A Review of Various Manufacturing Approaches for Developing Amorphous Solid Dispersions


In recent years amorphous solid dispersions (ASD) has gained a tremendous response for improving the solubility of poorly water-soluble drug substances. Despite the stability challenges, various ASD commercial products have been successfully launched into the market over the last two decades. Among various manufacturing approaches, hot melt extrusion (HME) and spray drying techniques have attracted industries attributing to their simple manufacturing processes. In addition, KinetisolÒ, a solvent-free approach, is also being most widely investigated for developing ASDs since the thermal exposure time of the formulations is significantly less compared with the hot melt extrusion process. KinetisolÒ can be employed for developing ASDs of thermolabile drug substances. Another solvent-based technique, electrospinning, is also employed for developing nanofibers-based ASD. However, much research is warranted for the electrospinning process before implementing it in commercial manufacturing. Various critical factors such as drug-polymer solubility, the solubility of the drug in the polymer, drug-polymer interactions, type of manufacturing process, and storage conditions need to be considered for developing a stable and robust ASD formulation. This review mainly focuses on the most advanced manufacturing technologies of ASDs, namely HME, spray drying, KinetisolÒ, and electrospinning, along with a note on the various critical factors that affect the stability of ASD formulations.

Keywords: amorphous solid dispersions; hot melt extrusion; spray drying; KinetisolÒ; electrospinning           

Keywords: amorphous solid dispersions, hot melt extrusion, spray drying, KinetisolÒ, electrospinning


Download data is not yet available.

Author Biographies

Kishore Kumar Konda, Deputy General Manager, Formulation Development, Appcure Labs, India.

Deputy General Manager, Formulation Development, Appcure Labs, India.

Siddharatha Dhoppalapudi, ST. Peter’s Institute of Pharmaceutical Sciences, India.
  1. Peter’s Institute of Pharmaceutical Sciences, India.


1. Singh A, Worku ZA, van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8(10):1361–1378; doi: 10.1517/17425247.2011.606808.
2. Singh D, Bedi N, Tiwary AK. Enhancing solubility of poorly aqueous soluble drugs: critical appraisal of techniques. Journal of Pharmaceutical Investigation 2017 48:5 2017; 48(5):509–526; doi: 10.1007/S40005-017-0357-1.
3. Eedara B, Nyavanandi D, Narala S, et al. Improved dissolution rate and intestinal absorption of fexofenadine hydrochloride by the preparation of solid dispersions: In vitro and in situ evaluation. Pharmaceutics 2021; 13(3):310; doi: https://doi.org/10.3390/pharmaceutics13030310.
4. Chaudhari S, Dugar R. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol 2017; 41:68–77; doi: https://doi.org/10.1016/j.jddst.2017.06.010.
5. Lima ÁAN, Sobrinho JLS, Corrêa RAC, et al. Alternative technologies to improve solubility of poorly water soluble drugs. Latin American Journal of Pharmacy 2008; 27(5):789–797.
6. Sharma A, Jain C. Solid dispersion: A promising technique to enhance solubility of poorly water soluble drug. International Journal of Drug Delivery 2011.
7. Tran P, Pyo Y, Kim D, et al. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 2019; 11(3):132; doi: 10.3390/pharmaceutics11030132.
8. Khairnar S v, Pagare P, Thakre A, et al. Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022; 14(9):1886; doi: 10.3390/pharmaceutics14091886.
9. Tonkovich A, Kuhlmann D, Rogers A, et al. Microchannel technology scale-up to commercial capacity. Chemical Engineering Research and Design 2005; 83(6):634–639; doi: https://doi.org/10.1205/cherd.04354.
10. Ghadge R, Nagwani N, Saxena N, et al. Design and scale-up challenges in hydrothermal liquefaction process for biocrude production and its upgradation. Energy Conversion and Management: X 2022; 14:100223; doi: https://doi.org/10.1016/j.ecmx.2022.100223.
11. Park S, Rajesh P, Sim Y, et al. Addressing scale-up challenges and enhancement in performance of hydrogen-producing microbial electrolysis cell through electrode modifications. Energy Reports 2022; 8:2726–2746; doi: https://doi.org/10.1016/j.egyr.2022.01.198.
12. Narala S, Nyavanandi D, Srinivasan P, et al. Pharmaceutical Co-crystals, Salts, and Co-amorphous Systems: A novel opportunity of hot-melt extrusion. J Drug Deliv Sci Technol 2021; 61:102209; doi: https://doi.org/10.1016/j.jddst.2020.102209.
13. Narala S, Nyavanandi D, Alzahrani A, et al. Creation of Hydrochlorothiazide Pharmaceutical Cocrystals Via Hot-Melt Extrusion for Enhanced Solubility and Permeability. AAPS PharmSciTech 2022; 23(1); doi: 10.1208/S12249-021-02202-8.
14. Nyavanandi D, Mandati P, Narala S, et al. Feasibility of high melting point hydrochlorothiazide processing via cocrystal formation by hot melt extrusion paired fused filament fabrication as a 3D-printed cocrystal. Int J Pharm 2022; 628:122283; doi: https://doi.org/10.1016/j.ijpharm.2022.122283.
15. Alzahrani A, Nyavanandi D, Mandati P, et al. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation. Int J Pharm 2022; 624:121951; doi: https://doi.org/10.1016/j.ijpharm.2022.121951.
16. LaFountaine JS, McGinity JW, Williams RO. Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review. AAPS PharmSciTech 2016; 17(1):43–55; doi: 10.1208/S12249-015-0393-Y.
17. van der Mooter G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol 2012; 9(2):79–85; doi: https://doi.org/10.1016/j.ddtec.2011.10.002.
18. Ma X, Williams III R. Characterization of amorphous solid dispersions: An update. J Drug Deliv Sci Technol 2019; 50:113–124; doi: 10.1016/j.jddst.2019.01.017.
19. Vasconcelos T, Marques S, Neves J, et al. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev 2016; 100:85–101; doi: https://doi.org/10.1016/j.addr.2016.01.012.
20. Thompson S, Williams III R. Specific mechanical energy–An essential parameter in the processing of amorphous solid dispersions. Adv Drug Deliv Rev 2021; 173:374–393; doi: https://doi.org/10.1016/j.addr.2021.03.006.
21. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci 2012; 101(4):1355–1377; doi: https://doi.org/10.1002/jps.23031.
22. Mamidi H. Nanosponge as versatile carrier systems - an updated review. Research Journal of Pharmaceutical Sciences 2019; 8(1):20–28.
23. Butreddy A, Nyavanandi D, Narala S, et al. Application of hot melt extrusion technology in the development of abuse-deterrent formulations: An overview. Curr Drug Deliv 2021; 18(15):4–18; doi: https://doi.org/10.2174/1567201817999200817151601.
24. Mamidi H, Rohera B. Application of thermodynamic phase diagrams and Gibbs free energy of mixing for screening of polymers for their use in amorphous solid dispersion formulation of a. J Pharm Sci 2021; 110(7):2703–2717; doi: https://doi.org/10.1016/j.xphs.2021.01.036.
25. Mamidi H, Rohera B. Material-Sparing Approach using Differential Scanning Calorimeter and Response Surface Methodology for Process Optimization of Hot-Melt Extrusion. J Pharm Sci 2021; 110(12):3838–3850; doi: https://doi.org/10.1016/j.xphs.2021.08.031.
26. Repka MA, Kumar Battu S, Upadhye SB, et al. Pharmaceutical applications of hot-melt extrusion: Part II. Drug Development and Industrial Pharmacy 2007; 33(10):1043–1057; doi: 10.1080/03639040701525627.
27. Maniruzzaman M, Boateng JS, Snowden MJ, et al. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm 2012; 2012; doi: 10.5402/2012/436763.
28. Lang B, McGinity JW, Williams RO. Hot-melt extrusion-basic principles and pharmaceutical applications. Drug Dev Ind Pharm 2014; 40(9):1133–1155; doi: 10.3109/03639045.2013.838577.
29. Bandari S, Nyavanandi D, Kallakunta V, et al. Continuous twin screw granulation–An advanced alternative granulation technology for use in the pharmaceutical industry. Int J Pharm 2020; 580:119215; doi: https://doi.org/10.1016/j.ijpharm.2020.119215.
30. Repka MA, Majumdar S, Battu SK, et al. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv 2008; 5(12):1357–1376; doi: 10.1517/17425240802583421.
31. Tiwari R v., Patil H, Repka MA. Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opin Drug Deliv 2016; 13(3):451–464; doi: 10.1517/17425247.2016.1126246.
32. Simões M, Pinto R, Simões S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today 2019; 24(9):1749–1768; doi: https://doi.org/10.1016/j.drudis.2019.05.013.
33. Madan S, Madan S. Hot melt extrusion and its pharmaceutical applications. Asian J Pharm Sci 2012; 7(1):123–133.
34. Alzahrani A, Narala S, Youssef A, et al. Fabrication of a shell-core fixed-dose combination tablet using fused deposition modeling 3D printing. European Journal of Pharmaceutics and Biopharmaceutics 2022; 177:211–223; doi: https://doi.org/10.1016/j.ejpb.2022.07.003.
35. Bandari S, Nyavanandi D, Dumpa N, et al. Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance. Adv Drug Deliv Rev 2021; 172:52–63; doi: https://doi.org/10.1016/j.addr.2021.02.006.
36. Vo A, Zhang J, Nyavanandi D, et al. Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydr Polym 2020; 246:116519; doi: https://doi.org/10.1016/j.carbpol.2020.116519.
37. Cunha-Filho M, Araújo MR, Gelfuso GM, et al. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: A new approach for individualized therapy. Ther Deliv 2017; 8(11):957–966; doi: https://doi.org/10.4155/TDE-2017-0067 .
38. Santos J dos, Silveira Da Silva G, Velho MC, et al. Eudragit®: A Versatile Family of Polymers for Hot Melt Extrusion and 3D Printing Processes in Pharmaceutics. Pharmaceutics 2021;13(9):1424; doi: https://doi.org/10.3390/pharmaceutics13091424 .
39. Melocchi A, Parietti F, Maroni A, et al. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 2016;509(1–2):255–263; doi: https://doi.org/10.1016/j.ijpharm.2016.05.036.
40. Nyavanandi D, Kallakunta V, Sarabu S, et al. Impact of hydrophilic binders on stability of lipid-based sustained release matrices of quetiapine fumarate by the continuous twin screw melt granulation technique. Advanced Powder Technology 2021; 32(7):2591–2604; doi: https://doi.org/10.1016/j.apt.2021.05.040.
41. Mamidi H, Palekar S, Nukala P, et al. Process optimization of twin-screw melt granulation of fenofibrate using design of experiment (DoE). Int J Pharm 2021; 593:120101; doi: https://doi.org/10.1016/j.ijpharm.2020.120101.
42. Mamidi H, Mishra S, Rohera B. Determination of maximum flowable liquid-loading potential of Neusilin® US2 and investigation of compressibility and compactibility of its liquisolid blends with PEG. J Drug Deliv Sci Technol 2019 ;54:101285; doi: https://doi.org/10.1016/j.jddst.2019.101285.
43. Mamidi H, Mishra S, Rohera B. Application of modified SeDeM expert diagram system for selection of direct compression excipient for liquisolid formulation of Neusilin® US2. J Drug Deliv Sci Technol 2021; 64:102506; doi: https://doi.org/10.1016/j.jddst.2021.102506.
44. Seem T, Rowson N, Ingram A, et al. Twin screw granulation—A literature review. Elsevier Powder Technology 2015;276:89–102; doi: 10.1016/j.powtec.2015.01.075.
45. Maniruzzaman M, Nokhodchi A. Continuous manufacturing via hot-melt extrusion and scale up: regulatory matters. Drug Discov Today 2016; 22(2):340–351; doi: https://doi.org/10.1016/j.drudis.2016.11.007 .
46. Patil H, Kulkarni V, Majumdar S, et al. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion. Int J Pharm 2014; 471(1–2):153–156; doi: https://doi.org/10.1016/j.ijpharm.2014.05.024.
47. Genina N, Hadi B, Löbmann K. Hot melt extrusion as solvent-free technique for a continuous manufacturing of drug-loaded mesoporous silica. J Pharm Sci 2018; 107(1):149–155; doi: https://doi.org/10.1016/j.xphs.2017.05.039.
48. Pawar J, Narkhede R, Amin P, et al. Design and Evaluation of Topical Diclofenac Sodium Gel Using Hot Melt Extrusion Technology as a Continuous Manufacturing Process with Kolliphor® P407. AAPS PharmSciTech 2017; 18(6):2303–2315; doi: 10.1208/S12249-017-0713-5.
49. Tambe S, Jain D, Meruva SK, et al. Recent Advances in Amorphous Solid Dispersions: Preformulation, Formulation Strategies, Technological Advancements and Characterization. Pharmaceutics 2022; 14(10):2203; doi: https://doi.org/10.3390/PHARMACEUTICS14102203 .
50. Mishra S, Richter M, Mejia L, et al. Downstream Processing of Itraconazole: HPMCAS Amorphous Solid Dispersion: From Hot-Melt Extrudate to Tablet Using a Quality by Design Approach. Pharmaceutics 2022; 14(7):1429; doi: https://doi.org/10.3390/pharmaceutics14071429.
51. Mathers A, Pechar M, Hassouna F, et al. API solubility in semi-crystalline polymer: Kinetic and thermodynamic phase behavior of PVA-based solid dispersions. Int J Pharm 2022; 623:121855; doi: https://doi.org/10.1016/j.ijpharm.2022.121855.
52. Fan W, Zhu W, Zhang X, et al. Application of the combination of ball-milling and hot-melt extrusion in the development of an amorphous solid dispersion of a poorly water-soluble drug with. RSC Adv 2019; 9:22263–22273; doi: https://doi.org/10.1039/C9RA00810A .
53. Giri BR, Kwon J, Vo AQ, et al. Hot-melt extruded amorphous solid dispersion for solubility, stability, and bioavailability enhancement of telmisartan. Pharmaceutics 2021; 14(1):73; doi: https://doi.org/10.3390/ph14010073 .
54. Tian Y, Jacobs E, Jones D, et al. The design and development of high drug loading amorphous solid dispersion for hot-melt extrusion platform. Int J Pharm 2020; 586:119545; doi: https://doi.org/10.1016/j.ijpharm.2020.119545.
55. Sarode A, Sandhu H, Shah N, et al. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. European Journal of Pharmaceutical Sciences 2013;48(3):371–384; doi: https://doi.org/10.1016/j.ejps.2012.12.012.
56. Liu X, Lu M, Guo Z, et al. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res 2012; 29(3):806–817; doi: https://doi.org/10.1007/S11095-011-0605-4 .
57. Li J, Li C, Zhang H, et al. Preparation of Azithromycin Amorphous Solid Dispersion by Hot-Melt Extrusion: An Advantageous Technology with Taste Masking and Solubilization Effects. Polymers 2022, Vol 14, Page 495 2022; 14(3):495; doi: https://doi.org/10.3390/POLYM14030495 .
58. Lang B, Liu S, McGinity JW, et al. Effect of hydrophilic additives on the dissolution and pharmacokinetic properties of itraconazole-enteric polymer hot-melt extruded amorphous solid dispersions. Drug Dev Ind Pharm 2016; 42(3):429–445; doi: https://doi.org/10.3109/03639045.2015.1075031 .
59. Duarte Í, Santos JL, Pinto JF, et al. Screening methodologies for the development of spray-dried amorphous solid dispersions. Pharm Res 2015; 32(1):222–237; doi: https://doi.org/10.1007/S11095-014-1457-5 .
60. Newman A, Zografi G. Considerations in the Development of Physically Stable High Drug Load API-Polymer Amorphous Solid Dispersions in the Glassy State. J Pharm Sci 2022; In Press; doi: https://doi.org/10.1016/j.xphs.2022.08.007.
61. Boel E, Reniers F, Dehaen W, et al. The Value of Bead Coating in the Manufacturing of Amorphous Solid Dispersions: A Comparative Evaluation with Spray Drying. Pharmaceutics 2022; 14(3):613; doi: https://doi.org/10.3390/pharmaceutics14030613.
62. Ikeda C, Zhou G, Lee Y, et al. Application of Online NIR Spectroscopy to Enhance Process Understanding and Enable In-process Control Testing of Secondary Drying Process for a Spray-dried. J Pharm Sci 2022; 111(9):2540–2551; doi: https://doi.org/10.1016/j.xphs.2022.04.009.
63. Ding Z, Wang X, Wang L, et al. Characterisation of spray dried microencapsules with amorphous lutein nanoparticles: Enhancement of processability, dissolution rate, and storage stability. Food Chem 2022; 383:132200; doi: https://doi.org/10.1016/j.foodchem.2022.132200.
64. Patel K, Shah S, Patel J. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review. DARU, Journal of Pharmaceutical Sciences 2022; 30(1):165–189; doi: https://doi.org/10.1007/S40199-022-00440-0 .
65. Li J, Zordan C, Ponce S, et al. Impact of Swelling of Spray Dried Dispersions in Dissolution Media on their Dissolution: An Investigation Based on UV Imaging. J Pharm Sci 2022; 111(6):1761–1769; doi: https://doi.org/10.1016/j.xphs.2021.12.007.
66. Zaitone A, Al-Zahrani B;, Ahmed O, et al. Spray Drying of PEG6000 Suspension: Reaction Engineering Approach (REA) Modeling of Single Droplet Drying Kinetics. Process 2022; 10(7):1365; doi: https://doi.org/10.3390/pr10071365 .
67. Sawicki E, Beijnen J, Schellens J, et al. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel. Int J Pharm 2016; 511(2):765–773; doi: https://doi.org/10.1016/j.ijpharm.2016.07.068.
68. Poudel S, Kim D. Developing pH-modulated spray dried amorphous solid dispersion of candesartan cilexetil with enhanced in vitro and in vivo performance. Pharmaceutics 2021; 13(4):497; doi: https://doi.org/10.3390/pharmaceutics13040497 .
69. Ekdahl A, Mudie D, Malewski D, et al. Effect of spray-dried particle morphology on mechanical and flow properties of felodipine in PVP VA amorphous solid dispersions. J Pharm Sci 2019; 108(11):3657–3666; doi: https://doi.org/10.1016/j.xphs.2019.08.008.
70. Dinunzio JC, Hughey JR, Brough C, et al. Production of advanced solid dispersions for enhanced bioavailability of itraconazole using KinetiSol® Dispersing. Drug Dev Ind Pharm 2010; 36(9):1064–1078; doi: https://doi.org/10.3109/03639041003652973 .
71. Jr DD, Miller D, Santitewagun S, et al. Formulating a heat-and shear-labile drug in an amorphous solid dispersion: Balancing drug degradation and crystallinity. Int J Pharm X 2021; 3:100092; doi: https://doi.org/10.1016/j.ijpx.2021.100092.
72. Ellenberger DJ, Miller DA, Kucera SU, et al. Generation of a Weakly Acidic Amorphous Solid Dispersion of the Weak Base Ritonavir with Equivalent In Vitro and In Vivo Performance to Norvir Tablet. AAPS PharmSciTech 2018; 19(5):1985–1997; doi: https://doi.org/10.1208/S12249-018-1060-X .
73. Tan DK, Davis DA, Miller DA, et al. Innovations in Thermal Processing: Hot-Melt Extrusion and KinetiSol® Dispersing. AAPS PharmSciTech 2020; 21(8); doi: https://doi.org/10.1208/S12249-020-01854-2 .
74. He Y, Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci 2015; 104(10):3237–3258; doi: https://doi.org/10.1002/jps.24541.
75. Brough C, RO Williams R. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 2013; 453(1):157–166; doi: https://doi.org/10.1016/j.ijpharm.2013.05.061.
76. DiNunzio J, Brough C, Hughey J, et al. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. European Journal of Pharmaceutics and Biopharmaceutics 2010; 74(2):340–351; doi: https://doi.org/10.1016/j.ejpb.2009.09.007.
77. DiNunzio J, Brough C, Miller D, et al. Applications of KinetiSol® Dispersing for the production of plasticizer free amorphous solid dispersions. European Journal of Pharmaceutical Sciences 2010; 40(3):179–187; doi: https://doi.org/10.1016/j.ejps.2010.03.002.
78. Hughey J, Keen J, Brough C, et al. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm 2011; 419(1–2):222–230; doi: https://doi.org/10.1016/j.ijpharm.2011.08.007.
79. Gala U, Miller D, Su Y, et al. The effect of drug loading on the properties of abiraterone–hydroxypropyl beta cyclodextrin solid dispersions processed by solvent free KinetiSol® technology. European Journal of Pharmaceutics and Biopharmaceutics 2021; 165:52–65; doi: https://doi.org/10.1016/j.ejpb.2021.05.001.
80. Jermain S v., Miller D, Spangenberg A, et al. Homogeneity of amorphous solid dispersions–an example with KinetiSol®. Drug Dev Ind Pharm 2019; 45(5):724–735; doi: https://doi.org/10.1080/03639045.2019.1569037 .
81. LaFountaine J, Jermain S, Prasad L, et al. Enabling thermal processing of ritonavir–polyvinyl alcohol amorphous solid dispersions by KinetiSol® dispersing. European Journal of Pharmaceutics and Biopharmaceutics 2016; 101:72–81; doi: https://doi.org/10.1016/j.ejpb.2016.01.018.
82. Ellenberger DJ, Miller DA, Kucera SU, et al. Improved Vemurafenib Dissolution and Pharmacokinetics as an Amorphous Solid Dispersion Produced by KinetiSol® Processing. AAPS PharmSciTech 2018; 19(5):1957–1970; doi: https://doi.org/10.1208/S12249-018-0988-1 .
83. Keen JM, LaFountaine JS, Hughey JR, et al. Development of Itraconazole Tablets Containing Viscous KinetiSol Solid Dispersions: In Vitro and In Vivo Analysis in Dogs. AAPS PharmSciTech 2018; 19(5):1998–2008; doi: https://doi.org/10.1208/S12249-017-0903-1 .
84. Marano S, Barker S, Raimi-Abraham B, et al. Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. European Journal of Pharmaceutics and Biopharmaceutics 2016; 103:84–94; doi: https://doi.org/10.1016/j.ejpb.2016.03.021.
85. Pandi P, Bulusu R, Kommineni N, et al. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm 2020; 586:119560; doi: https://doi.org/10.1016/j.ijpharm.2020.119560.
86. Paudel A, Geppi M, van den Mooter G. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci 2014; 103(9):2635–2662; doi: https://doi.org/10.1002/jps.23966 .
87. Karanth H, Shenoy VS, Murthy RR. Industrially feasible alternative approaches in the manufacture of solid dispersions: A technical report. AAPS PharmSciTech 2006; 7(4); doi: https://doi.org/10.1208/PT070487 .
88. Yu D, Yang J, Branford-White C, et al. Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm 2010; 400(1–2):158–164; doi: https://doi.org/10.1016/j.ijpharm.2010.08.010.
89. Nagy Z, Balogh A, Démuth B, et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm 2015; 480(1–2):137–142; doi: https://doi.org/10.1016/j.ijpharm.2015.01.025.
90. Dã B, Farkas A, Szabó B, et al. Development and tableting of directly compressible powder from electrospun nanofibrous amorphous solid dispersion. Advanced Powder Technology 2017; 28(6):1554–1563; doi: https://doi.org/10.1016/j.apt.2017.03.026 .
91. Démuth B, Farkas A, Pataki H, et al. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning. Int J Pharm 2017; 498(1–2):234–244; doi: https://doi.org/10.1016/j.ijpharm.2015.12.029 .
92. Becelaere J, Van E, Broeck D, et al. Stable amorphous solid dispersion of flubendazole with high loading via electrospinning. Journal of Controlled Release 2022; 351:123–136; doi: https://doi.org/10.1016/j.jconrel.2022.09.028 .
93. Casian T, Borbás E, Ilyés K, et al. Electrospun amorphous solid dispersions of meloxicam: Influence of polymer type and downstream processing to orodispersible dosage forms. Int J Pharm 2019; 569:118593; doi: https://doi.org/10.1016/j.ijpharm.2019.118593.
94. Balogh A, Farkas B, Farkas A, et al. Homogenization of amorphous solid dispersions prepared by electrospinning in low-dose tablet formulation. Pharmaceutics 2018; 10(3):114; doi: https://doi.org/10.3390/pharmaceutics10030114 .
95. Szabo E, Za P, Brecska niel, et al. Comparison of amorphous solid dispersions of spironolactone prepared by spray drying and electrospinning: The influence of the preparation method on the. Mol Pharm 2021; 18(1):317–327; doi: 10.1021/acs.molpharmaceut.0c00965.
96. Azs D Emuth B, Farkas A, Balogh A, et al. Lubricant-induced crystallization of itraconazole from tablets made of electrospun amorphous solid dispersion. J Pharm Sci 2016; 105(9):2982–2988; doi: https://doi.org/10.1016/j.xphs.2016.04.032 .
97. Baghel S, Cathcart H, O’Reilly N. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of. J Pharm Sci 2016; 105(9):2527–2544; doi: https://doi.org/10.1016/j.xphs.2015.10.008 .
98. Teja SB, Patil SP, Shete G, et al. Drug-excipient behavior in polymeric amorphous solid dispersions. Journal of Excipients and Food Chemicals4 2013; 4(3):70–94.
99. Qian F, Huang J, Hussain M. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 2010; 99(7):2941–2947; doi: https://doi.org/10.1002/jps.22074.
100. Ambike A, Mahadik K, Paradkar A. Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations. Pharm Res 2005; 22(6):990–998; doi: 10.1007/s11095-005-4594-z.
101. Rumondor ACF, Stanford LA, Taylor LS. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res 2009; 26(12):2599–2606; doi: https://doi.org/10.1007/S11095-009-9974-3 .
102. Marsac PJ, Li T, Taylor LS. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 2009; 26(1):139–151; doi: https://doi.org/10.1007/S11095-008-9721-1 .
103. Konno H, Handa T, Alonzo D, et al. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. European Journal of Pharmaceutics and Biopharmaceutics 2008; 70(2):493–499; doi: https://doi.org/10.1016/j.ejpb.2008.05.023.
104. Alonzo DE, Gao YI, Zhou D, et al. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci 2011; 100(8):3316–3331; doi: https://doi.org/10.1002/jps.22579 .
105. Andrews G, AbuDiak O, Jones D. Physicochemical characterization of hot melt extruded bicalutamide–polyvinylpyrrolidone solid dispersions. J Pharm Sci 2010; 99(3):1322–1335; doi: https://doi.org/10.1002/jps.21914.
106. Kennedy M, Hu J, Gao P, et al. Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: A case study. Mol Pharm 2008; 5(6):981–993; doi: https://doi.org/10.1021/MP800061R .
107. Janssens S, van den Mooter G. Review: Physical chemistry of solid dispersions. Journal of Pharmacy and Pharmacology 2009;61(12):1571–1586; doi: https://doi.org/10.1211/jpp/61.12.0001 .
77 Views | 9 Downloads
How to Cite
Konda K, Dhoppalapudi S. A Review of Various Manufacturing Approaches for Developing Amorphous Solid Dispersions. JDDT [Internet]. 15Nov.2022 [cited 9Dec.2022];12(6):189-00. Available from: https://jddtonline.info/index.php/jddt/article/view/5787