Nanoencapsulation of Rosmarinus officinalis essential oil into Chitosan crosslinked to Tripolyphosphate nanoparticles and Alginate/Chitosan nanoparticles: Formulation, characterization, in vitro release study, and in vivo evaluation
Abstract
This study delves into the intricate realm of nanoencapsulation, focusing on the application of chitosan crosslinked to TPP and alginate/chitosan-based nanoparticles to encapsulate Rosmarinus officinalis essential oil. The core objective was to unravel the potential pharmacological merits and controlled release dynamics underpinning this novel encapsulation technique. The experimental results painted a compelling portrait of rosemary oil, showcasing its multifaceted efficacy as an antibacterial, antifungal, and antioxidant agent. In the realm of nanotechnology, we were able to formulate nanoparticles under 100 nm, demonstrating exceptional stability. A pivotal aspect of this research revolved around encapsulation efficiency, determined via UV-vis spectroscopy. The results proved staggering, illustrating an encapsulation rate surpassing the 98% benchmark, ensuring minimal essential oil wastage. In vitro assays illuminated the controlled, sustained release attributes of the encapsulated essential oil, thereby further substantiating the potential of this encapsulation approach. FTIR analysis provided insights into the intricate interactions transpiring within these nanoparticles. Venturing into living organisms, our comprehensive in vivo assessments confirmed the significant analgesic activity of our nanoparticles encapsulating rosemary essential oil. This revelation opens exciting prospects for therapeutic applications. Microscopic observations into the SEM solidified the presence and even distribution of these nanoparticles. These compelling findings chart new avenues for the development of more potent, precisely targeted pharmaceutical interventions.
Keywords: Rosemary essential oil, chitosan, sodium alginate, polymeric nanoparticles, nanoencapsulation
Keywords:
Rosemary essential oil, chitosan, sodium alginate, polymeric nanoparticles, nanoencapsulationDOI
https://doi.org/10.22270/jddt.v13i11.6270References
Malshe A. Nanotechnology. In: Chatti S, Laperrière L, Reinhart G, Tolio T, editors. CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg; 2019.p.1260-7. doi: https://doi.org/10.1007/978-3-662-53120-4_16731
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB.Alginate nanoparticles for drug delivery and targeting. Current pharmaceutical design, 2019;25(11):1312-34. doi: http://doi.org/10.2174/1381612825666190425163424
Kadam RS, Bourne DW, Kompella UB.Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug Metabolism and Disposition, 2012;40(7):1380-8. doi: https://doi.org/10.1124/dmd.112.044925
Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P.Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future science OA, 2018;4(4):FSO283. doi: https://doi.org/10.4155/fsoa-2017-0124
Borges RS, Ortiz BLS, Pereira ACM, Keita H, Carvalho JCT.Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. Journal of ethnopharmacology, 2019;229(29-45. doi: https://doi.org/10.1016/j.jep.2018.09.038
Delshadi R, Bahrami A, Tafti AG, Barba FJ, Williams LL.Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology, 2020;104(72-83. doi: https://doi.org/10.1016/j.tifs.2020.07.004
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al.Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 2018;16(1):71. doi: http://doi.org/10.1186/s12951-018-0392-8
Magaldi S, Mata-Essayag S, De Capriles CH, Pérez C, Colella M, Olaizola C, Ontiveros Y.Well diffusion for antifungal susceptibility testing. International journal of infectious diseases, 2004;8(1):39-45. doi: https://doi.org/10.1016/j.ijid.2003.03.002
Nathan P, Law EJ, Murphy DF, MacMillan BG.A laboratory method for selection of topical antimicrobial agents to treat infected burn wounds. Burns, 1978;4(3):177-87.doi: https://doi.org/10.1016/S0305-4179(78)80006-0
Aouni M, Pelen F, Soulimani R.Étude de l’activité antimicrobienne d’un mélange de 41 huiles essentielles et domaines d’application. Phytothérapie, 2013;11(4):225-36. doi: https://doi.org/10.1007/s10298-013-0790-x
Kowalska-Krochmal B, Dudek-Wicher R.The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 2021;10(2):165. doi: https://doi.org/10.3390/pathogens10020165
Molyneux P.The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J sci technol, 2004;26(2):211-9.
Natrajan D, Srinivasan S, Sundar K, Ravindran A.Formulation of essential oil-loaded chitosan–alginate nanocapsules. Journal of food and drug analysis, 2015;23(3):560-8. doi: https://doi.org/10.1016/j.jfda.2015.01.001
Ahmadi Z, Saber M, Bagheri M, Mahdavinia GR.Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. Journal of pest science, 2018;91(837-48.doi: https://doi.org/10.1007/s10340-017-0912-6
Esmaeili A, Asgari A.In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int J Biol Macromol, 2015;81(283-90.doi: http://doi.org/10.1016/j.ijbiomac.2015.08.010
Stojiljkovic J, Trajchev M, Nakov D, Petrovska M.Antibacterial activities of rosemary essential oils and their components against pathogenic bacteria. Advances in Cytology & Pathology, 2018. doi: https://doi.org/10.15406/acp.2018.03.00060
Bajalan I, Rouzbahani R, Pirbalouti AG, Maggi F.Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Industrial Crops and Products, 2017;107(305-11.doi: https://doi.org/10.1016/j.indcrop.2017.05.063
Burt S.Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol, 2004;94(3):223-53. doi: 10.1016/j.ijfoodmicro.2004.03.022.doi: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
JAFARI-SALES A, Pashazadeh M.Study of chemical composition and antimicrobial properties of Rosemary (Rosmarinus officinalis) essential oil on Staphylococcus aureus and Escherichia coli in vitro. International Journal of Life Sciences and Biotechnology, 2020;3(1):62-9. doi: https://doi.org/10.38001/ijlsb.693371
Gauch LMR, Pedrosa SS, Esteves RA, Silveira-Gomes F, Gurgel ESC, Arruda AC, Marques-da-Silva SH.Atividade antifúngica de Rosmarinus officinalis Linn. óleo essencial contra Candida albicans, Candida dubliniensis, Candida parapsilosis e Candida krusei. Revista Pan-Amazônica de Saúde, 2014;5(1):61-6.doi: https://doi.org/10.5123/S2176-62232014000100007
Özcan MM, Chalchat J-C.Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. International journal of food sciences and nutrition, 2008;59(7-8):691-8. doi: https://doi.org/10.1080/09637480701777944
Wang W, Wu N, Zu YG, Fu YJ.Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry, 2008;108(3):1019-22. doi: https://doi.org/10.1016/j.foodchem.2007.11.046
Guinebretière S, Briançon S, Fessi H, Teodorescu VS, Blanchin MG.Nanocapsules of biodegradable polymers: preparation and characterization by direct high resolution electron microscopy. Materials Science and Engineering: C, 2002;21(1):137-42. doi: https://doi.org/10.1016/S0928-4931(02)00073-5
Matshetshe KI, Parani S, Manki SM, Oluwafemi OS.Preparation, characterization and in vitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. Int J Biol Macromol, 2018;118(Pt A):676-82. doi: 10.1016/j.ijbiomac.2018.06.125
Keawchaoon L, Yoksan R.Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and surfaces B: Biointerfaces, 2011;84(1):163-71. doi: https://doi.org/10.1016/j.colsurfb.2010.12.031
Cai M, Wang Y, Wang R, Li M, Zhang W, Yu J, Hua R.Antibacterial and antibiofilm activities of chitosan nanoparticles loaded with Ocimum basilicum L. essential oil. International Journal of Biological Macromolecules, 2022;202(122-9. doi: https://doi.org/10.1016/j.ijbiomac.2022.01.066
Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R.Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers, 2011;84(3):1158-64. doi: https://doi.org/10.1016/j.carbpol.2011.01.005
Raskovic A, Milanovic I, Pavlovic N, Milijasevic B, Ubavic M, Mikov M. Analgesic effects of rosemary essential oil and its interactions with codeine and paracetamol in mice. Eur Rev Med Pharmacol Sci, 2015;19(1):165-72.
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).