Preformulation Studies of Pralidoxime Chloride for Formulation Development of Microspheres
Abstract
Microspheres are one of the novel drug delivery system which possess several applications and are made up of assorted polymers. Microspheres can be defined as solid, approximately spherical particles ranging in size from 1 to 1000 μm range in diameter having a core of drug and entirely outer layers of polymers as coating material. They are made up of polymeric, waxy or other protective materials i.e. biodegradable synthetic polymer and modified natural products such as starches, gums, proteins, fats and waxes. Preformulation is a group of studies that focus on the physicochemical properties of a new drug candidate that could affect the drug performance and the development of a dosage form. This couldprovide important information for formulation design or support the need for molecular modification. Every drug has intrinsic chemical and physical properties which has been consider before development of pharmaceutical formulation. This property provides the framework for drugs combination with pharmaceutical ingredients in the fabrication of dosage form. Objective of preformulation study is to develop the elegant, stable, effective and safe dosage form by establishing kinetic rate profile, compatibility with the other ingredients and establish Physico-chemical parameter of new drug substances. The purpose of the present study was to systematically investigate some of the important physicochemical properties of pralidoxime chloride for preparation of microspheres. The physicochemical properties such as solubility, pKa, dissolution, melting point, assay development, excipient compatibility etc. of pralidoxime chloride was carried out. Before selection of excipients, the Preformulation study of drug pralidoxime is completed for successful formulation of microspheres. The result of Preformulation studies shows good flow properties, excipient compatibility, solubility efficiency and melting point. From this study we concluded that pralidoximewith HPMC and EC can be used to formulate pralidoxime microspheres for modified release.
Keywords: Microspheres, Preformulation, Pralidoxime chloride, Physico-chemical parameter.
DOI
https://doi.org/10.22270/jddt.v9i4-s.3336Published


How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).