Specialised Coating Processes Finding Pharmaceutical Applicability


  • Mahammed Athar Alli Saikh Department of Pharmaceutics, Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005
  • Prithwiraj Mohapatra Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005


The manuscript aims at furnishing comprehensive information pertaining specialised coating technology/ processes. Solid dosage forms and solid particulates (SDFSP) are the major contributing group in the solid pharmaceuticals (SoPs). SDFSP exhibit peculiar physico-chemical properties and interaction behaviour which create problems/ issues during their handling, processing, storage, and use. Modifying and/or engineering surface attributes of SDFSP are advocated as powerful tool to modify their interaction behaviour and realise their worthy applications and functionalities. In this regard coating their surfaces with coating material (CM) is novel approach. Said approach involves wet and dry process for realising deposition of CM onto the surface of SDFSP substrates. Both the processes modify and/or alter innate properties of SDFSP substrates either physically or chemically. Basing on involved wet or dry process the coating method is either dry coating method (DCM) or wet coating method (WCM). Accordingly nowadays there available number of specialised devices, that bases on diverse technologies. Amongst them some involves state-of-art process/ technology like Supercell coating technology (SCT), Chemical vapour deposition (CVD), Atomic/molecular layer deposition (AMLD), Electrostatic deposition, Thermo-mechanical process, Resonant acoustic technology, Fluidised-bed process, Supercritical fluid (SCF) technology,  and others. These foundational for commercially availability of specialised equipments like Magnetically Assisted Impaction Coater (MAIC), Resodyn acoustic mixer, Hybridizer®, Theta-composer®. Mechanofusion®, and others. Working and working principle, applicability, benefits, pros and limitations of specialised coating processes and technologies are herein discussed and presented. Contained information hoped to be beneficent for pharmaceutical professionals and technocrats and professionals of allied field.

Keywords: Coating, composite product, modification, specialised, surface.

Keywords: Coating, composite product, modification, specialised


Download data is not yet available.

Author Biographies

Mahammed Athar Alli Saikh, Department of Pharmaceutics, Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005

Professor and HOD, Department of Pharmaceutics, Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005

Prithwiraj Mohapatra, Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005

Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005


1. Saikh MAA. Pharmaceutical’s Coating. Germany: LAP Lambert Academic Publishing; 2015.
2. Koner JS, Wyatt DA, Dahmash EZ., Mohammed A. Dry particle coating—a unique solution for pharmaceutical formulation. Pharmaceutical Technology, 2018, 42(3):26–30.
3. Saikh MAA. Dry-coating of powder particles is current trend in pharmaceutical field. Journal of Drug Delivery and Therapeutics, 2021, 11(5):145-157. DOI: https://dx.doi.org/10.22270/jddt.v11i5.5034.
4. Nakamura S, Sakamoto T, Ito T, Kabasawa K, Yuasa H. Preparation of controlled-release fine particles using a dry coating method. AAPS PharmSciTech, 2016; 17:1393–1403. https://doi.org/10.1208/s12249-015-0475-x
5. Zhang R, Hoffmann T, Tsotsas E. Novel technique for coating of fine particles using fluidized bed and aerosol atomizer. Processes, 2020; 8:1525. DOI: https://dx.doi.org/10.3390/pr8121525.
6. Saikh MAA. Film former in film coating. International Journal of Pharmaceutical Sciences and Research, 2022; 13(4): [In press]
7. Saikh MAA. A comprehensive review on coating pans. International Journal of Pharmaceutical Sciences and Research, 2022; 13(5): [In press]
8. Sharma R, Setia G. Mechanical dry particle coating on cohesive pharmaceutical powders for improving flowability - A review. Powder Technology, 2019; 356:458-479, DOI: https://dx.doi.org/10.1016/j.powtec.2019.08.009.
9. Saikh MAA, Aqueous film coating the current trend. Journal of Drug Delivery and Therapeutics, 2021; 11(4-s):212-224. DOI: https://dx.doi.org/10.22270/jddt.v11i4-S.4911.
10. Bungert N, Kobler M, Scherließ R. In-depth comparison of dry particle coating processes used in dpi particle engineering. Pharmaceutics, 2021; 13(4):580. DOI: https://dx.doi.org/10.3390/pharmaceutics13040580.
11. Ahmed SAN, Patil SR, Khan MKS, Khan MS. Tablet coating techniques: Concept and recent trends. International Journal of Pharmaceutical Sciences Review and Research, 2021; 66(1):43-53. https://doi.org/10.47583/ijpsrr.2021.v66i01.010
12. Singhai NJ, Rawal A, Maurya R, Suman R. Design and characterization of dual drug loaded microspheres for colon drug targeting. Journal of Drug Delivery and Therapeutics, 2019; 9(3-s):12-22. DOI: https://dx.doi.org/10.22270/jddt.v9i3-s.2923.
13. Gaware RU, Tambe ST, Dhobale SM, Jadhav SL. Formulation and in-vitro evaluation of theophylline sustained release tablet. Journal of Drug Delivery and Therapeutics, 2019; 9(1-s):48-51. DOI: https://dx.doi.org/10.22270/jddt.v9i1-s.2252.
14. Yang Q, Yuan F, Xu L, Yan Q, Yang Y, Wu D, Guo F, Yang G. An update of moisture barrier coating for drug delivery. Pharmaceutics, 2019; 11(9):436. DOI: https://dx.doi.org/10.3390/pharmaceutics11090436.
15. Prasad LK, McGinity JW, Williams RO 3rd. Electrostatic powder coating: Principles and pharmaceutical applications. International Journal of Pharmaceutics, 2016; 505(1-2):289-302. DOI: https://dx.doi.org/10.1016/j.ijpharm.2016.04.016.
16. Chavda VP, Soniwala MM, Chavda JR. Particle coating: From conventional to advanced. International Journal of Pharmaceutical and Medicinal Research, 2013; 1:1-17.
17. Pundir K, Parashar B. The innovations in tablet coating: A review. International Educational Applied Research Journal, 2019; 3(6):18-23.
18. Huang H, Wu Z, Qi X, Zhang H, Chen Q, Xing J, Chen H, Rui Y. Compression-coated tablets of glipizide using hydroxypropylcellulose for zero-order release: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2013; 446(1-2):211-218. DOI: https://dx.doi.org/10.1016/j.ijpharm.2013.01.039.
19. Ozeki Y, Ando M, Watanabe Y, Danjo K. Evaluation of novel one-step dry-coated tablets as a platform for delayed-release tablets. Journal of Controlled Release, 2004; 95(1):51-60. DOI: https://dx.doi.org/10.1016/j.jconrel.2003.10.028.
20. Yang Y, Shen L, Yuan F, Fu H, Shan W. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference. International Journal of Pharmaceutics, 2018; 543(1-2):345-351. DOI: https://dx.doi.org/10.1016/j.ijpharm.2018.03.047.
21. Qiao M, Luo Y, Zhang L, Ma Y, Stephenson TS, Zhu J. Sustained release coating of tablets with Eudragit(®) RS/RL using a novel electrostatic dry powder coating process. International Journal of Pharmaceutics, 2010; 399(1-2):37-43. DOI: https://dx.doi.org/10.1016/j.ijpharm.2010.07.047.
22. Yang Q, Ma Y, Zhu J. Applying a novel electrostatic dry powder coating technology to pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2015; 97(PtA):118-124. DOI: https://dx.doi.org/10.1016/j.ejpb.2015.10.006.
23. Yang Q, Ma Y, Zhu J. Sustained drug release from electrostatic powder coated tablets with ultrafine Ethylcellulose powders. Advanced Powder Technology, 2016; 27(5):2145–2152. DOI: https://dx.doi.org/10.1016/j.apt.2016.07.027.
24. Barletta TM, Tagliaferri V. Electrostatic fluidized bed deposition of a high performance polymeric powder on metallic substrates. Surface & Coatings Technology, 2006; 200:4282-4290. https://doi.org/10.1016/j.surfcoat.2005.02.109
25. Gera M, Saharan VA, Kataria M, Kukkar V. Mechanical methods for dry particle coating processes and their applications in drug delivery and development. Recent Patents on Drug Delivery & Formulation, 2010; 4(1):58-81. DOI: https://dx.doi.org/10.2174/187221110789957200.
26. Quinlan L, Morton DAV, Zhou Q. Particle engineering via mechanical dry coating in the design of pharmaceutical solid dosage forms. Current Pharmaceutical Design, 2015; Article Number 21(999). DOI: https://dx.doi.org/0.2174/1381612821666151008151001.
27. Jeon IS, Lee MH, Choi HH, Lee S, Chon JW, Chung DJ, Park JH, Jho JY. Mechanical properties and bioactivity of Polyetheretherketone/Hydroxyapatite/Carbon fiber composite prepared by the mechanofusion process. Polymers (Basel), 2021; 13(12):1978. DOI: https://dx.doi.org/10.3390/polym13121978.
28. Koskela J, Morton DAV, Stewart PJ, Juppo AM, Lakio S. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders. International Journal of Pharmaceutics, 2018; 537(1-2):64-72. DOI: https://dx.doi.org/10.1016/j.ijpharm.2017.11.068.
29. Matsumoto A, Ono A, Murao S, Murakami M. Microparticles for sustained release of water-soluble drug based on a containment, dry coating technology. Drug Discoveries & Therapeutics, 2018; 12(6):347-354. DOI: https://dx.doi.org/10.5582/ddt.2018.01082.
30. Qu L, Stewart PJ, Hapgood KP, Lakio S, Morton DAV, Zhou QT. Single-step coprocessing of cohesive powder via mechanical dry coating for direct tablet compression. Journal of Pharmaceutical Sciences, 2017; 106(1):159-167. DOI: https://dx.doi.org/10.1016/j.xphs.2016.07.017.
31. Watano S, Imada Y, Miyanami K, Wu C-Y, Dave RN, Pfeffer R, Yoshida T, Surface modification of food fiber by dry particle coating. Journal of Chemical Engineering of Japan, 2000; 33(6):848-854. DOI: https://dx.doi.org/10.1252/jcej.33.848.
32. Li M, Zhang L, Davé RN, Bilgili E. An intensified vibratory milling process for enhancing the breakage kinetics during the preparation of drug nanosuspensions. AAPS PharmSciTech, 2016; 17(2):389-99. DOI: https://dx.doi.org/10.1208/s12249-015-0364-3.
33. Tanaka R, Osotprasit S, Peerapattana J, Ashizawa K, Hattori Y, Otsuka M. Complete cocrystal formation during resonant acoustic wet granulation: Effect of granulation liquids. Pharmaceutics. 2021; 13(1):56. DOI: https://dx.doi.org/10.3390/pharmaceutics13010056.
34. Buyukgoz GG, Castro JN, Atalla AE, Pentangelo JG, Tripathi S, Davé RN. Impact of mixing on content uniformity of thin polymer films containing drug micro-doses. Pharmaceutics, 2021; 13(6):812. DOI: https://dx.doi.org/10.3390/pharmaceutics13060812.
35. Zhang L, Alfano J, Race D, Davé RN. Zero-order release of poorly water-soluble drug from polymeric films made via aqueous slurry casting. European Journal of Pharmaceutical Sciences, 2018; 117:245-254. DOI: https://dx.doi.org/10.1016/j.ejps.2018.02.029.
36. Zhang L, Aloia M, Pielecha-Safira B, Lin H, Rajai PM, Kunnath K, Davé RN. Impact of superdisintegrants and film thickness on disintegration time of strip films loaded with poorly water-soluble drug microparticles. Journal of Pharmaceutical Sciences, 2018; 107(8):2107-2118. DOI: https://dx.doi.org/10.1016/j.xphs.2018.04.006.
37. Christian P, Ehmann HM, Coclite AM, Werzer O. Polymer encapsulation of an amorphous pharmaceutical by initiated chemical vapor deposition for enhanced stability. ACS Applied Materials & Interfaces, 2016; 8(33):21177-21184. DOI: https://dx.doi.org/10.1021/acsami.6b06015.
38. Christian P, Ehmann HM, Werzer O, Coclite AM. Wrinkle formation in a polymeric drug coating deposited via initiated chemical vapor deposition. Soft Matter, 2016; 12(47):9501-9508. DOI: https://dx.doi.org/10.1039/c6sm01919f.
39. Perrotta A, Werzer O, Coclite AM. Strategies for drug encapsulation and controlled delivery based on vapor-phase deposited thin films. Advanced Engineering Materials, 2017; 20:1700639. DOI: https://dx.doi.org/10.1002/adem.201700639,
40. Tylinski M, Smith RS, Kay BD. Morphology of vapor-deposited acetonitrile films. Journal of Physical Chemistry A, 2020; 124(30):6237-6245. DOI: https://dx.doi.org/10.1021/acs.jpca.0c03650.
41. Wack S, Lunca Popa P, Adjeroud N, Vergne C, Leturcq R. Two-Step approach for conformal chemical vapor-phase deposition of ultra-thin conductive silver films. ACS Applied Materials & Interfaces, 2020; 12(32):36329-36338. DOI: https://dx.doi.org/10.1021/acsami.0c08606.
42. Li H, Gao Y, Shao Y, Su Y, Wang X. Vapor-Phase atomic layer deposition of CO9S8 and its application for supercapacitors. Nano Letters, 2015; 15(10):6689-6695. DOI: https://dx.doi.org/10.1021/acs.nanolett.5b02508.
43. Santino LM, Hwang E, Diao Y, Lu Y, Wang H, Jiang Q, Singamaneni S, D'Arcy JM. Condensing vapor phase polymerization (cvpp) of electrochemically capacitive and stable polypyrrole microtubes. ACS Applied Materials & Interfaces, 2017; 9(47):41496-41504. DOI: https://dx.doi.org/10.1021/acsami.7b13874.
44. Soh SH, Lee LY. Microencapsulation and nanoencapsulation using supercritical fluid (SCF) techniques. Pharmaceutics, 2019; 11(1):21. DOI: https://dx.doi.org/10.3390/pharmaceutics11010021.
45. Trivedi V, Bhomia R, Mitchell JC. Myristic acid coated protein immobilised mesoporous silica particles as ph induced oral delivery system for the delivery of biomolecules. Pharmaceuticals (Basel), 2019; 12(4):153. DOI: https://dx.doi.org/10.3390/ph12040153.
46. Chen LF, Xu PY, Fu CP, Kankala RK, Chen AZ, Wang SB. Fabrication of supercritical antisolvent (SAS) process-assisted Fisetin-encapsulated poly (vinyl pyrrolidone) (PVP) nanocomposites for improved anticancer therapy. Nanomaterials (Basel), 2020; 10(2):322. DOI: https://dx.doi.org/10.3390/nano10020322.
47. Sheth P, Sandhu H, Singhal D, Malick W, Shah N, Kislalioglu MS. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Current Drug Delivery, 2012; 9(3):269-284. DOI: https://dx.doi.org/10.2174/156720112800389052.
48. Amania M, Saadati N, Navid A, Majda Y. Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: Analysis and optimization of the process conditions. Journal of CO2 Utilization, 2021; 46:101465. DOI: https://dx.doi.org/10.1016/j.jcou.2021.101465.
49. Silva JM, Akkache S, Araújo AC, Masmoudi Y, Reis RL, Badens E, Duarte ARC. Development of innovative medical devices by dispersing fatty acid eutectic blend on gauzes using supercritical particle generation processes. Materials Science & Engineering. C, Materials for Biological Applications, 2019; 99:599-610. DOI: https://dx.doi.org/10.1016/j.msec.2019.02.012.
50. Perinelli DR, Cespi M, Bonacucina G, Naylor A, Whitaker M, Lam JK, Howdle SM, Casettari L, Palmieri GF. PEGylated biodegradable polyesters for pgss microparticles formulation: Processability, physical and release properties. Current Drug Delivery, 2016; 13(5):673-81. DOI: https://dx.doi.org/10.2174/1567201813666151207111034.
57 Views | 1 Downloads
How to Cite
Saikh MAA, Mohapatra P. Specialised Coating Processes Finding Pharmaceutical Applicability. JDDT [Internet]. 15Nov.2021 [cited 1Dec.2021];11(6):209-24. Available from: https://jddtonline.info/index.php/jddt/article/view/5133