Therapeutic measures for COVID-19 and their clinical relevance of hERG channel translocation: A Pharmacodynamic approach
Abstract
The COVID-19 caused by SARS-CoV-2 poses a massive challenge to the medical system, especially the safe and effective COVID-19 treatment methods, forcing people to look for drugs that may have therapeutic effects as soon as possible. Some old drugs have shown clinical benefits after a few small clinical trials attracting significant attention. Clinically, however, many medications, including those currently shown to be effective against COVID-19, such as Chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir, may cause cardiotoxicity by acting on cardiac potassium channel, hERG channel due to their off-target effect. Blocking of hERG prolongs QT intervals on the electrocardiogram and thus might induce severe ventricular arrhythmias and even sudden cardiac death. Therefore, while focusing on the efficacy of COVID-19 drugs, the fact that they block hERG from causing arrhythmias cannot be ignored. To develop safe and effective drugs, it is necessary to understand the interactions between drugs and hERG channels and the molecular mechanism behind this high affinity. In this review, we focus on the biochemical and molecular mechanistic aspects of related drug blockade in the hERG, trying to provide insights into the QT interval prolongation caused by potential therapeutic drugs for COVID-19 and hope to weigh the risks and benefits when using related drugs.
Keywords: COVID-19; Therapeutic measures; hERG channel; Pharmacodynamic; Vaccines
Keywords:
COVID-19, Therapeutic measures, hERG channel, Pharmacodynamic, VaccinesDOI
https://doi.org/10.22270/jddt.v13i11.6007References
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020;20(4):398-400. https://doi.org/10.1016/S1473-3099(20)30141-9 PMid:32113510
Matricardi PM, Dal Negro RW, Nisini R. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures. Pediatr Allergy Immunol. 2020;31(5):454-470. https://doi.org/10.1111/pai.13271 PMid:32359201 PMCid:PMC7267459
Virlogeux V, Fang VJ, Park M, Wu JT, Cowling BJ. Comparison of incubation period distribution of human infections with MERS-CoV in South Korea and Saudi Arabia. Sci Rep. 2016;6(1):1-7. https://doi.org/10.1038/srep35839 PMid:27775012 PMCid:PMC5075793
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. https://doi.org/10.1038/s41586-020-2012-7 PMid:32015507 PMCid:PMC7095418
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. https://doi.org/10.1038/s41591-020-0820-9 PMid:32284615 PMCid:PMC7095063
Fan J, Liu X, Pan W, Douglas MW, Bao S. Epidemiology of coronavirus disease in Gansu Province, China, 2020. Emerg Infect Dis. 2020;26(6):1257. https://doi.org/10.3201/eid2606.200251 PMid:32168465 PMCid:PMC7258465
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med.2020; 382:727-733. https://doi.org/10.1056/NEJMoa2001017 PMid:31978945 PMCid:PMC7092803
Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 2020;10:01-17 https://doi.org/10.3389/fcimb.2020.587269 PMid:33324574 PMCid:PMC7723891
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766-788. https://doi.org/10.1016/j.apsb.2020.02.008 PMid:32292689 PMCid:PMC7102550
Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020 Mar 25; 6(3): 315-331. https://doi.org/10.1021/acscentsci.0c00272 PMid:32226821 PMCid:PMC10467574
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-574. https://doi.org/10.1016/S0140-6736(20)30251-8 PMid:32007145
Chen L, Liu W, Zhang Q, et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect. 2020;9(1):313-319. https://doi.org/10.1080/22221751.2020.1725399 PMid:32020836 PMCid:PMC7033720
Korber B, Fischer WM, Gnanakaran S. et.al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell ; 182(4): 812-827. https://doi.org/10.1016/j.cell.2020.06.043 PMid:32697968 PMCid:PMC7332439
Cotto KC, Wagner AH, Feng YY, et al. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 2018;46(D1):D1068-D1073. https://doi.org/10.1093/nar/gkx1143 PMid:29156001 PMCid:PMC5888642
Vasireddy D, Vanaparthy R, Mohan G, Malayala SV, Atluri P. Review of COVID-19 variants and COVID-19 vaccine efficacy: what the clinician should know? J Clin Med Res. 2021;13(6):317. https://doi.org/10.14740/jocmr4518 PMid:34267839 PMCid:PMC8256910
Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020;582(7813):557-560. https://doi.org/10.1038/s41586-020-2271-3 PMid:32340022
Stasi C, Fallani S, Voller F, Silvestri C. Treatment for COVID-19: An overview. Eur J Pharmacol. 2020;889:173644. https://doi.org/10.1016/j.ejphar.2020.173644 PMid:33053381 PMCid:PMC7548059
Humeniuk R, Mathias A, Kirby BJ, et al. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of remdesivir, a SARS-CoV-2 replication inhibitor. Clin Pharmacokinet. 2021;60(5):569-583. https://doi.org/10.1007/s40262-021-00984-5 PMid:33782830 PMCid:PMC8007387
Zhou S, Hill CS, Sarkar S, et al. β-d-N 4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis. 2021;224(3):415-419. https://doi.org/10.1093/infdis/jiab247 PMid:33961695 PMCid:PMC8136050
Kabinger F, Stiller C, Schmitzová J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021;28(9):740-746. https://doi.org/10.1038/s41594-021-00651-0 PMid:34381216 PMCid:PMC8437801
Magro G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the 'culprit lesion'of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X. 2020;2(2):100029. https://doi.org/10.1016/j.cytox.2020.100029 PMid:32421092 PMCid:PMC7224649
Tian J, Zhang M, Jin M, et al. Repurposed tocilizumab in patients with severe COVID-19. J Immunol. 2021;206(3):599-606. https://doi.org/10.4049/jimmunol.2000981 PMid:33298617 PMCid:PMC7812057
Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Terapia con baricitinib en COVID-19: un estudio piloto sobre seguridad e impacto clínico. J Infect.2020;81:318-356. https://doi.org/10.1016/j.jinf.2020.04.017 PMid:32333918 PMCid:PMC7177073
Duveau DY, Thomas CJ. The Remarkable Selectivity of Nirmatrelvir. ACS Pharmacol Transl Sci. 2022; 5(6): 445-447. https://doi.org/10.1021/acsptsci.2c00065 PMid:35702394 PMCid:PMC9128007
Kabinger F. Mecanismo de mutagênese de SARS-CoV-2 induzida por molnupiravir. Struct Mol Biol. 2021;28(9):740-746. https://doi.org/10.1038/s41594-021-00651-0 PMid:34381216 PMCid:PMC8437801
Nishimura K, Sano M, Ohtaka M, et al. Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem. 2011;286(6):4760-4771. https://doi.org/10.1074/jbc.M110.183780 PMid:21138846 PMCid:PMC3039346
Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):124. https://doi.org/10.1097/CCM.0000000000002053 PMid:27632680 PMCid:PMC5452983
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439-448. https://doi.org/10.1056/NEJMoa1709866 PMid:29385370 PMCid:PMC5996391
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18(12):773-789. https://doi.org/10.1038/s41577-018-0066-7 PMid:30254251
Braun GS, Nagayama Y, Maruta Y, et al. IL-6 trans-signaling drives murine crescentic GN. J Am Soc Nephrol. 2016;27(1):132-142. https://doi.org/10.1681/ASN.2014111147 PMid:26041841 PMCid:PMC4696576
Villarino A V, Kanno Y, O'Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18(4):374-384. https://doi.org/10.1038/ni.3691 PMid:28323260
Zegeye MM, Lindkvist M, Fälker K, et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal. 2018;16(1):1-10. https://doi.org/10.1186/s12964-018-0268-4 PMid:30185178 PMCid:PMC6125866
Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-248. https://doi.org/10.1038/nrclinonc.2018.8 PMid:29405201 PMCid:PMC5858971
Rose‐John S. The soluble interleukin 6 receptor: advanced therapeutic options in inflammation. Clin Pharmacol Ther. 2017;102(4):591-598. https://doi.org/10.1002/cpt.782 PMid:28675418
Mavraganis G, Aivalioti E, Chatzidou S, et al. Cardiac arrest and drug-related cardiac toxicity in the Covid-19 era. Epidemiology, pathophysiology and management. Food Chem Toxicol. 2020;145:111742. https://doi.org/10.1016/j.fct.2020.111742 PMid:32916218 PMCid:PMC7833119
Yadav P, Mohandas S, Shete A, et al. Protective efficacy of COVAXIN® against Delta and Omicron variants in hamster model. bioRxiv. Published online 2022. https://doi.org/10.1101/2022.06.14.496021
Voysey M, Clemens SAC, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;397(10277):881-891. https://doi.org/10.1016/S0140-6736(21)00432-3 PMid:33617777
MacNeil JR, Su JR, Broder KR, et al. Updated recommendations from the Advisory Committee on Immunization Practices for use of the Janssen (Johnson & Johnson) COVID-19 vaccine after reports of thrombosis with thrombocytopenia syndrome among vaccine recipients-United States, April 2021. Morb Mortal Wkly Rep. 2021;70(17):651. https://doi.org/10.15585/mmwr.mm7017e4 PMid:33914723 PMCid:PMC8084127
Anderegg MA, Liu M, Saganas C, et al. De novo vasculitis after mRNA-1273 (Moderna) vaccination. Kidney Int. 2021;100(2):474-476. https://doi.org/10.1016/j.kint.2021.05.016 PMid:34087251 PMCid:PMC8166777
Hernández AF, Calina D, Poulas K, Docea AO, Tsatsakis AM. Safety of COVID-19 vaccines administered in the EU: Should we be concerned? Toxicol Reports. 2021;8:871-879. https://doi.org/10.1016/j.toxrep.2021.04.003 PMid:33898273 PMCid:PMC8055532
Tinari S, Riva C. Covid-19: Whatever happened to the Novavax vaccine? bmj. 2021;375. https://doi.org/10.1136/bmj.n2965 PMid:34880071
Rossi AH, Ojeda DS, Varese A, et al. Sputnik V vaccine elicits seroconversion and neutralizing capacity to SARS-CoV-2 after a single dose. Cell Reports Med. 2021;2(8):100359. https://doi.org/10.1016/j.xcrm.2021.100359 PMid:34308389 PMCid:PMC8266543
Tukhvatulin AI, Dolzhikova I V, Shcheblyakov D V, et al. An open, non-randomised, 1/2 phase study on the safety, tolerability, and immunogenicity of single dose'Sputnik light'vaccine for prevention of coronavirus infection in healthy adults. Published online 2021. https://doi.org/10.2139/ssrn.3886430
Tukhvatulin AI, Dolzhikova I V, Shcheblyakov D V, et al. An open, non-randomised, phase 1/2 trial on the safety, tolerability, and immunogenicity of single-dose vaccine "Sputnik Light" for prevention of coronavirus infection in healthy adults. Lancet Reg Heal. 2021;11:100241. https://doi.org/10.1016/j.lanepe.2021.100241 PMid:34746910 PMCid:PMC8562788
Moore JP. Approaches for optimal use of different COVID-19 vaccines: issues of viral variants and vaccine efficacy. Jama. 2021;325(13):1251-1252. https://doi.org/10.1001/jama.2021.3465 PMid:33662101
Klimek L, Chaker AM, Cuevas M, Becker S. COVID-19-Impfungen: replizierend oder nichtreplizierend? Laryngo-Rhino-Otologie. 2021;100(08):603-607. https://doi.org/10.1055/a-1509-8916 PMid:34044465
Momin T,Kansagra K,Patel H et.al. Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. Eclinical Medicine.2021.38:101020. https://doi.org/10.1016/j.eclinm.2021.101020 PMid:34308319 PMCid:PMC8285262
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ channels: structure, function, and clinical significance. Physiol Rev. 2012; 92(3):1393-478. https://doi.org/10.1152/physrev.00036.2011 PMid:22988594
Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34(40):3109-3116. https://doi.org/10.1093/eurheartj/eht089 PMid:23509228
Kapplinger JD, Tester DJ, Salisbury BA, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION® long QT syndrome genetic test. Hear Rhythm. 2009;6(9):1297-1303. https://doi.org/10.1016/j.hrthm.2009.05.021
PMid:19716085 PMCid:PMC3049907
Zequn Z, Yujia W, Dingding Q, Jiangfang L. Off-label use of chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir in COVID-19 risks prolonging the QT interval by targeting the hERG channel. Eur J Pharmacol. 2021;893:173813. https://doi.org/10.1016/j.ejphar.2020.173813 PMid:33345848 PMCid:PMC7746509
Albert RK, Schuller JL, Network CCR. Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med. 2014;189(10):1173-1180. https://doi.org/10.1164/rccm.201402-0385CI PMid:24707986 PMCid:PMC4061901
Chen N, Callaway CW, Guyette FX, et al. Arrest etiology among patients resuscitated from cardiac arrest. Resuscitation. 2018;130:33-40. https://doi.org/10.1016/j.resuscitation.2018.06.024 PMid:29940296 PMCid:PMC6092216
Akhmerov A, Marbán E. COVID-19 and the heart. Circ Res. 2020;126(10):1443-1455. https://doi.org/10.1161/CIRCRESAHA.120.317055 PMid:32252591
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-818. https://doi.org/10.1001/jamacardio.2020.1017 PMid:32219356 PMCid:PMC7101506
Chen T, Wu DI, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. bmj. 2020;368. https://doi.org/10.1136/bmj.m1091 PMid:32217556 PMCid:PMC7190011
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).