A comprehensive overview on phytomedicines as an upcoming/emerging candidate for the management of epilepsy
Abstract
Background: The word "epilepsy" refers to a category of chronic CNS illnesses characterised by spontaneous occurrence of seizures, which are typically accompanied by loss of consciousness and uncontrollable shaking of the body (convulsions). Epilepsy is one of the most commonly occurring non-communicable neurological disorder that affects people of all age groups. By preventing discharge and inducing hypnosis, anticonvulsant medications are used to manage convulsions. The medication used for the therapy includes phenytoin (PHT), diazepam, valproate (VPA), levetiracetam, etc. These medications have brand-new effectiveness ranges and brand-new side effects. They also represent a significant cost increase. Herbal medicine, which has its roots in ancient civilizations, involves the use of medicinal plants to treat diseases and promote overall well-being. Although the widespread use of herbal medicine as an antiepileptic, there is little solid data supporting the effectiveness and safety of the majority of herbs. Additionally, the herbal remedy needs to pass a rigorous, evidence-based review. As herbal drugs are derived from natural sources, they are often considered safer than synthetic drugs. Therefore, there is a growing interest in exploring the potential of herbal medicine for treating neurodegenerative diseases such as Parkinson's disease. Due to their lower adverse effects, herbal medications are becoming more and more popular for the adjuvant treatment of epilepsy.
Objective: The objective of this article is to investigate whether herbal medications have potential as a treatment option for Parkinsonism, and to provide a clear understanding of the current state of research on this topic.
Keywords: Convulsion, epilepsy, herbal treatment, seizures, phytoconstituents, herbal medicine, GABA.
Keywords:
Convulsion, epilepsy, herbal treatment, seizures, phytoconstituents, herbal medicine, GABADOI
https://doi.org/10.22270/jddt.v13i7.6125References
Acharya MM, Hattiangady B, Shetty AK. Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol 2008; 84:363 404. https://doi.org/10.1016/j.pneurobio.2007.10.010
Saraf SA, Gupta R, Mishra A, Sharma AK, Punia RK. Advancements in traditional medicinal plants used in epilepsy. Phcog Rev 2008; 2:229 40.
Kaur, H., Kumar, B., Medhi, B., Antiepileptic drugs in development pipeline: A recent update. eNeurologicalSci 2016; 4:42-51 https://doi.org/10.1016/j.ensci.2016.06.003
Adams M, Schneider SV, Kluge M, Kessler M, Hamburger M. Epilepsy in the renaissance: A survey of remedies from 16th and 17th century German herbals. J Ethnopharmacol 2012; 143:1 13. https://doi.org/10.1016/j.jep.2012.06.010
Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: Interactions between antiepileptic drugs and other drugs. Lancet Neurol 2003; 2:473 81. https://doi.org/10.1016/S1474-4422(03)00483-6
Eisenberg DM, Davis RB, Ettner SL, Appel S, Wilkey S, Van Rompay M, Kessler RC. Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA 1998; 280:1569-75. https://doi.org/10.1001/jama.280.18.1569
Raza M, Shaheen F, Choudhary MI, Sombati S, Rafiq A, Suria A, et al. Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum. J Ethnopharmacol 2001; 78:73 8. https://doi.org/10.1016/S0378-8741(01)00327-0
Gupta, G., Pathak, S., Rawat, S., Mishra, A., Singh, Y., Mehta, M., Satija, S., Khurana, N., de Jesus Andreoli Pinto, T., Shukla, S., Pabreja, K., Chellappan, D.K., Oxidative Stress in Neurology and in Neurodegenerative Processes, in: Role of Oxidative Stress in Pathophysiology of Diseases 2020. https://doi.org/10.1007/978-981-15-1568-2_4
Sean Flynn, M. Ali Babi, in Pharmacology and Therapeutics for Dentistry (Seventh Edition), 2017
Fetrow CW, Avila JR (eds): Professional's Handbook of Complementary and Alternative Medicines (ed 2). Springhouse, PA, Springhouse Corporation, 2001.
Bum EN, Taiwe GS, Nkainsa LA, Moto FC, Seke Etet PF, Hiana IR, Bailabar T, Rouyatou, Seyni P, Rakotonirina A, Rakotonirina SV. Validation of anticonvulsant and sedative activity of six medicinal plants. Epilepsy Behav. 2009; 14:454-58. https://doi.org/10.1016/j.yebeh.2008.12.022
Salih MA, Mustafa AA. A substance in broad beans (Vicia faba) is protective against experimentally induced convulsions in mice. Epilepsy Behav. 2008; 12:25-29. https://doi.org/10.1016/j.yebeh.2007.08.016
Holmes GL. Animal model studies application to human patients. Neurology. 2007 (Suppl 3); 69:S28-32. https://doi.org/10.1212/01.wnl.0000302369.24230.c6
Vohara D, Pal SN, Pillai KK. Protection from Phenytoin induced cognitive deficit by Bacopa monniera, a reputed Nootropic plant. J Ethnopharmacol 2000; 71:383 90. https://doi.org/10.1016/S0378-8741(99)00213-5
Mathew J, Paul J, Nandhu MS, Paulose CS. Increased excitability and metabolism in pilocarpine induced epileptic rats: Effect of Bacopa monniera. Fitoterapia 2010; 81:546 51. https://doi.org/10.1016/j.fitote.2010.01.017
Satija, S., Tambuwala, M.M., Pabreja, K., Bakshi, H.A., Chellappan, D.K., Aljabali, A.A., Nammi, S., Singh, T.G., Dureja, H., Gupta, G., Dua, K., Mehta, M., Garg, M., 2020. Development of a novel HPTLC fingerprint method for simultaneous estimation of berberine and rutin in medicinal plants and their pharmaceutical preparations followed by its application in antioxidant assay. J. Planar Chromatogr. - Mod. TLC 1-7. https://doi.org/10.1007/s00764-020-00035-y
Viola H, Wasowski C, Levi de Stein M, et al. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med 1995; 61:213-6. https://doi.org/10.1055/s-2006-958058
Herdari MR, Dadollahi Z, Mehrabani M, Mehrabi H, PourzadehHosseini M, Behravan E and Etemad L: Study of antiseizure effects of Matricaria recutita extract in mice. Ann NY Acad Sci 2009; 1171 300-304. https://doi.org/10.1111/j.1749-6632.2009.04917.x
Amsterdam JD, Li Y, Soeller I, Rockwell K, Mao JJ and Shults J: A randomized, double-blind, placebo-controlled trial of oral Matricaria recutita (Chamomile) extract therapy for generalized anxiety disorder. J Clin Psychopharmacol 2009; 29:378-382. https://doi.org/10.1097/JCP.0b013e3181ac935c
Russo EB. Cannabis and epilepsy: An ancient treatment returns to the fore. Epilepsy Behav 2017; 70:292-297. https://doi.org/10.1016/j.yebeh.2016.09.040
Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, Di Marzo V, Jutras-Aswad D, Notcutt WG, Martinez-Orgado J, Robson PJ, Rohrback BG, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014; 55:791-802. https://doi.org/10.1111/epi.12631
Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ. Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics 2015; 12:699-730. https://doi.org/10.1007/s13311-015-0377-3
Klein BD, et al. Evaluation of cannabidiol in animal seizure models by the Epilepsy Therapy Screening Program (ETSP). Neurochem Res 2017; 42(7):1939-48. https://doi.org/10.1007/s11064-017-2287-8
Thiele EA, Marsh ED, French JA, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): A randomised, double-blind, placebo-controlled Phase 3 trial. Lancet 2018; 391:1085- 1906. https://doi.org/10.1016/S0140-6736(18)30136-3
Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med 2017; 376:2011-2020. https://doi.org/10.1056/NEJMoa1611618
Hill AJ, Mercier MS, Hill TD, Glyn SE, Jones NA, Yamasaki Y, Futamura T, Duncan M, Stott CG, Stephens GJ, Williams CM, Whalley BJ. Cannabidivarin is anticonvulsant in mouse and rat. Br J Pharmacol. 2012; 167:1629-42. https://doi.org/10.1111/j.1476-5381.2012.02207.x
Pertwee, R.G., The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9- tetrahydrocannabivarin. Br. J. Pharmacol. 2008; 153:199-215. https://doi.org/10.1038/sj.bjp.0707442
Nehlig A. Are we dependent upon coffee and caffeine? A review on human and animal data. Neurosci Biobehav Rev 1999; 23:563-76. https://doi.org/10.1016/S0149-7634(98)00050-5
Young R, Gabryszuk M, Glennon RA. (2) Ephedrine and caffeine mutually potentiate one another's amphetamine-like stimulus effects. Pharmacol Biochem Behav 1998; 61:169-73 https://doi.org/10.1016/S0091-3057(98)00044-6
Gilbert RM, Marshman JA, Schwieder M, Berg R. Caffeine content of beverages as consumed. Can Med Assoc J 1976; 114:205-8.
Kaufman K, Sachdeo R. Caffeinated beverages and decreased seizure control. Seizure 2003; 12:519-21. https://doi.org/10.1016/S1059-1311(03)00048-7
Roca D, Schiller G, Farb D. Chronic caffeine or theophylline exposure reduces gamma-aminobutyric acid/benzodiazepine receptor site interactions. Mol Pharmacol 1988; 33:481-5.
Hossain S, Aoshima H, Koda H, Kiso Y. Effects of coffee components on the response of GABA(A) receptors expressed in Xenopus oocytes. J Agric Food Chem 2003; 51:7568-75. https://doi.org/10.1021/jf0303971
Borycz J, Pereira MF, Melani A, Rodrigues RJ, Köfalvi A, Panlilio L, et al. Differential glutamate-dependent and glutamate-independent adenosine A1 receptormediated modulation of dopamine release in different striatal compartments. J Neurochem 2007; 101:355-63. https://doi.org/10.1111/j.1471-4159.2006.04386.x
Solinas M, Ferre S, You Z, Karcz-kubicha M, Popoli P, Goldberg SR. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens, 2002; ; 22:6321-4 https://doi.org/10.1523/JNEUROSCI.22-15-06321.2002
Ali, S.I., Nasir, Y.J., Flora of Pakistan. Ranunculaceae (No. 193). National Herbarium, Pakistan Agricultural Research Council, Islamabad, pp. 40. 1991.
Said, H.M., 1970. Hamdard Pharmacopoeia of Eastern Medicine. Hamdard National Foundation, Times Press, Karachi, Pakistan, p. 49.
Kirtikar, K.R., Basu, B.M., 1918. Indian Medicinal Plants. Apura Krishna Bose Indian Press, Allahabad, India, p. 8. https://doi.org/10.5962/bhl.title.137025
Raza M, Shaheen F, Choudhary MI, Sombati S, Rafiq A, Suria A, et al. Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum. J Ethnopharmacol 2001; 78:73 8. https://doi.org/10.1016/S0378-8741(01)00327-0
Morgenstern LB, Viscoli CM, Kernan WN, et al. Use of ephedra-containing products and risk for hemorrhagic stroke. Neurology 2003; 60:132-135
https://doi.org/10.1212/01.WNL.0000042092.20411.5B
Kalix P. The pharmacology of psychoactive alkaloids from ephedra and catha. J Ethnopharmacol 1991; 32:201-8. https://doi.org/10.1016/0378-8741(91)90119-X
White LM, Gardner SF, Gurley BJ, Marx MA, Wang PL, Estes M. Pharmacokinetics and cardiovascular effects of ma-huang (Ephedra sinica) in normotensive adults. J Clin Pharmacol 1997; 37:116-22 https://doi.org/10.1002/j.1552-4604.1997.tb04769.x
J.A. Audu, Medicinal plants and their use in Bauchi State, Nig. Field 1989; 54:157-168.
Chindo BA, Schröder H, Becker A. Methanol extract of Ficus platyphylla ameliorates seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice. Phytomedicine. 2015; 22:86-93. https://doi.org/10.1016/j.phymed.2014.10.005
Chindo BA, Ya'U J, Danjuma NM, Okhale SE, Gamaniel KS, Becker A. Behavioral and anticonvulsant effects of the standardized extract of Ficus platyphylla stem bark. J Ethnopharmacol. 2014; 154:351-60. https://doi.org/10.1016/j.jep.2014.03.061
Chindo BA, Schröder H, Becker A. Methanol extract of Ficus platyphylla ameliorates seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice. Phytomedicine. 2015; 22:86-93. https://doi.org/10.1016/j.phymed.2014.10.005
Kim P, Park JH, Kwon KJ, Kim KC, Kim HJ, Lee JM, Kim HY, Han SH, Shin CY. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid. Food Chem Toxicol. 2013; 51:288-96. https://doi.org/10.1016/j.fct.2012.10.011
Suleymanova E, Gulyaev M, Chepurnova N. Ginseng extract attenuates early MRI changes after status epilepticus and decreases subsequent reduction of hippocampal volume in the rat brain. Epilepsy Res. 2014; 108:223-31. https://doi.org/10.1016/j.eplepsyres.2013.11.018
Lian XY, Zhang ZZ, Stringer JL. Anticonvulsant activity of ginseng on seizures induced by chemical convulsants. Epilepsia. 2005; 46:15-22. https://doi.org/10.1111/j.0013-9580.2005.40904.x
Vogler BK, Pittler MH, Ernst E. The efficacy of ginseng: a systematic review of randomised clinical trials. Eur J Clin Pharmacol 1999; 55:567-75 https://doi.org/10.1007/s002280050674
Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999; 58:1685-93 https://doi.org/10.1016/S0006-2952(99)00212-9
Liu Y, Lo YC, Qian L, Crews FT, Wilson B, Chen HL, Wu HM, Chen SH, Wei K, Lu RB, Ali S, Hong JS. Verapamil protects dopaminergic neuron damage through a novel anti-inflammatory mechanism by inhibition of microglial activation. Neuropharmacology. 2011; 60:373-80. https://doi.org/10.1016/j.neuropharm.2010.10.002
Lin ZY, Chen LM, Zhang J, Pan XD, Zhu YG, Ye QY, Huang HP, Chen XC. Ginsenoside Rb1 selectively inhibits the activity of L-type voltage-gated calcium channels in cultured rat hippocampal neurons. Acta Pharmacol Sin. 2012; 33:438-44. https://doi.org/10.1038/aps.2011.181
Wang SQ, Li XJ, Zhou S, Sun DX, Wang H, Cheng PF, Ma XR, Liu L, Liu JX, Wang FF, Liang YF, Wu JM. Intervention effects of ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of neurotrophin-4 and N-cadherin. PLoS One. 2013; 8:e61687. https://doi.org/10.1371/journal.pone.0061687
Socala K, Nieoczym D, Grzywnowicz K, Stefaniuk D, Wlaz P. Evaluation of Anticonvulsant, Antidepressant-, and Anxiolytic-like Effects of an Aqueous Extract from Cultured Mycelia of the Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Higher Basidiomycetes) in Mice. Int J Med Mushrooms. 2015; 17:209-18. https://doi.org/10.1615/IntJMedMushrooms.v17.i3.10
Tello I, Campos-Pena V, Montiel E, Rodriguez V, Aguirre-Moreno A, Leon-Rivera I, Del Rio-Portilla F, Herrera-Ruiz M, Villeda-Hernandez J. Anticonvulsant and neuroprotective effects of oligosaccharides from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes). Int J Med Mushrooms. 2013; 15:555-68. https://doi.org/10.1615/IntJMedMushr.v15.i6.40
Wang SQ, Li XJ, Qiu HB, Jiang ZM, Simon M, Ma XR, Liu L, Liu JX, Wang FF, Liang YF, Wu JM, Di WH, Zhou S. Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII α in epileptic hippocampal neurons. PLoS One. 2014; 9:e102161. https://doi.org/10.1371/journal.pone.0102161
MacLaren R, Forrest LK, Kiser TH. Adjunctive dexmedetomidine therapy in the intensive care unit: a retrospective assessment of impact on sedative and analgesic requirements, levels of sedation and analgesia, and ventilatory and hemodynamic parameters. Pharmacotherapy. 2007; 27:351-59. https://doi.org/10.1592/phco.27.3.351
Mar C, Bent S. An evidence-based review of the 10 most commonly used herbs. Western J Med 1999; 171:168- 171.
Roufogalis BD. The growth in complementary and herbal medicine: current issues. Pharm News 1999; 6:4.
Facts about the natural products industry. Natl Nutri Foods Nwest Region 2001;
Fetrow CW, Avila JR. Professional's Handbook of Complementary and Alternative Medicines. Springhouse , PA : Springhouse, 1999.
Sasaki K, Wada K, Hatta S, et al.. Bilobalide, a constituent of Ginkgo biloba L., potentiates drug-metabolizing enzyme activities in mice: possible mechanism for anticonvulsant activity against 4-O-methylpyridoxine-induced convulsions. Res Commun Mol Pathol Pharmacol 1997; 96:45- 56.
Smith PF, Maclennan K, Darlington CL. The neuroprotective properties of the Ginkgo biloba leaf: a review of the possible relationship to platelet-activating factor (PAF). J Ethnopharmacol 1996; 50:131- 139. https://doi.org/10.1016/0378-8741(96)01379-7
Weichel O, Hilgert M, Chatterjee SS, et al.. Bilobalide, a constituent of Ginkgo biloba inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 1999; 360:609- 615. https://doi.org/10.1007/s002109900131
Kristofikova Z, Benesova O, and Tejkalova H. Changes in high-affinity choline uptake in the hippocampus of old rats after long-term administration of two nootropic drugs (tacrine and ginkgo biloba extract). Dementia 1992; 3:304-7. https://doi.org/10.1159/000107030
Kristofikova Z, Klaschka J. In vitro effect of ginkgo biloba extract (EGb 761) on the activity of presynaptic cholinergic nerve terminals in rat hippocampus. Dement Geriatr Cogn Disord 1997; 8:43-8. https://doi.org/10.1159/000106599
Taylor JE. [Neuromediator binding to receptors in the rat brain: the effect of chronic administration of ginkgo biloba extract]. Presse Med 1986;15:1491-3.
Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J. Bilobalide, a constituent of ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 1999; 360:609-15. https://doi.org/10.1007/s002109900131
Sasaki K, Wada K, Hatta S, Ohshika H, Haga M. Bilobalide, a constituent of ginkgo biloba L., potentiates drug-metabolizing enzyme activities in mice: possible mechanism for anticonvulsant activity against 4-O-methylpyridoxine-induced convulsions. Res Commun Mol Pathol Pharmacol 1997; 96:45-56.
Itil TM, Eralp E, Ahmed I, Kunitz A, Itil KZ. The pharmacological effects of Ginkgo biloba, a plant extract, on the brain of dementia patients in comparison with tacrine. Psychopharmacol Bull 1998; 34:391-7.
Mahomedi IM, Ojewole JA. Anticonvulsant activity of Harpagophytum procumbens DC [Pedaliaceae] secondary root aqueous extract in mice. Brain Res Bull 2006; 69:57 62. https://doi.org/10.1016/j.brainresbull.2005.10.010
Grunze H, Langosch J, Schirrmacher K, et al: Kava pyrones exert effects on neuronal transmission and transmembraneous cation currents similar to established mood stabilizers-A review. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:1555-1570. https://doi.org/10.1016/S0278-5846(01)00208-1
Gleitz J, Friese J, Beile A, Ameri A, Peters T. Anticonvulsive action of (1/2)-kavain estimated from its properties on stimulated synaptosomes and Na1 channel receptor sites. Eur J Pharmacol 1996; 315:89-97. https://doi.org/10.1016/S0014-2999(96)00550-X
Sayyah M, Valizadeh J, Kamalinejad M. Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole and maximal electroshock induced seizures. Phytomedicine 2002; 9:212 6. https://doi.org/10.1078/0944-7113-00113
Bastidas Ramírez BE, Navarro Ruíz N, Quezada Arellano JD, Ruíz Madrigal B, Villanueva Michel MT, Garzón P. Anticonvulsant effects of Magnolia grandiflora L. in the rat. J Ethnopharmacol 1998; 61:143 52. https://doi.org/10.1016/S0378-8741(98)00028-2
Fariello RG, Bubenik GA, Brown GM, et al: Epileptogenic action of intraventricularly injected antimelatonin antibody. Neurology 1977; 27:567-570. https://doi.org/10.1212/WNL.27.6.567
Philo R, Reiter RJ: Characterization of pinealectomy induced convulsionsin the Mongolian gerbil (Meriones unguiculatus). Epilepsia 19:485-492, 1978. https://doi.org/10.1111/j.1528-1157.1978.tb05175.x
Azevedo BA, Fontana P: Audiogenic seizures and the pineal gland. Biol Psychiatry 1988; 23:734-740. https://doi.org/10.1016/0006-3223(88)90058-3
Rao VS, Rao A, Karanth SK. Anticonvulsant and neurotoxicity profile of nardostachys jatamansi in rats. J Ethnopharmcol 2005; 102:351 6. https://doi.org/10.1016/j.jep.2005.06.031
Medina JH, Paladini AC, Wolfman C, Levi de Stein M, Calvo D, Diaz LE, Pena C. Chrysin (5,7-di-OH-flavone), a naturallyoccurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol 1990; 40:2227-31. https://doi.org/10.1016/0006-2952(90)90716-X
Wolfman C, Viola H, Paladini A, Dajas F, Medina JH. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav 1994; 47:1-4 https://doi.org/10.1016/0091-3057(94)90103-1
Soulimani R, Younos C, Jarmouni S, Bousta D, Misslin R, Mortier F. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J Ethnopharmacol 1997; 57:11-20. https://doi.org/10.1016/S0378-8741(97)00042-1
Singh B, Singh D, Goel RK. Dual protective effect of Passiflora incarnata in epilepsy and associated post-ictal depression. J Ethnopharmacol. 2012; 139:273-79. https://doi.org/10.1016/j.jep.2011.11.011
Montgomery SA. Antidepressants and seizures: emphasis on newer agents and clinical implications. Int J Clin Pract. 2005; 59:1435-40. https://doi.org/10.1111/j.1368-5031.2005.00731.x
Mula M, Schmitz B. Depression in epilepsy: mechanisms and therapeutic approach. Ther Adv Neurol Disorder. 2009; 2:337-44. https://doi.org/10.1177/1756285609337340
Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, Paladini AC. Overview-flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res 1997; 22:419- 25 https://doi.org/10.1023/A:1027303609517
Bang, J.S., Choi, H.M., Sur, B.J., Lim, S.J., Kim, J.Y., Yang, H.I., Yoo, M.C., Hahm, D.H., Kim, K.S., Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1βstimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis. Res. Ther. 2009; 11:R49 https://doi.org/10.1186/ar2662
Zaugg, J., Baburin, I., Strommer, B., Kim, H.-J., Hering, S., Hamburger, M., HPLC-Based Activity Profiling: Discovery of Piperine as a Positive GABA A Receptor Modulator Targeting a Benzodiazepine-Independent Binding Site. J. Nat. Prod. 2010; 73:185-191. https://doi.org/10.1021/np900656g
Chang, C., Lin, M., DL-Tetrahydropalmatine may act through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats. Neurosci. Lett. 2001; 307:163-166. https://doi.org/10.1016/S0304-3940(01)01962-0
Da Cruz, G.M.P., Felipe, C.F.B., Scorza, F.A., Da Costa, M.A.C., Tavares, A.F., Menezes, M.L.F., De Andrade, G.M., Leal, L.K.A.M., Brito, G.A.C., Da Graça Naffah-Mazzacoratti, M., Cavalheiro, E.A., De Barros Viana, G.S., Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms. Pharmacol. Biochem. Behav. 2013; 104:144-153. https://doi.org/10.1016/j.pbb.2013.01.002
Wu XY, Zhao JL, Zhang M, Li F, Zhao T, Yang LQ. Sedative, hypnotic and anticonvulsant activities of ethanol fraction from rhizome pinelliae praeparatum. J Ethnopharmacol 2011; 135:325 9. https://doi.org/10.1016/j.jep.2011.03.016
Wolfson P, Hoffmann DL. An investigation into the efficacy of Scutellaria lateriflora in healthy volunteers. Altern Ther Health Med. 2003; 9:74-78.
Liu LY, Wei EQ, Zhao YM, Chen FX, Wang ML, Zhang WP, Chen Z. Protective effects of baicalin on oxygen/glucose deprivation- and NMDA-induced injuries in rat hippocampal slices. J Pharm Pharmacol. 2005; 57:1019-26. https://doi.org/10.1211/0022357056622
Zhang Z, Lian XY, Li S, Stringer JL. Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora). Phytomedicine. 2009; 16:485-93. https://doi.org/10.1016/j.phymed.2008.07.011
Wang H, Hui KM, Chen Y, Xu S, Wong JT, Xue H. Structure-activity relationships of flavonoids, isolated from Scutellaria baicalensis, binding to benzodiazepine site of GABA(A) receptor complex. Planta Med. 2002; 68:1059-62. https://doi.org/10.1055/s-2002-36357
Eadie MJ: Could valerian have been the first anticonvulsant? Epilepsia 2004 ; 45:1338-1343 https://doi.org/10.1111/j.0013-9580.2004.27904.x
Bialer M, Johannessen SI, Kupferberg HJ, et al: Progress report on new antiepileptic drugs: A summary of the Fifth Eilat Conference (Eilat V). Epilepsy Res 43:11-58, 2001 https://doi.org/10.1016/S0920-1211(00)00171-6
Spinella M: Herbal Medicines and epilepsy: The potential for benefit and adverse effects. Epilepsy Behav 2001; 2:524-532. https://doi.org/10.1006/ebeh.2001.0281
Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res. 2006; 20:764-72. https://doi.org/10.1002/ptr.1952
Nanjundaiah SM, Annaiah HN, Dharmesh SM. Gastroprotective Effect of Ginger Rhizome (Zingiber officinale) Extract: Role of Gallic Acid and Cinnamic Acid in H (), K ()-ATPase/H. pylori Inhibition and Anti-Oxidative Mechanism. Evid Based Complement Alternat Med. 2011; 2011:249487. https://doi.org/10.1093/ecam/nep060
Shanmugam KR, Mallikarjuna K, Kesireddy N, Sathyavelu Reddy K. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 2011; 49:893-97. https://doi.org/10.1016/j.fct.2010.12.013
Hosseini A, Mirazi N. Alteration of pentylenetetrazole-induced seizure threshold by chronic administration of ginger (Zingiber officinale) extract in male mice. Pharm Biol. 2015; 53:752-57. https://doi.org/10.3109/13880209.2014.942789
Hosseini A, Mirazi N. Acute administration of ginger (Zingiber officinale rhizomes) extract on timed intravenous pentylenetetrazol infusion seizure model in mice. Epilepsy Res. 2014; 108:411-19. https://doi.org/10.1016/j.eplepsyres.2014.01.008
Ghasemzadeh A, Jaafar HZ, Rahmat A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules. 2010; 15:4324-33. https://doi.org/10.3390/molecules15064324
Popova J, Staneva-Stoytcheva D, Mutafova V. Effects of the Ca2(+)-antagonists nifedipine, verapamil, flunarizine and of the calmodulin antagonist trifluoperazine on muscarinic cholinergic receptors in rat cerebral cortex. Gen Pharmacol. 1990; 21:317-19. https://doi.org/10.1016/0306-3623(90)90830-F
Koh EM, Kim HJ, Kim S, Choi WH, Choi YH, Ryu SY, Kim YS, Koh WS, Park SY. Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Med. 2009; 75:148-51. https://doi.org/10.1055/s-0028-1088347
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).