A comparative evaluation of two approaches for loading a therapeutic agent into custom fabricated electrospun nanofiber based innovative wound bandages

Authors

  • Tumelo H. Tabane Botswana International University of Science and Technology, College of Science, Department of Chemical and forensic sciences, Private Bag 16, Palapye, Botswana https://orcid.org/0009-0006-0939-153X
  • Bareki S. Batlokwa Botswana International University of Science and Technology, College of Science, Department of Chemical and forensic sciences, Private Bag 16, Palapye, Botswana https://orcid.org/0000-0002-6701-9895

Abstract

In this work, we evaluated two different approaches; the pvpi_blended and the pvpi_soaked approaches, of loading a model therapeutic agent, povidone-iodine (pvpi), into innovatively fabricated, electrospun poly-Ɛ-caprolactone (PCL) nanofiber based wound bandages. The two loading approaches were compared based on the critical parameters that an excellent wound dressing material must possess; loading capacity, therapeutic agent releasing behavior and wettability. From the results, the pvpi_blended approach PCL nanofiber mats with their higher calculated pvpi loading capacities of 97.0% outperformed the pvpi_soaked approach PCL nanofiber mats with 61.2%. They further outclassed the soaked_approach mats when it came to pvpi release time, recording a longer prolonged time of 98 min compared to shorter, faster time of 18 min for the release of 50% or more of pvpi for both. Furthermore, it was found out that the presence of the hydrophilic pvpi within the structure of the prepared PCL nanofiber mats bandages, altered the natural hydrophobicity of the pure PCL mats to slightly hydrophilic making them compatible with the hydrophilic wound exudates and their excellent absorbers. Additionally, the pvpi_loaded PCL nanofiber mat bandages exhibited favorable morphological attributes such as smooth surfaces, nano sized fibers with estimated diameters of 350 nm and high surface area to volume ratio, that supported high performance efficiency of the prepared materials. Overall, the blended presented itself as an approach of choice for incorporating medication when developing medicated nanofiber-based bandages such as the ones in this study, which are potential replacements of the conventional drug wasting, micro-structured cotton bandages.

Keywords: Electrospinning, Nanostructured bandages, Electrospun nanofiber bandages, Innovative drug delivery bandages, Smart bandages, Blended approach, Chronic wounds.

Keywords:

Electrospinning, Nanostructured bandages, Electrospun nanofiber bandages, Innovative drug delivery bandages, Blended approach, Chronic wounds

DOI

https://doi.org/10.22270/jddt.v13i11.6254

Author Biographies

Tumelo H. Tabane, Botswana International University of Science and Technology, College of Science, Department of Chemical and forensic sciences, Private Bag 16, Palapye, Botswana

Botswana International University of Science and Technology, College of Science, Department of Chemical and forensic sciences, Private Bag 16, Palapye, Botswana

 

Bareki S. Batlokwa, Botswana International University of Science and Technology, College of Science, Department of Chemical and forensic sciences, Private Bag 16, Palapye, Botswana

Botswana International University of Science and Technology, College of Science, Department of Chemical and forensic sciences, Private Bag 16, Palapye, Botswana

 

References

Pereira RF, Bártolo PJ. Traditional Therapies for Skin Wound Healing. Adv Wound Care. 2016;5(5):208-29. https://doi.org/10.1089/wound.2013.0506 PMid:27134765 PMCid:PMC4827280

Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010;21(2):77-95. https://doi.org/10.1002/pat.1625

Selvaraj Dhivya VVP, Santhini E. Wound dressins- a review. 2015;5(July 2014):24-8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662938/ https://doi.org/10.7603/s40681-015-0022-9 PMid:26615539 PMCid:PMC4662938

Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463(2):127-36. https://doi.org/10.1016/j.ijpharm.2013.12.015 PMid:24368109

Vincent Edwards J, Graves E, Prevost N, Condon B, Yager D, Dacorta J, et al. Development of a nonwoven hemostatic dressing based on unbleached cotton: A de novo design approach. Pharmaceutics. 2020;12(7):1-19. https://doi.org/10.3390/pharmaceutics12070609 PMid:32629845 PMCid:PMC7407894

Uzun M. A review of wound management materials. J Text Eng Fash Technol. 2018;4(1):53-9. https://doi.org/10.15406/jteft.2018.04.00121

Of EJ. European Journal of Orthodontics. Eur J Orthod. 1987;9(1):321-3. https://doi.org/10.1093/ejo/9.1.321

Hussain M, Wackerlig J, Lieberzeit PA. Biomimetic strategies for sensing biological species. Biosensors. 2013;3(1):89-107. https://doi.org/10.3390/bios3010089 PMid:25587400 PMCid:PMC4263596

Makaram P, Owens D, Aceros J. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies. Diagnostics. 2014;4(2):27-46. https://doi.org/10.3390/diagnostics4020027 PMid:26852676 PMCid:PMC4665544

Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer (Guildf) [Internet]. 2008;49(15):3187-204. https://doi.org/10.1016/j.polymer.2008.04.017

Ahmadian A, Shafiee A, Aliahmad N, Agarwal M. Overview of Nano-Fiber Mats Fabrication via Electrospinning and Morphology Analysis. Textiles. 2021;1(2):206-26. https://doi.org/10.3390/textiles1020010

Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: Solving global issues. Mater Today [Internet]. 2006;9(3):40-50. https://doi.org/10.1016/S1369-7021(06)71389-X

Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL. The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers (Basel). 2010;2(4):522-53. https://doi.org/10.3390/polym2040522

Qing C. The molecular biology in wound healing & non-healing wound. Chinese Journal of Traumatology - English Edition. 2017. https://doi.org/10.1016/j.cjtee.2017.06.001 PMid:28712679 PMCid:PMC5555286

Chew S, Wen Y, Dzenis Y, Leong K. The Role of Electrospinning in the Emerging Field of Nanomedicine. Curr Pharm Des. 2006;12(36):4751-70. https://doi.org/10.2174/138161206779026326 PMid:17168776 PMCid:PMC2396225

Thomas R, Soumya KR, Mathew J, Radhakrishnan EK. Electrospun Polycaprolactone Membrane Incorporated with Biosynthesized Silver Nanoparticles as Effective Wound Dressing Material. Appl Biochem Biotechnol. 2015;176(8):2213-24. https://doi.org/10.1007/s12010-015-1709-9 PMid:26113218

Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S, et al. Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater [Internet]. 2017;66(3):149-57. https://doi.org/10.1080/00914037.2016.1190931

Ponjavic M, Nikolic MS, Nikodinovic-Runic J, Ilic-Tomic T, Djonlagic J. Controlled drug release carriers based on PCL/PEO/PCL block copolymers. Int J Polym Mater Polym Biomater [Internet]. 2019;68(6):308-18. https://doi.org/10.1080/00914037.2018.1445631

Sadri M, Mohammadi A, Hosseini H. Drug release rate and kinetic investigation of composite polymeric nanofibers. Nanomedicine Res J. 2016;1(2):112-21.

Janmohammadi M, Nourbakhsh MS. Electrospun polycaprolactone scaffolds for tissue engineering: a review. Int J Polym Mater Polym Biomater [Internet]. 2019;68(9):527-39. https://doi.org/10.1080/00914037.2018.1466139

Ray PG, Pal P, Srivas PK, Basak P, Roy S, Dhara S. Surface modification of eggshell membrane with electrospun chitosan/polycaprolactone nanofibers for enhanced dermal wound healing. ACS Appl Bio Mater. 2018;1(4):985-98. https://doi.org/10.1021/acsabm.8b00169 PMid:34996140

Ferreira JL, Gomes S, Henriques C, Borges JP, Silva JC. Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and in Vitro evaluation. J Appl Polym Sci. 2014;131(22):37-9. https://doi.org/10.1002/app.41068

Baker SR, Banerjee S, Bonin K, Guthold M. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater Sci Eng C. 2016; https://doi.org/10.1016/j.msec.2015.09.102 PMid:26652365

Mitxelena-Iribarren O, Riera-Pons M, Pereira S, Calero-Castro FJ, Castillo Tuñón JM, Padillo-Ruiz J, et al. Drug-loaded PCL electrospun nanofibers as anti-pancreatic cancer drug delivery systems. Polym Bull [Internet]. 2023;80(7):7763-78. https://doi.org/10.1007/s00289-022-04425-6

Semnani D, Nasari M, Fakhrali A. PCL nanofibers loaded with beta-carotene: a novel treatment for eczema. Polym Bull. 2018; https://doi.org/10.1007/s00289-017-2141-9

Archer E, Torretti M, Madbouly S. Biodegradable polycaprolactone (PCL) based polymer and composites. Physical Sciences Reviews. 2021. https://doi.org/10.1515/psr-2020-0074

Cho SJ, Jung SM, Kang M, Shin HS, Youk JH. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer (Guildf) [Internet]. 2015;69(1):95-102. https://doi.org/10.1016/j.polymer.2015.05.037

Razmshoar P, Bahrami SH, Akbari S. Functional hydrophilic highly biodegradable PCL nanofibers through direct aminolysis of PAMAM dendrimer. Int J Polym Mater Polym Biomater [Internet]. 2020;69(16):1069-80. https://doi.org/10.1080/00914037.2019.1655751

Xia Y, Zhou PY, Cheng XS, Xie Y, Liang C, Li C, et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine. 2013;8:4197-213. https://doi.org/10.2147/IJN.S50685 PMid:24204147 PMCid:PMC3818022

Ignatova M, Manolova N, Rashkov I. Electrospinning of poly(vinyl pyrrolidone)-iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)-iodine complex - a prospective route to antimicrobial wound dressing materials. Eur Polym J. 2007;43(5):1609-23. https://doi.org/10.1016/j.eurpolymj.2007.02.020

Sun K, Li ZH. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett. 2011;5(4):342-61. https://doi.org/10.3144/expresspolymlett.2011.34

Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. Adv Drug Deliv Rev [Internet]. 2011;63(4):209-20. https://doi.org/10.1016/j.addr.2010.12.002 PMid:21145932

Ekram B, Abdel-Hady BM, El-Kady AM, Amr SM, Waley AI, Guirguis OW. Optimum parameters for the production of nano-scale electrospun polycaprolactone to be used as a biomedical material. Adv Nat Sci Nanosci Nanotechnol. 2017;8(4). https://doi.org/10.1088/2043-6254/aa92b4

Schneider H, Steuber J, Du W, Mortazavi M, Bullock D. Polyethylene Oxide Nanofiber Production by Electrospinning. J Ark Acad Sci. 2016;70(1):211-5. https://doi.org/10.54119/jaas.2016.7027

Liu GS, Yan X, Yan FF, Chen FX, Hao LY, Chen SJ, et al. In Situ Electrospinning Iodine-Based Fibrous Meshes for Antibacterial Wound Dressing. Nanoscale Res Lett. 2018;13. https://doi.org/10.1186/s11671-018-2733-9 PMid:30284048 PMCid:PMC6170247

Huang FL, Wang QQ, Wei QF, Gao WD, Shou HY, Jiang SD. Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polym Lett. 2010;4(9):551-8. https://doi.org/10.3144/expresspolymlett.2010.69

Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J Memb Sci [Internet]. 2015;490:139-51. https://doi.org/10.1016/j.memsci.2015.04.064

Eskitoros-Togay M, Bulbul YE, Tort S, Demirtaş Korkmaz F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm. 2019;565(April):83-94. https://doi.org/10.1016/j.ijpharm.2019.04.073 PMid:31063838

Sciences H. Review kinetic modeling on drug release from controlled drug delivery systems. 2010;67(3):217-23.

Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. A simple equation for description of solute release i. fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs Philip. J Control Release. 2003;90(3):313-22. https://doi.org/10.1016/S0168-3659(03)00195-0 PMid:12880698

Baishya H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J Dev Drugs. 2017;06(02):1-8. https://doi.org/10.4172/2329-6631.1000171

Kumar P, Ganure AL, Subudhi BB, Shukla S. Design and comparative evaluation of in-vitro drug release, pharmacokinetics and gamma scintigraphic analysis of controlled release tablets using novel pH sensitive starch and modified starch-acrylate graft copolymer matrices. Iran J Pharm Res. 2015;14(3):677-91.

Paarakh MP, Jose PANI, Setty CM, Peter G V. Release Kinetics - Concepts and Applications. Int J Pharm Res Technol. 2019;8(1):12-20.

Pasteur L. Organic Chemistry I. A Hist Chem. 1964;749-800. https://doi.org/10.1007/978-1-349-00554-3_24

Su TT, Jiang H, Gong H. Thermal stabilities and the thermal degradation kinetics of poly(ε-caprolactone). Polym - Plast Technol Eng. 2008;47(4):398-403. https://doi.org/10.1080/03602550801897695

Ghasemiyeh P, Mohammadi-Samani S. Polymers Blending as Release Modulating Tool in Drug Delivery. Frontiers in Materials. 2021. https://doi.org/10.3389/fmats.2021.752813

Hadavi Moghadam B, Hasanzadeh M, Haghi AK. On the contact angle of electrospun polyacrylonitrile nanofiber mat. Bulg Chem Commun. 2013;45(2):169-77.

Monteiro MSSB, Lunz J, Sebastião PJ, Tavares MIB. Evaluation of Nevirapine Release Kinetics from Polycaprolactone Hybrids. Mater Sci Appl. 2016;07(11):680-701. https://doi.org/10.4236/msa.2016.711055

Published

15-11-2023
Statistics
Abstract Display: 207
PDF Downloads: 170
PDF Downloads: 13

How to Cite

1.
Tabane TH, Batlokwa BS. A comparative evaluation of two approaches for loading a therapeutic agent into custom fabricated electrospun nanofiber based innovative wound bandages. J. Drug Delivery Ther. [Internet]. 2023 Nov. 15 [cited 2025 Feb. 14];13(11):73-80. Available from: https://jddtonline.info/index.php/jddt/article/view/6254

How to Cite

1.
Tabane TH, Batlokwa BS. A comparative evaluation of two approaches for loading a therapeutic agent into custom fabricated electrospun nanofiber based innovative wound bandages. J. Drug Delivery Ther. [Internet]. 2023 Nov. 15 [cited 2025 Feb. 14];13(11):73-80. Available from: https://jddtonline.info/index.php/jddt/article/view/6254