Validated Simultaneous Derivative Spectrophotometric Estimation of Azithromycin, Fluconazole and Secnidazole in Bulk and Pharmaceutical Formulation

Abstract

Two simple, sensitive, accurate and precise spectrophotometric methods were developed and validated for the quantitative determination of Azithromycin (AZI), Fluconazole (FLU) and Secnidazole (SEC) in bulk and tablet dosage form. Method A is based on the first-order derivative (D1) and Method B is based on the second-order derivative (D2) spectrophotometric method. In Method A, absorbance was measured at 215nm, 275nm and 333nm being the zero crossing points for AZI, FLU and SEC respectively. In Method B, absorbance was measured at 220nm, 225nm and 211nm being the zero crossing points for AZI, FLU and SEC respectively. For Method A, all three drugs obey Beer’s law in the concentration range 5-30µg/ml for AZI, 5-60 µg/ml for FLU and 5-40 µg/ml for SEC with correlation coefficients 0.995, 0.998 and 0.998 respectively. For Method B, all three drugs obey Beer’s law in the concentration range 5-35 µg/ml for AZI, 5-40 µg/ml for FLU and 5-40 µg/ml for SEC with correlation coefficients 0.995, 0.999 and 0.998 respectively. Both methods can be used for routine analysis of these three drugs in their pharmaceutical dosage form. Results for analysis of both methods were tested and validated for various parameters according to ICH guidelines. 


Keywords: Derivative, Azithromycin, Fluconazole, Secnidazole

Keywords: Derivative, Azithromycin, Fluconazole, Secnidazole

Downloads

Download data is not yet available.

Author Biographies

M.A. Raskar, Department of Pharmaceutical Chemistry, Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Vilad Ghat, Ahmednagar

Department of Pharmaceutical Chemistry, Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Vilad Ghat, Ahmednagar

P.A. Kate, Department of Pharmaceutical Chemistry, Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Vilad Ghat, Ahmednagar

Department of Pharmaceutical Chemistry, Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Vilad Ghat, Ahmednagar

S.S. Mungse, Department of Pharmaceutical Chemistry, Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Vilad Ghat, Ahmednagar

Department of Pharmaceutical Chemistry, Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Vilad Ghat, Ahmednagar

Ganesh Raosaheb Godge, Dr. Vithalrao Vikhe Patil Foundation’s College of Pharmacy, Ahmednagar-414111

Department of Pharmaceutics, Dr. Vithalrao Vikhe Patil Foundation's College of Pharmacy, Vilad Ghat, Ahmednagar

References

1. Indian Pharmacopoeia, The Indian Pharmacopoeia Commission, Ghaziabad, 2018, Vol.ІІ & Vol.ІІІ, p.1312-1313, 2068, 3176.
2. Jayanna B.K., Nagendrappa G., Arunkumar, Gowda N., Spectrophotometric estimation of Azithromycin in Tablets, Indian J.Pharm.Sci, 2012;74(4):365-367. https://doi.org/10.4103/0250-474X.107076 PMid:23626394 PMCid:PMC3630734
3. Chiluka R., Raut R., Spectrophotometric determination of azithromycin dihydrate in formulation and its application to dissolution studies, International Journal of Pharmaceutical Quality Assurance, 2022; 13(2):116-122.
4. Lakshmi S., Arul M.M., Jayashankar L., Ramu P., Raja T.K., Visible spectrophotometric methods for the determination of azithromycin in tablets, Indian J Pharm Sci, 2004;66:249-51.
5. Rosecler R., Fernando J. Mallmann K., Henrique P. E., Cassiano R. B., Daniel K., Joseane P. M., Mariano R., Eduardo M. E., Clarice S., Lucelia H., Azithromycin determination using spectrophotometer molecular methods and degradation using an advanced oxidation process, Aust. J. Basic & Appl. Sci,2016;10(18):94- 104.
6. Mostafa F. Al-H., A rapid, developed and validated RP-HPLC method for determination of azithromycin, SN Appl. Sci, 2019; 1:222. https://doi.org/10.1007/s42452-019-0237-6
7. Singh A. P., Chauhan I., Bhardwaj S., Gaur P., Kumar S. S., Jayendra., HPLC method development and validation of azithromycin in oral suspension, JAPSR, 2019; 2(1):7-12. https://doi.org/10.31069/japsr.v2i1.2
8. Sahoo D. K., Sahu P. K., Chemometric approach for RP-HPLC determination of Azithromycin, Secnidazole and Fluconazole using response surface methodology, Journal of Liquid Chromatography and Related Technologies, 2015;38(6):1-9. https://doi.org/10.1080/10826076.2014.968664
9. Gawande V. T., Bothara K. G., Satija C. O., Validated stability-indicating HPTLC method for cefixime and azithromycin with preparative isolation, identification, and characterization of degradation products, Acta Chromatographica, 2018; 30(4). https://doi.org/10.1556/1326.2017.00199
10. Bouklouze A., Kharbacha M., Cherraha Y., Heydenb Y. V., Azithromycin assay in drug formulations: Validation of a HPTLC method with a quadratic polynomial calibration model using the accuracy profile approach, Ann Pharm Fr, 2016; 75(2):112-120. https://doi.org/10.1016/j.pharma.2016.08.004 PMid:27692351
11. Narender M., Sri Bhargavi K., Balakrishna M., Padmalatha K., A simple liquid chromatographic method for simultaneous estimation of azithromycin, fluconazole and ornidazole in bulk and pharmaceutical dosage forms, Int J Pharm Pharm Sci, 2019;11(8):26-34. https://doi.org/10.22159/ijpps.2019v11i8.29348
12. Katharina H., Mathias B., Daniel T., Uwe L., Christina S., Ulf S., Michael V., Michael P., Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC-MS/MS method in human serum, J Pharm Biomed Anal. 2021; 196:113935. https://doi.org/10.1016/j.jpba.2021.113935 PMid:33548872 PMCid:PMC7843035
13. Feng W., Xiuli Z., Siyang N., Yang B., A LC-MS/MS validated method for determination of azithromycin in human tears and its application to an ocular pharmacokinetic study, Pharmazie, 2020 ;75(10):478-482.
14. Breier A.R., Garcia C.V., Oppe T.P., Steppe M., Schapoval E.E., Microbiological assay for azithromycin in pharmaceutical formulations, J Pharm Biomed Anal, 2002; 29(5):957-61. https://doi.org/10.1016/S0731-7085(02)00213-3 PMid:12093530
15. Nigovic B., Adsorptive stripping voltammetric determination of azithromycin at a glassy carbon electrode modified by electrochemical oxidation, Anal Sci, 2004;20:639-43. https://doi.org/10.2116/analsci.20.639 PMid:15116961
16. Farghaly O.A., Mohamed N.A., Voltammetric determination of azithromycin at the carbon paste electrode, Talanta, 2004;62(3):531-8. https://doi.org/10.1016/j.talanta.2003.08.026 PMid:18969328
17. Nigovic B., Simunic B., Voltammetric assay of azithromycin in pharmaceutical dosage forms, J Pharm Biomed Anal, 2003;32(1):197-202. https://doi.org/10.1016/S0731-7085(03)00060-8 PMid:12852463
18. Palomeque M.E., Ortiz P.I., New automatized method with amperometric detection for the determination of azithromycin, Talanta, 2007; 72(1); 101-5. https://doi.org/10.1016/j.talanta.2006.10.002 PMid:19071588
19. Cao S. D., Van T. B., Thi T. V. T., Dinh C. L., Novel approach for infrared spectroscopic quantitation of azithromycin in commercial tablets employing paracetamol as matrix modifier, Heliyon,2023;9(2) https://doi.org/10.1016/j.heliyon.2023.e14647 PMid:36994414 PMCid:PMC10040712
20. Ji X.D., Wen B.Z., Yan C.F., Dan Q.S., Chang Q.H., Quantitative calibration models for the determination of azithromycin and decladenosylazithromycin in azithromycin injection powders using diffuse reflectance near infrared spectroscopy, J Near Infrared Spectroscopy, 2011;19(4):265-75. https://doi.org/10.1255/jnirs.931
21. Yanamandra R., Chaudhary A., Bandaru SR, Patro B., Murthy Y.L.N., Ramaiah P.A., Sastry C.S.P., UPLC method for simultaneous separation and estimation of secnidazole, fluconazole and azithromycin in pharmaceutical dosage form, E. Journal of Chemistry, 2010;7(S1):S363-S371. https://doi.org/10.1155/2010/235186
22. Syed S.M., Marathe RP, Development and validation of UV spectrophotometric method for the estimation of fluconazole in the marketed dosage formulations, Pharm & Biosci J, 2020;8(5):22-26. https://doi.org/10.20510/ukjpb/8/i5/1602587722
23. Krishnamurthy A. K., Fariyal N. S., Rupali C. K., and Akshada R. S., Development and validation of UV spectrophotometric method for determination of fluconazole in bulk and tablet dosage form, WJPR, 2022; 11(6):701-709
24. Belal F., Sharaf M. K. El-Din., Eid M.I., and El-Gamal R.M., Micellar HPLC and derivative spectrophotometric methods for the simultaneous determination of fluconazole and tinidazole in pharmaceuticals and biological fluids, Journal of Chromatographic Science, 2014; 52:298-309. https://doi.org/10.1093/chromsci/bmt028 PMid:23568958
25. Zahra S., Eskandar A., Alireza S., Afshin Z., Determination of fluconazole in human plasma by reverse phase high performance liquid chromatography, Acta Poloniae Pharmaceutica Drug Research, 2015; 72(2):227-233.
26. Roshdy A., Elmansi H., Shalan S., El-Brashy A., Factorial design-assisted reversed phase-high performance liquid chromatography method for simultaneous determination of fluconazole, itraconazole and terbinafine, R. Soc. Open Sci, 2021; 8:202130. https://doi.org/10.1098/rsos.202130 PMid:33972882 PMCid:PMC8103232
27. Sadasivudu P., Shastri N., Sadanandam M., Development and validation of RP-HPLC and UV methods of analysis for fluconazole in pharmaceutical solid dosage forms, International Journal of ChemTech Research, 2009;1(4):1131-1136.
28. Jebaliya H., Patel M., Jadeja Y., Dabhi B., Shah A., A comparative validation study of fluconazole by HPLC and UPLC with forced degradation study, Chromatography Research International, 2013, volume 2013, 1-5. https://doi.org/10.1155/2013/673150
29. Sachin N.S., Anjali M., Amol C. B., Sristi A., Arpon B., Sarvesh K. V., Mukesh K., Rabi S. B., Simultaneous determination of fluconazole and ofloxacin in rabbit tear fluid by LC-MS/MS: Application to ocular pharmacokinetic studies, Journal of Pharmaceutical and Biomedical Analysis, 2022; 208:114463. https://doi.org/10.1016/j.jpba.2021.114463 PMid:34798393
30. Lenard F., Orsolya M., Laurian V., Brindusa T., Liquid chromatography tandem mass spectrometry determination of fluconazole levels in human plasma for bioavailability studies, Farmacia, 2016;64(1).
31. Rele R.V., UV spectrophotometric estimation of secnidazole by zero order and area under curve methods in bulk and pharmaceutical dosage form, Research journal of Pharmacy and Technology, 2019; 12(4):1753-1756. https://doi.org/10.5958/0974-360X.2019.00293.2
32. Marcilio M.R., Raiser A.L., Fumagalli L.P., Bonfilio R., Andrighetti C.R., Ribeiro E.B., Mendes de Sousa Valladao D., Determination and validation of secnidazole in tablets by UV spectrophotometric, Biosci. J. Uberlandia, 2017; 33(5):1351-1361. https://doi.org/10.14393/BJ-v33n5a2017-34889
33. Ali O. T., Hassan W. S., Khayyat, A. N., Almalki A. J., Sebaiy M. M., HPLC determination of imidazoles with variant anti-infective activity in their dosage forms and human plasma, Molecules, 2021; 26:129. https://doi.org/10.3390/molecules26010129 PMid:33396585 PMCid:PMC7794769
34. Ali G. A. Al-Kaf., EL-Rashed., Ahmed G. K., Ali Abdo S. A. A., Talal A., Development and Validation of an RP-HPLC Method for Estimation of Secnidazole and Its Degradation Products in Tablets, Glob J Pharmaceu Sci, 2016;1(1): 555552 https://doi.org/10.19080/GJPPS.2016.01.555552
35. Shelke A., Mankar S., Kolhe M., Development and Validation of RP-HPLC Method for estimation of Secnidazole in API and Pharmaceutical Dosage Form, 2021; 13(2):100-4. https://doi.org/10.52711/2349-2988.2021.00015
36. Patel Y., Dhorda U.J., Sundaresan M., Bhagwat A.M., Separation and estimation of Five imidazoles by packed column supercritical fluid chromatography, Analytica Chimica Acta, 1998;362(2-3):271-277. https://doi.org/10.1016/S0003-2670(98)00006-3
37. Sukanya R., Balamurugan K., Chen S. M., Rajakumaran R., Muthupandi K., Shim J. J., Breslin C. B., Fabrication of a selective sensor amplification probe modified with multi-component Zn2SnO4/SnO2 heterostructured microparticles as a robust electrocatalyst for electrochemical detection of antibacterial drug secnidazole, Materials, 2021; 14:6700. https://doi.org/10.3390/ma14216700 PMid:34772226 PMCid:PMC8588501
38. Lichtig, J. Andrade, R.F.Vaz, J.M. Determination of secnidazole in pharmaceutical tablets and intestinal fluids by differential pulse polarography. Analytica Chimica Acta, 1996; 332:161-164. https://doi.org/10.1016/0003-2670(96)00231-0
39. The International Conference on Harmonization, Q2 (R1), and Validation of Analytical Procedure: Text and Methodology: 2005.
40. Hiremath S, Godge G, Sonawale B and Shirsath R, Pharmaceutical Advances In Cyclodextrin Inclusion Complexes For Improved Bioavailability Of Poorly-Soluble Drugs International Journal of Pharmaceutical Sciences and Nanotechnology, Volume 8, Issue 3 July - September 2015, pp 2894-2905. https://doi.org/10.37285/ijpsn.2015.8.3.2
41. Godge GR, and Hiremath SN. An Investigation into the Characteristics of Natural Polysaccharide: Polymer Metoprolol Succinate Tablets for Colonic Drug Delivery. Mahidol University Journal of Pharmaceutical Sciences 2014; 41(2):7-21.
42. Godge GR. and Hiremath SN, Development and Evaluation of Colon Targeted Drug Delivery System Using Natural Polysaccharides/Polymers. Dhaka Univ. J. Pharm. Sci. 13(1):105-113, 2014 https://doi.org/10.3329/dujps.v13i1.21874
43. Hiremath S, and Godge G, Preparation and in vitro Evaluation of Inclusion Complexes of Nelfinavir with Chemically Modified β-cyclodextrins. Dhaka Univ. J. Pharm. Sci. 11(2):107-116, 2012 (December):107-116. https://doi.org/10.3329/dujps.v11i2.14558
44. Godge G, Hiremath S. Colonic delivery of film-coated meloxicam tablets using natural polysaccharide polymer mixture. International Current Pharmaceutical Journal 2012, 1(9):264-271. https://doi.org/10.3329/icpj.v1i9.11617
45. Hiremath SN, Kharia AA, Godge GR. For Low Absorption Window Antihypertensive Agents. Research Journal of Pharmacy and Technology, Volume 03, Issue 01, January-March 2010
46. Sanap D, Garje M, Godge G, Probiotics, their Health Benefits and Applications for development of Human Health: A Review, Journal of Drug Delivery and Therapeutics. 2019; 9(4-s):631-640
47. Godge GR, Garje MA, Dode AB, Tarkase KN. Nanosuspension Technology for Delivery of Poorly Soluble Drugs and Its Applications: A Review. Int. J. Pharm. Sci. Nanotech, 2020;13(4):4965-4978. https://doi.org/10.37285/ijpsn.2020.13.4.1
48. Raskar MA, Mungse SS, Kate PA, Godge GR, Validated Simultaneous Derivative Spectrophotometric Estimation of Diflunisal and Lignocaine in Bulk and Pharmaceutical Formulation, Journal of Drug Delivery and Therapeutics. 2023; 13(8):51-55 http://dx.doi.org/10.22270/jddt.v13i8.6166
Crossmark
Statistics
210 Views | 14 Downloads
How to Cite
1.
Raskar M, Kate P, Mungse S, Godge G. Validated Simultaneous Derivative Spectrophotometric Estimation of Azithromycin, Fluconazole and Secnidazole in Bulk and Pharmaceutical Formulation. JDDT [Internet]. 15Nov.2023 [cited 24Jun.2024];13(11):39-4. Available from: https://jddtonline.info/index.php/jddt/article/view/6286

Most read articles by the same author(s)