T, Rotaru A, Jacobsen MF, Ravnsbaek JB, Subramani R, et al. Single-molecule chemical reactions on DNA origami. Nat Nanotechnol. 2010; 5(3):200-3. https://doi.org/10.1038/nnano.2010.5 PMid:20190747
Zhang L, Zhu G, Mei L, Wu C, Qiu L, Cui C, et al. Self-assembled DNA immunonanoflowers as multivalent CpG nanoagents. ACS Appl Mater Interface. 2015; 7:24069-74. https://doi.org/10.1021/acsami.5b06987 PMid:26440045 PMCid:PMC4898273
Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017; 35:222-9. https://doi.org/10.1038/nbt.3802 PMid:28244992
Lieberman J. Tapping the RNA world for therapeutics. Nat Struct Mol Biol. 2018; 25:357-64. https://doi.org/10.1038/s41594-018-0054-4 PMid:29662218 PMCid:PMC6052442
Hannon GJ. RNA interference. Nature. 2002; 418:244-51. https://doi.org/10.1038/418244a PMid:12110901
Sachdeva M, Mo YY. miR-145-mediated suppression of cell growth, invasion and metastasis. Am J Transl Res. 2010; 2 (2): 170-80.
Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145-expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011; 38 (4): 1093-101. https://doi.org/10.3892/ijo.2011.919
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157: 1262-78. https://doi.org/10.1016/j.cell.2014.05.010 PMid:24906146 PMCid:PMC4343198
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR-Cas9 for enhanced genome editing specificity. Cell. 2013; 154 (6):1380-9. https://doi.org/10.1016/j.cell.2013.08.021 PMid:23992846 PMCid:PMC3856256
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014; 343 (6166):84-7.https://doi.org/10.1126/science.1247005 PMid:24336571 PMCid:PMC4089965
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346:1258096. https://doi.org/10.1126/science.1258096 PMid:25430774
Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed. 2015; 54:12029-33. https://doi.org/10.1002/anie.201506030 PMid:26310292 PMCid:PMC4677991
Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biological. J Cont Rel. 2011; 151: 220-8. https://doi.org/10.1016/j.jconrel.2010.11.004 PMid:21078351
Dolmas DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003; 3 (5):380-7. https://doi.org/10.1038/nrc1071 PMid:12724736
He X, Wu X, Wang K, Shi B, Hai L. Methylene blue-encapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomater. 2009; 30 (29):5601-9. https://doi.org/10.1016/j.biomaterials.2009.06.030 PMid:19595455
Du Y, Jiang Q, Beziere N, Song L, Zhang Q, Peng D, et al. DNA-nanostructure-gold nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv Mater. 2016; 28: 10000-7. https://doi.org/10.1002/adma.201601710 PMid:27679425
Jiang Q, Shi Y, Zhang Q, Li N, Zhan P, Song L, et al. A self-assembled DNA origami-gold nanorod complex for cancer theranostics. Small. 2015; 11:5134-41. https://doi.org/10.1002/smll.201501266 PMid:26248642
Song L, Jiang Q, Liu J, Li N, Liu Q, Dai L, et al. DNA origami / gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale. 2017; 9:7750-4. https://doi.org/10.1039/C7NR02222K PMid:28581004
Thomas TP, Huang BH, Choi SK, Silpe JE, Kotlyar A, Desai AM, et al. Polyvalent dendrimer-methotrexate as a folate receptor-targeted cancer therapeutic. Mol Pharmaceut. 2012; 9 (9):2669-76. https://doi.org/10.1021/mp3002232 PMid:22827500 PMCid:PMC4457335
Jiang D, Sun Y, Li J, Li Q, Lv M, Zhu B, et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl Mater Interface. 2016; 8 (7):4378-84. https://doi.org/10.1021/acsami.5b10792 PMid:26878704
Rogers LM, Pfeiffer CM, Bailey LB, Gregory JF. A dual-label stable-isotopic protocol is suitable for determination of folate bioavailability in humans: evaluation of urinary excretion and plasma folate kinetics of intravenous and oral doses of [13C5] and [2H2] folic acid. J Nutr. 1997; 127 (12):2321-7. https://doi.org/10.1093/jn/127.12.2321 PMid:9405581
Huang Y, Huang W, Chan L, Zhou B, Chen T. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomater. 2016; 103:183-96. https://doi.org/10.1016/j.biomaterials.2016.06.053 PMid:27388944
Hahn J, Wickham SF, Shih WM, Perrault SD. Addressing the instability of DNA nanostructures in tissue culture. ACS Nano. 2014; 8 (9):8765-75. https://doi.org/10.1021/nn503513p PMid:25136758 PMCid:PMC4174095
Keun JW, Bermudez H. Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem Commun. 2009; 7:7036-8. https://doi.org/10.1039/b917661f PMid:19904386
Perrault SD, Shih WM. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano. 2014; 8:5132-40. https://doi.org/10.1021/nn5011914 PMid:24694301 PMCid:PMC4046785
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).