

MINI REVIEW

AN UPDATED REVIEW ON HEPATOPROTECTIVE MEDICINAL PLANTS

Areefa Shaik*, A Elumalai, M Chinna Eswaraiah, Usha

Department of Pharmacognosy, Anurag Pharmacy College, Ananthagiri (v), Kodad (M), Nalgonda (DT), Andhra Pradesh, India, 508 206.

Corresponding author's Email: areefa07@gmail.com

Received 29 Jan 2011; Revised 06 Feb 2012; Accepted 02 March 2012, Available online 15 March 2012

ABSTRACT

Medicinal plants may serve as a vital source of potentially useful new compounds for the development of effective therapy to combat a variety of liver problems. Many herbs have been proven to be effectual as hepatoprotective agents while many more are claimed to be hepatoprotective but lack any such scientific evidence to support such claims. Developing a satisfactory herbal therapy to treat severe liver diseases requires systematic investigation of properties like anti-hepatotoxicity (antioxidants), stimulation of liver regeneration and choleric activity. Formulation of herbal medicines with standards of safety and efficacy can revitalize treatment of liver disorders. The aim of this review is to elucidate the list of hepatoprotective medicinal plants, which are scientifically proved during Jan-Dec 2011.

Key Words: Medicinal plants, hepatoprotective agents, treatment of liver disorders.

INTRODUCTION

Medicinal plants play a key role in the human health care. About 80% of the world population relies on the use of traditional medicine which is predominantly based on plant materials¹. The traditional medicine refers to a broad range of ancient natural health care practices including folk/tribal practices as well as Ayurveda, Siddha and Unani. These medical practices originated from time immemorial and developed gradually, to a large extent, by relying or based on practical experiences without significant references to modern scientific principles.

It is estimated that about 7,500 plants are used in local health traditions in, mostly, rural and tribal villages of India. Out of these, the real medicinal value of over 4,000 plants is either little known or hitherto unknown to the mainstream population. The classical systems of medicine such as Ayurveda, Siddha, Amchi, Unani and Tibetan use about 1,200 plants². A detailed investigation and documentation of plants used in local health traditions and pharmacological evaluation of these plants and their taxonomical relatives can lead to the development of invaluable plant drugs for many dreaded diseases. Random screening of plants has not proved economically effective³.

Liver damage is very common since liver has to detoxicate lot many toxic substances. Most of the hepatotoxic chemicals damage liver cells primarily

by producing reactive species which form covalent bond with the lipids of the tissue. Due to excessive exposure to hazardous chemicals, sometimes the free radicals generated are so high that they overpower the natural defensive system leading to hepatic damage and cause jaundice, cirrhosis and fatty liver. Production of the reactive species depletion manifests in tissue thiol depletion, lipid peroxidation, plasma membrane damage etc., culminating into severe hepatic injury⁴.

CONCLUSION

From this study, it is clear that the medicinal plants play a vital role against various diseases. Various herbal plants and plants extracts have significant hepatoprotective activity in animal models. The hepatoprotective activity is probably due to the presence of flavonoids in all few herbal plants. The results of this study indicate that extracts of leaves and plants extracts of some medicinal plant have good potentials for use in hepatic disease. The present review study give evidential explore mechanism of action of medicinal plants against experimentally induced hepatotoxicity. Hence the review study is concluded that the herbal drug possesses hepatoprotective activity and it has been proved by different animal models give many links to develop the future trials.

Table 1: List of Hepatoprotective plants

Botanical name	Family	Parts used	Solvent used	Chemical constituents	Screening method	Reference
<i>Amaranthus caudatus</i> Linn	Amaranthaceae	Whole plant	Methanol	Flavonoids, tannins, glycosides	Carbon tetra chloride induced	Kuruba lakshman et al ⁵
<i>Anisochilus carnosus</i> Linn	Lamiaceae	Stems	Ethanol	Alkaloids, flavonoids, glycosides	Carbon tetra chloride induced	Venkatesh et al ⁶
<i>Asparagus racemosus</i> Linn	Asparagaceae	Roots	Ethanol	Phenols, coumarins	Paracetamol induced	Fasalu rahim mom et al ⁷
<i>Azima tetracantha</i>	Salvadoraceae	Leaves	Ethanol	Flavonoids, triterpenoids	Paracetamol induced	Arthika et al ⁸
<i>Calotropis procera</i> R.Br	Asclepiadaceae	Root bark	Methanol	Terpinoidsglycosides, flavonoids	Carbon tetra chloride induced	Pati prakash et al ⁹
<i>Cajanus cajan</i> Linn	Leguminosae	Pigeon pea leaf	ethanol	Flavonoids, stibenes	D-galactosamine	Oluseye ade boye akinloye et al ¹⁰
<i>Cajanus scarabaeoides</i> Linn	Fabaeeae	Whole plant	n-butanol, ethanol	Flavonoids	Paracetamol induced	Suman pattanayak et al ¹¹
<i>Carissa carandas</i> Linn	Apocynaceae	Root	Ethanol	Alkaloids, tannins, steroids	Carbon tetra chloride induced	Balkrishnan et al ¹²
<i>Clitoria ternatea</i> Linn	Fabaceae	Leaves	Methanol	Phenolic flavonoids	Paracetamol induced	Yeng chen et al ¹³
<i>Cucumis trigonus</i> Roxb	Cucurbitaceae	Fruit	Pet.ether, chloroform, alcohol, aqueous	Flavonoids	Carbon tetra chloride induced	Mohammad imtiaz et al ¹⁴
<i>Ficus religiosa</i> Linn	Moraceae	Stem bark	Methanol	Glycosides, steroids, tannins	Paracetamol induced	Kavitha suryawanshi et al ¹⁵
<i>Garcinia indica</i> Linn	Clusiaceae	Fruit rind	Ethanol	benzophenones, garcinol	Carbon tetra chloride induced	Amol Bhalchandra Deore et al ¹⁶
<i>Gmelina asiatica</i> Linn	Verbenaceae	Aerial parts	Ethanol, chloroform	Flavonoids	Carbon tetra chloride	Partha sarathy et al ¹⁷
<i>Hyptis suaveolens</i> linn	Lamiaceae	leaves	Aqueous	Flavonoids	Acetaminophen induced	Babalola et al ¹⁸
<i>Leucas ciliata</i> Linn	Lamiaceae	Whole plant	Ethanol	Flavonoids	Carbon tetrachloride induced	Qureshi et al ¹⁹
<i>Melia azhdirecta</i> Linn	piperaceae	leaves	ethanol	Spectro photometric method	Carbon tetra chloride, silymarin	H.rajeswary et al ²⁰
<i>Morinda citrifolia</i> Linn	Rubiaceae	Fruit	Aqueous	Saponins, tri terpins, steroids	Streptozotocin induced	Shiva nanda nayak et al ²¹
<i>Myoporum lactum</i> Linn	Myoporaceae	Leaves	Methanol, n-butanol	Flavonoids	Profenofos induced	mohammad et al ²²
<i>Myrtus communis</i> Linn	Myrtaceae	Leaves	Silymarin	Flavonoids, terpenoids, steroids	Paracetamol induced	Pasumarthi phaneendra et al ²³
<i>Solanum nigrum</i> Linn	Solanaceae	Fruits	Ethanol	Flavonoids, terpenoids	Carbon tetra chloride	Subash et al ²⁴

ACKNOWLEDGEMENT

Authors are grateful thanks to Anurag Pharmacy College for carrying out this review work.

REFERENCE

- WHO, Regional Office For The Western Pacific, Research Guidelines For Evaluating The Safety And Efficacy Of Herbal Medicines, Manila, WHO, 1993.
- Pushpangadan P. Role of Traditional Medicine in Primary Health Care. In: Iyengar PK, Damodaran VK, Pushpangadan P, Editors. Science for Health. Published By State Committee On Science, Technology And Environment, Govt. Of Kerala, 1995.
- Aszalos A, Editor. Antitumor Compounds of Natural Origin. Boca Raton, CRC Press, 1982.
- Gupta Amartya K, Ganguly Partha, Majumder Upal K, Ghosal Shubnath, Hepatoprotective & antioxidant effect & stereoidal saponins of solanum of *Solanum xanthocarpum* & *Solanum nigrum* in paracetamol induce hepatotoxicity in rats, Pharmacologyonline 2009, 1, 757-768.
- Bagepalli Srinivas, Ashok Kumar, Kuruba Lakshman, Paresandra Avalakondarayappa Arun Kumar, Gollapalle Lakshminarayana Shastry Viswantha, Veeresh, Prabhakar Veerapur, Boreddy, Shivanadpea, Thippeswamy, Bachappaa, Manoj. Hepatoprotective activity of methanol extracts of Amaranthus caudatus Linn. against paracetamol-induced hepatic injury in rats, Journal of Chinese Integrative Medicine 2011, 9(2), 194-200.
- Venkatesh P, Dinakar A, Senthilkumar N, Hepatoprotective activity of an ethanolic extract of stems of *Anisochilus carnosus* against carbon tetrachloride induced hepatotoxicity in rats, International Journal of Pharmacy and Pharmaceutical Sciences 2011, 3(1), 243-245.
- Fasalu Rahiman, Rupesh Kumar M, Tamizh Mani T, Mohamed Niyas K, Satya Kumar B, Phaneendra P, Surendra B, Hepatoprotective activity of "Asparagus racemosus root" on liver damage caused by paracetamol in rats, Indian Journal of Novel Drug Delivery 2011, 3(2), 112-117.
- Arthika S, Shanthammal Y, Sheryl Igall N, Elankini P, Pramod Reddy G, Gaidhani SN, Ganeshan R, Hepatoprotective activity of the ethanolic extract of *Azima tetracantha* against paracetamol-induced hepatotoxicity in wistar albino rats, Journal of Advances in Pharmacy and Healthcare Research, 2011, 1(2), 14-20.
- Patil Prakash, Prasad K, Nitin M, Vinay Kumar M, Sreenivasa Rao K, Evaluation of hepatoprotective effect of *Calotropis procera* R.Br root extract against CCL_4 induced hepato-oxidative stress in albino rats, International Journal in Ayurveda & Pharmacy 2011, 2(1), 319-324.
- Oluseyi Adeboye Akinloye, Moshood Olajire Olaniyi, Hepatoprotective effect of *Cajanus cajan* on tissue defense system in D-galactosamine-induced hepatitis in rats, Turk J Biochem 2011, 36(3), 237-241.
- Suman Pattanayak, Siva Sankar Nayak, Durga Prasad Panda, Subas Chandra Dinda, Vikas Shende, Amol Jadav, Hepatoprotective activity of crude flavonoids extract of *Cajanus scarabaeoides* (L) in paracetamol intoxicated albino rats, Asian J Pharm Biol Res 2011, 1(1), 22-27.
- Balakrishnan N, Balasubramaniam A, Sangameswaran B, Bhaskar VH, Hepatoprotective activity of two Indian medicinal plants from Western Ghats-Tamil nadu, Journal Of Natural Pharmaceuticals 2011, 2(2), 92-98.
- Kuppan Nithianantham, Murugesan Shyamala, Yeng Chen, Lachimanan Yoga Latha, Subramanian L. Jothy, Sreenivasan Sasidharan, Hepatoprotective potential of *Clitoria ternatea* leaf extract against paracetamol induced damage in mice, Molecules 2011, 16, 10134-10145.
- Kalpana Patila, Shaikh Mohammed Intiaza, Anoop Singha, Varsha Bagewadia, Shaikh Gazib, Hepatoprotective activity of *Cucumis trigonus* Roxb. fruit against CCL_4 induced hepatic damage in rats, Iranian Journal of Pharmaceutical Research 2011, 10(2), 295-299.
- Kavita Suryawanshi, Sanjay Khakre, Ashish Chourasia, Chaurasiya PK, Pawar RS, Deenanath Jhade, Hepatoprotective activity of stem bark extracts of *Ficus religiosa* Linn in rats, International Journal of Biomedical Research 2011, 2(8), 466-475.
- Amol Bhalchandra Deore, Vinayak D Sapakal, Nilofer S Naikwade, Antioxidant and Hepatoprotective activity of *Garcinia indica* Linn fruit rind, Pharmacie Globale International Journal of Comprehensive Pharmacy 2011, 2(6), 1-5.
- Merlin NJ and Parthasarathy V, Antioxidant and Hepatoprotective activity of chloroform and ethanol extracts of *Gmelina asiatica* aerial parts, Journal of Medicinal Plants Research 2011, 5(4), 533-538.
- Babalola O, Ojo E, Oloyede F, Hepatoprotective activity of aqueous extract of the leaves of *Hyptis suaveolens* (L.) on acetaminophen induced hepatotoxicity in rabbits, Research Journal of Chemical Sciences 2011, 1(7), 85-88.
- Mohammad N. Qureshi, Bhanudansh S. Kuchekar, Nadeem A. Logade, Majid A. Haleem, In-Vitro antioxidant and in-vivo hepatoprotective activity of *Leucas ciliata* leaves, Academy of Chemistry of Globe Publications 2010, 4(2), 124-130.
- Rajeswari H, Vasuki R, Samudram P, Geetha A, Hepatoprotective action of ethanolic extracts of *Melia azedarach* Linn and *Piper longum* Linn and their combination on CCL_4 induced hepatotoxicity in rats, Indian Journal of Experimental Biology 2011, 49, 276-281.
- Shivananda Nayak B, Julien R. Marshall, Godwin Isitor, Andrew Adogwa, Hypoglycemic and hepatoprotective activity of fermented fruit juice of *Morinda citrifolia* (Noni) in diabetic rats, Evidence-Based Complementary and Alternative Medicine 2011, 1-5.
- Samy M. Mohamed, Emad M. Hassan, Khaled A. Abd Elshafeek, Azza M. Mohamed, Investigation of flavonoidal constituents and hepatoprotective activity of *Myoporum lactum*, International Journal of Academic Research 2011, 3(3), 528-533.
- Rupesh Kumar M, Pasumarthi Phaneendra, Surendra Bodhanapu, Fasalu Rahiman OM, Mohamed oiyas K, Tamizmani T, Antioxidant and Hepatoprotective activity of the aqueous extract of *Myrtus communis* (Myrtle) Linn leaves, Pharmacologyonline 2011, 1, 1083-1090.
- Subash KR, Ramesh KS, Binoy Vargheese Charian Francis Britto, Jagan Rao N, Vijayakumar, Study of Hepatoprotective activity of *Solanum nigrum* and *Cichorium intybus*, International Journal of Pharmacology 2011, 7(4), 504-509.