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Ej.q-fm Article History: Intranasal nanoparticulate drug delivery systems have received increased attention in
-l.:'ﬂ.; . pharmaceutical research due to their ability to increase drug bioavailability, bypass the blood-
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pathway, enabling access to deeper regions. Intranasal nanoparticulate systems have several
pharmacological benefits, including increased bioavailability, a faster onset of action, higher
patient compliance, and less systemic adverse effects. Intranasal nanoparticulate drug delivery has
shown promise in a variety of therapeutic areas, including Alzheimer's disease, Parkinson's
disease, depression, and anxiety. Intranasal vaccinations and antibacterial Nanoparticle are also
utilized to treat respiratory and viral illnesses. This technique is thought to be useful in brain-
targeted chemotherapeutic drugs for glioblastoma treatment. The authors of this review
attempted to investigate the pharmacological features of nanoparticulate drug delivery systems,

Published 15 Nov 2025

Cite this article as:

Sahu P, Satapathy T, Bhardwaj SK, Satapathy A,
Satapathy A, Kumar A, Kumar M, Kashyap P,
Chandrakar K, Chandrakar M, Intranasal
nanoparticulate drug delivery systems for
neurodegenerative disorders: an Overview,

Journal of Drug Delivery and Therapeutics.
2025; 15(11):134-155 DOI:

http://dx.doi.org/10.22270/jddt.v15i11.7462 Parkinson’s disease,

*For Correspondence:

Dr. Trilochan Satapathy, Professor and HOD,
Columbia Institute of Pharmacy, Vill-Tekari,
Near Vidhansabha, Raipur-493111, C.G., India

including their benefits, mechanisms, formulation methodologies, and clinical applications.

Keywords: Alzheimer's disease, Drug delivery, Nanoparticle, Nasal route, Neuro inflammation,

1. Introduction:

Four decades ago (during 1980s) intranasal route was
introduced to systemic deliver of some therapeutic
agents as an alternative to conventional drug delivery
systems.lIn ancient Ayurvedic literature of Indian
medicinal system, intranasal route was described as
“Nasya Karma”. 2 According to advancement of science
and drug discovery, intranasal route is considered as a
promising route by the researchers for delivery of
different therapeutic agents targeted to lungs, brain etc.
in the form of nanoparticulate drug delivery systems
which possess several unique advantages over other
conventional dosage forms that align well with the
properties of nanoparticles and the physiological
features of the nasal cavity. 3 The nasal cavity is in close
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proximity to the brain, and intranasal administration
allows the therapeutic agents to bypass the blood-brain
barrier (BBB), which is generally a major challenge in
drug delivery for various CNS related disorders.4The
major advantage to choose the intranasal route as it is
structured with porous endothelial membrane and
possess dense network of blood vessels which provides
a quick and rapid absorption of therapeutic agents into
the systemic circulation thereby enhance the solubility,
stability, and bioavailability of drugs that can lead to a
more effective therapeutic response.> Nanoparticulate
delivery can facilitate the transport of various
therapeutic agents directly to the brain through
olfactory and trigeminal nerves, making the nasal route
especially useful for different neurological disorders
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such as Alzheimer's, Parkinson's, and brain tumors etc. ¢
Intranasal drug delivery is non-invasive, pain-free, and
easy to administer, which is a significant advantage over
other parenteral routes like injection thereby improve
patient compliance, especially in chronic treatments or
pediatric and elderlypopulations.”Many challenges such
as controlling the release of active drugs are observed
during the development of a delivery system.®
Nanoparticulate delivery system can be structured to
control the release pattern of the drug, allowing it to
exert sustained or prolonged drug action.? Additionally,
nanoparticles can develop to be functionalized to target
specific organs or proteinaceous macromolecules of
tissues, rely on several strategies and principles that
facilitate the targeted accumulation, penetration, and
internalization of nanoparticles at the desired site
thereby enhancing the therapeutic efficacy and reducing
side effects(commonly observed with oral or
intravenous administration).10 In addition to systemic
drug delivery, nanoparticles administered via intranasal
route can also be used for localized treatment of
diseases affecting the nasal and respiratory tract, such
as infections, allergies, and inflammation.'*Nanoparticle
can protect sensitive drugs (like proteins, and nucleic
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acids) from degradation by enzymes in the nasal cavity.
These contributions make the nasal route ideal for
precision medicine. Nanoparticles can be structured in
such a manner to enhance their ability to penetrate the
nasal mucosa and reach systemic circulation or target
tissues more efficiently. 12 The smaller size of
nanoparticle allows them to pass through tight junctions
between cells in the nasal epithelium, facilitating rapid
absorption.’3Another  important mechanism for
nanoparticulate drug delivery system is enhanced
Permeability and retention (EPR) Effect, here, the
mechanism exploits the leaky vasculature present in
certain pathological tissues (like tumors) and the
lymphatic system, allowing nanoparticles to accumulate
more readily in these areas. This phenomenon is
referred to as the EPR effect of nanoparticulate delivery
system.1* To exploit nanoparticulate EPR effect, the
nanoparticles should be constructed with smaller sized
particles (under 100 nm) and surface modifications
such as PEGylation (coating with polyethylene glycol)
etc. These properties of nanoparticles can enhance the
circulation time and help to prevent premature
clearance by the immune system.15
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Figure 1: Graphical Abstract

2. Ideal Characteristics of intranasal
nanoparticles:

2.1 Particle size and surface architecture: Intranasal
nanoparticles are considered as an innovative drug
delivery system because it offers a non-invasive route
for drugs to bypass the gastrointestinal system and the
blood-brain barrier (BBB).16 For optimal performance,
intranasal nanoparticles must have several ideal
characteristics. The first and foremost characteristics
particle size that should range between 100-500 nm in
diameter. 17 Particle size above 500 nm may be trapped
in the nasal mucosa.!819 Smaller sized particles may
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penetrate the mucus more easily and have a larger
surface area for interaction. 20 Thus, an optimal size
range is critical for prolonged retention. Similarly,
surface architecture of nanoparticles is also of similar
importance. The surface charge of nanoparticles can
influence their interaction with the nasal mucosa.?!
Neutral to slightly positive charges are often preferred
to ensure good mucoadhesion without causing
irritation. 22 Cationic particles tend to interact more
effectively with the negatively charged mucosal
membranes but may also cause toxicity if used in high
concentrations. Surface properties, such as roughness
and hydrophobicity/hydrophilicity balance, also affect
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mucoadhesion. 23 Hydrophilic particles are generally
more mucoadhesive because they tend to form stronger
interactions with the mucus compared to hydrophobic
particles. 24The surface of nanoparticles can be modified
with ligand or coatings (e.g., PEGylation, chitosan, or
surfactants) to enhance mucoadhesion, drug release,
and targeting. 25

2.2 Mucoadhesion property of intranasal
nanoparticles: Mucoadhesion property of a
nanoparticleis crucial for prolonging the residence time
at the nasal mucosa and ensuring sustained drug
release. 26 This can be achieved by incorporating
biocompatible polymers like chitosan or poloxamers,
which enhance adhesion to the mucosal surfaces and
prevent rapid clearance. 27 Considering the anatomical
architecture, the nasal mucosa consisting mucus layer
which is negatively charged due to the presence of
glycoproteins (such as mucins), while the polymeric
nanoparticles often have a positive charge (when
cationic polymers are used). 28This situation creates
attractive electrostatic interactions between the
nanoparticles and the mucosal surface, facilitating
adhesion. In some circumstances polymeric
nanoparticles could form hydrogen bonds with the
hydroxyl, carboxyl, and amino groups in the mucus
layer. 29 This interaction helps improve the adhesion of
the particles to the mucosal surface. Vander Waals
Forces between the nanoparticles and mucus layer of
nasal cavity are weaker but still significant forces that
contribute to the adhesion between the nanoparticles
and the mucosal layer.3? Some specific polymer such as
chitosan, are hydrophilic in nature and tend to swell
when come in contact with the aqueous mucus layer.3!
This swelling property can increase the surface area of
the nanoparticles, enhancing the contact time with the
mucosal surface and enhances therapeutic effectiveness
of a nanoparticle formulations.32 The polymeric
nanoparticles sometimes undergo interpenetration with
the mucus gel layer, where the polymer chains present
in the nanoparticles intertwine with the mucus, leading
to form a stronger bond.33 This entanglement improves
the stability of the particles at the site of deposition.
Sometimes Polymeric nanoparticles are modified by
coating with specific bio-adhesive polymers, such as
chitosan or thiolated polymers, thereby improve their
interaction with the mucus and hence better
mucoadhesion.3#The viscosity of the nanoparticle
formulation greatly influences how strongly the
nanoparticles can interact with and penetrate the
mucus.3>-36Formulations that are too viscous may affect
nanoparticle movement, while those that are too fluid
may not stay in contact with the mucosa long enough for
effective drug delivery.37-38Some environmental factors
of nasal mucosa also affect the mucoadhesion of
nanoparticle formulations. The pH of the nasal cavity
and the ionic strength of the mucus also affect the
degree of ionization of the polymers and the properties
of the mucus. For example, pH changes may alter the
charge on the nanoparticles and mucins, influencing
their interaction.39-40 In some specific circumstances, the
ionic strength of the environment can also affect the
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viscosity of the mucus and influence the ability of
nanoparticles to adhere to the mucosal surface.*!

2.3 Controlled Release characteristics of
nanoparticle: Controlled release of nanoparticles are
considered as an essential factor to maintain
therapeutic levels over an extended period of time as
well as reducing the need for frequent dosing.4243 The
drug is encapsulated in a nanoparticle matrix, and its
release is governed by the diffusion of the drug
molecules from the interior of the nanoparticles to the
surrounding environment (nasal mucus).** In such
circumstances, the drug molecules move from regions of
high concentration (inside the nanoparticle) to regions
of low concentration (the mucosal layer).*>Smaller
nanoparticles typically have a larger surface area to
volume ratio, which can lead to faster initial drug
release.4647  However, for controlled release,
nanoparticles are often designed with a size that allows
for a slower diffusion process.When the nanoparticles
are made from biodegradable or bio-responsive
polymers (e.g., PLGA, chitosan), the polymer matrix
slowly degrades, allowing for a gradual release of the
drug. Lipophilic drugs often require surfactants or
encapsulation in specific polymer matrices to control
their release, as their diffusion can be slower than
hydrophilic drugs.#84° Some polymeric nanoparticles,
such as hydrophilic polymers, absorb water from the
mucus layer, causing them to swell. 50 The swelling
process can lead to the gradual release of the
encapsulated drug as the nanoparticle matrix becomes
more porous, allowing the drug to diffuse out.51-52
Hydrophilic polymers, like chitosan, are known to swell
when they come into contact with water, which helps to
release the encapsulated drug gradually. 53-54The
hydration and composition of the mucus also affect the
swelling behavior of the nanoparticles, influencing the
release rate. If the nanoparticles are made from
biodegradable polymers (e.g., poly(lactic-co-glycolic
acid) [PLGA], chitosan), the matrix can gradually
degrade or erode over time.>> As the polymer matrix
breaks down, the encapsulated drug is released in a
controlled manner. 56The degradation rate of the
polymer is critical to controlling the release rate. For
instance, a slower degradation rate will result in a
prolonged release of the drug. The degradation can
occur through hydrolysis, enzymatic breakdown, or
oxidation, depending on the type of polymer. 57The
nasal mucosal environment has a slightly acidic pH
(around 5.5-6.5), and polymers can be designed to
degrade in response to pH changes.>8pH-sensitive
polymers will degrade faster or slower depending on
the local pH, allowing for site-specific drug
release.5?Polymers like poly(ethylene glycol) (PEG),
polyacrylic acid, and other ionizable polymers can be
used to design nanoparticles that release their contents
in response to pH fluctuations.®°The nasal mucosa has a
slightly acidic pH, and pH-sensitive formulations can
exploit this characteristic to trigger drug release only
when they come into contact with the mucus. ¢1Thermo
sensitive polymers, such as poly(N-
isopropylacrylamide) (PNIPAM), can be used in the
formulation of nanoparticles that release the
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encapsulated drug in response to temperature changes.
62 Upon exposure to the nasal mucosa, a slight
temperature change can trigger a change in the
nanoparticle structure (e.g., from a gel state to a sol
state), leading to the release of the drug. 63-64 In some
cases, nanoparticles are designed to release drugs
through ion-exchange mechanisms or electrostatic
interactions with the mucosal surface.®> For example,
anionic nanoparticles may release their drug payload
through exchange reactions with the cations (e.g,
calcium ions) in the mucus.f6 The electrostatic
interaction between charged nanoparticles and the
mucus can affect the release rate. 67 The drug may be
tightly bound to the nanoparticles through ionic
interactions, and the release is controlled by the
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strength of these interactions.®® Changes in the ionic
strength of the mucus (e.g, due to inflammation or
infection) can influence the release rate by altering the
electrostatic interactions between the nanoparticles and
the mucosal layer.6-70 Some nanoparticles are designed
to be susceptible to enzymatic degradation. 7! Enzymes
present in the nasal mucosa, such as mucosal or
digestive enzymes, can break down the polymer matrix
or degrade the drug itself, leading to a controlled
release. 72 The nanoparticle matrix can be engineered to
contain specific linkages (e.g., ester or peptide bonds)
that are cleaved by enzymes.’3 The release rate is
dependent on the concentration and activity of the
enzymes in the nasal mucosa.”*
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and Release
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\ distribution
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Figure 2: Factors affecting the controlled release of intranasal Nanoparticles

2.4 Rapid onset and extended duration: Rapid onset
and extended duration of a nanoparticulate delivery
system is required in some emergency conditions like
pain management or migraine etc that involve a
combination of physical, chemical, and surface
modification strategies during nanoparticle
development. 75-76Attaching specific ligands, antibodies,
or peptides to the nanoparticle surface can enhance
their ability to quickly interact with specific biological
targets or environmental factors.”” For example,
attaching antibodies or cell-specific ligands can speed
up the delivery of drugs to specific tissues. 78Modifying
the surface charge of nanoparticles (positively or
negatively) can improve their interaction with biological
membranes, improving uptake and accelerating the
action of the nanoparticles. 7980The shape of
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nanoparticles can influence their movement and
uptake.8! For instance, rod-shaped nanoparticles tend to
enter cells faster compared to spherical ones, and some
shapes are better suited for targeting specific tissues.
82]ncorporating stimuli-responsive materials, such as
pH-sensitive, temperature-sensitive, or light-sensitive
polymers, can make nanoparticles "triggered"” to release
their payload upon exposure to specific conditions. 83-84
This allows for rapid release once they reach the target
site. Utilizing core-shell nanoparticles with an outer
layer that dissolves or degrades upon exposure to
specific stimuli (like an acidic environment or enzymatic
activity) can enhance rapid action once the particles
arrive at the site of interest. Using mesoporous
nanoparticles, such as mesoporous silica, allows for a
higher loading capacity of active agents and facilitates a
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faster release. 85-86 These materials are porous, which
improves both drug loading and the rate at which the
active substance is released. 87Controlling aggregations
of nanoparticles can be achieved by addition of anti-
aggregation agents like surfactants or stabilizers which
ensure that they maintain high surface area and don’t
clump together.88 Avoiding aggregation or clustering of
nanoparticles within the system ensures that they
remain active and can rapidly reach the target site.
89High drug loading within nanoparticles improves the
amount of active material available to be released,
leading to a faster therapeutic effect.?? Techniques like
surface adsorption, encapsulation, or co-loading can be
used to enhance drug loading capacity.?'Modifying
nanoparticles to facilitate faster diffusion through
biological barriers (like the blood-brain barrier or cell
membranes) can speed up their therapeutic action .92-93
This could involve the use of surface coatings such as
polyethylene glycol (PEG), which improves the
solubility and bioavailability of
nanoparticles.?*Encapsulating nanoparticles in
biocompatible coatings (like liposomes or polymers)
can enhance their stability and control the rate of
payload release, thereby improving their overall efficacy
and the speed at which they act once administered. %5

3. Anatomy and Physiology of nasal route:

The nasal cavity consists of several key structures that
contribute to the absorption and distribution of
intranasally delivered drugs, including nanoparticles.?¢
The external opening of the nose, lined with skin and
hair, which acts as a first line of defense against large
particles and contaminants. %7 The interior of the nasal
cavity, which is divided into two nostrils by the nasal
septum. %8 The walls are lined with mucosa and hair,
which help filter air and trap particles. %0 These are
three bony structures (superior, middle, and inferior
turbinates) covered by mucosal tissue that help warm,
moisten, and filter the air. 199The turbinates create
turbulent airflow, which allows the drug to interact
more effectively with the mucosal surfaces. 191The lining
of the nasal cavity consists of respiratory epithelium,
which is rich in cilia (tiny hair-like structures) and
goblet cells (that secrete mucus). 192 This mucosal layer
plays an important role in drug absorption and
clearance.103 Located at the top of the nasal cavity, it is
specialized for smell and is connected to the brain via
the olfactory nerve. This region is significant for direct
CNS delivery of drugs.l®* A sensory nerve that
innervates the nasal mucosa and provides a pathway for
drugs to enter the central nervous system, particularly
via the trigeminal nerve to the brainstem. 105106 The
mucosal layer in the nasal cavity is continuously bathed
in mucus, which serves as a protective barrier.197 The
cilia on the epithelial cells move in a coordinated
fashion to transport mucus (and trapped particles)
toward the throat to be swallowed or expelled. 198 This
clearance mechanism is a challenge for drug delivery,
but nanoparticulate systems can be engineered to resist
rapid clearance by mucus. The nasal mucosa is generally
more permeable than the gastrointestinal tract, allowing
for faster and more efficient absorption of drugs.10°
However, the permeability can vary depending on the
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size, charge, and surface characteristics of
nanoparticles. The nasal mucosa is highly vascularized,
with a dense network of blood vessels (primarily
capillaries), which aids the rapid absorption of drugs
into the systemic circulation.!l® Nanoparticles can
exploit these vessels for systemic delivery after
absorption. The olfactory epithelium and trigeminal
nerve are connected directly to the brain. When
nanoparticles are delivered intranasally, they have the
potential to bypass the blood-brain barrier via these
nerve pathways. This direct route to the CNS is

particularly useful for treating neurological disorders.
111

4. Transport of Intranasal Nanoparticles to CNS
via Trigeminal Pathway:

The trigeminal pathway involved in the sensory
processing of stimuli from the face, including the nasal
cavity. Intranasal administration of nanoparticles has
become an increasingly popular method for delivering
drugs to the central nervous system (CNS), as it can
bypass the blood-brain barrier (BBB) and directly target
the brain.!’2 The trigeminal nerve has three main
branches. Ophthalmic (V1): Carries sensory information
from the forehead, scalp, and upper part of the nose.
Maxillary (V2): Carries sensory information from the
lower part of the nose, cheeks, and upper lip.
Mandibular (V3): Carries sensory information from the
jaw and chin. 113The trigeminal nerve has its cell bodies
located in the trigeminal ganglion, and its axons project
to the trigeminal nerve nuclei in the brainstem
(specifically, the spinal trigeminal nucleus and the
trigeminal sensory nucleus). Sensory input from the
nasal cavity is particularly carried by the ophthalmic
(V1) and maxillary (V2) branches. 114When
nanoparticles are administered intranasally (via nasal
spray or other delivery forms), they interact with the
mucosal lining of the nasal cavity. The nanoparticles can
be absorbed through the epithelial cells of the nasal
mucosa. 11> Some of these particles will penetrate
through the nasal epithelium and enter the trigeminal
nerve endings present in the nasal mucosa, particularly
in the upper parts of the nose (innervated by the
ophthalmic and maxillary branches). 116Activation of
Trigeminal Nerve occurs once the nanoparticles come
into contact with the trigeminal nerve fibers in the nasal
mucosa, they activate these sensory nerve endings.!”
This can lead to direct transmission of the signal
through the trigeminal nerve, either to the trigeminal
ganglion or directly to the brainstem. From the
trigeminal nerve, the signal is relayed to the brainstem
and further sent to higher brain centers, such as the
thalamus and cerebral cortex, for processing. 18The
nanoparticles themselves may also be transported via
the trigeminal nerve fibers to deeper regions of the
brain, including the medulla and even the cerebellum.11?
Nanoparticles may travel along the olfactory nerve and
into the olfactory bulb, which directly connects to the
brain, providing an efficient route for brain delivery
bypassing the blood-brain barrier.120 The trigeminal
nerve can also relay particles directly into regions like
the brainstem, cortex, and even into deeper structures
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like the medulla, which is associated with autonomic
regulation. 121

5. Advantages of the Trigeminal Pathway for
nanoparticulate drug delivery:

Bypassing the Blood-Brain Barrier (BBB) is an
important criterion for Intranasal nanoparticles that
follow the trigeminal pathway offer a promising route
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for delivering drugs to the CNS without needing to cross
the blood-brain barrier, a major challenge in drug
development. 122Since the trigeminal nerve is connected
to several areas of the brainstem and higher brain
regions, nanoparticles delivered through this pathway
can potentially target specific regions, offering
therapeutic benefits for conditions like neurological
disorders, pain management, and CNS diseases.123

Olfactory nerve

Trigeminal
Nerve Signal

Blood brain barrier

Systemic Circulation

Figure 3: Absorption of nanoparticulate delivery system via olfactory nerve and trigeminal nerves to CNS

6. Physiological and
interaction of Nanoparticle
Physiology via olfactory System:

Pharmacological
with Nasal

Nanoparticles interact with the nasal physiology
through a combination of physical and chemical
mechanisms, including their size, shape, surface charge,
and fictionalization.12* These interactions influence the
absorption and transport of Nanoparticle through the
nasal mucosa and into systemic circulation or the
CNS.125 The nasal cavity is lined with a mucosal layer,
primarily composed of epithelial cells, cilia, and mucus,
which serve as the first line of defense against foreign
particles.’26 The olfactory epithelium (located in the
upper nasal region) and the respiratory epithelium (in
the lower and middle parts) both play important roles
in the absorption and clearance of
nanoparticles.12’0Olfactory epithelium has specialized
nerve endings (olfactory sensory neurons) that allow
for direct neuronal transport to the brain whereas
Respiratory epithelium is lined with cilia and goblet
cells, produces mucus to trap and clear foreign
particles.’26The ciliary movement helps to clear
nanoparticles or prevent their deeper penetration into
the nasal mucosa. Nanoparticles can pass directly
through the epithelial cells or paracellularly between
the cells, depending on their characteristics. 128 It may
be taken up by cells via mechanisms like phagocytosis
(for larger particles) or pinocytosis (for smaller
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particles), allowing them to enter the bloodstream or
reach deeper tissue.l2?Nanoparticles that interact with
the olfactory epithelium can directly travel along the
olfactory nerve to the olfactory bulb, then spread to the
brain.130 As described earlier, nanoparticles may be
absorbed through the trigeminal nerve fibers in the
nasal mucosa, leading to direct CNS targeting.3! The
surface properties (e.g., charge, hydrophobicity, and
functionalization) influence the interaction with nasal
epithelial cells and the subsequent release and
distribution of the drug into the brain.!32Nanoparticle
surface modification such as PEGylation reduces
particle clearance by the immune system and prolongs
circulation time. Receptor-targeting ligands can enhance
site-specific delivery to brain tissues or other targets. 133

7. Pharmacokinetic of Intranasal nanoparticles:

The nasal mucosa is highly vascularized, allowing for
the rapid absorption of drugs and nanoparticles. The
drug particles are typically absorbed through the
epithelial cells lining the nasal cavity.13* Nanoparticles,
owing to their small size and large surface area, can
easily permeate the mucosal barrier and enter systemic
circulation or reach the central nervous system
(CNS).After absorption through the nasal mucosa,
nanoparticles can enter the systemic circulation via the
blood vessels of the nasal cavity. 135 The nasal route
offers the advantage of bypassing the gastrointestinal

tract and hepatic first-pass metabolism, which can lead
CODEN (USA): JDDTAO
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to  higher bioavailability = compared to oral
administration.13¢Depending on the formulation (e.g.,
lipid-based, polymeric, or protein-based nanoparticles),
the distribution of nanoparticles can be influenced by
their physicochemical properties, such as surface
charge, hydrophobicity, and size.l3’0Once in the
bloodstream, nanoparticles can be subjected to
metabolism by liver enzymes, but they can also avoid
hepatic first-pass metabolism due to their direct entry
into systemic circulation.’3® The metabolic fate of
nanoparticles depends on their material composition,

and some may be metabolized to release the
encapsulated drug or degrade into smaller
components.139Certain nanoparticles (e.g.

biodegradable ones) may degrade over time, releasing
their therapeutic payloads as they are broken down by
enzymes or under physiological conditions. The
degradation products can be further metabolized by the
liver or other organs, and eventually excreted from the
body.1*Nanoparticles that do not undergo metabolism
may be eliminated via the kidneys. The size and surface
properties of nanoparticles significantly affect their
renal clearance.'#1Smaller nanoparticles (below 10 nm)
are more likely to be excreted through the kidneys,
while larger nanoparticles may undergo phagocytosis
by the reticuloendothelial system (RES) in the liver and
spleen.!*2Larger nanoparticles may be cleared via the
bile and excreted in the feces. The composition of the
nanoparticles affects their route of excretion, with some
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8. Pharmacodynamics of intranasal
Nanoparticle:
Intranasal nanoparticulate drug delivery systems

provide a novel approach for enhancing drug efficacy,
particularly for central nervous system (CNS) disorders,
by facilitating targeted drug delivery.1*4Upon intranasal
administration, nanoparticles cross the olfactory
epithelium/trigeminal nerve distributing the drug to
different brain regions. Once distributed, Nanoparticles
release the content that act on specific receptors,
modulating neurotransmission and cellular responses.
145Many CNS-active drugs (e.g., dopamine agonists,
serotonin reuptake inhibitors) regulate
neurotransmitter levels to exert their effects.46 Drug-
loaded Nanoparticle can target receptors such as NMDA,
GABA, or opioid receptors, leading to neuro modulatory
effects.1¥’Some Nanoparticles facilitate direct
intracellular drug delivery, enhancing therapeutic action
at the molecular level.148 InAlzheimer’s disease,
intranasal nanoparticles enhance brain uptake of
neuroprotective agents like curcumin or rivastigmine,
reducing amyloid-beta accumulation and oxidative
stress.1#? For the treatment of Parkinson’s disease,
intranasal nanoparticles containing bio-molecules that
interact with dopaminergic pathway and help to restore
dopamine levels in the substantia nigra, improving
motor control. Intranasal SSRIs or neuropeptides (e.g.,
oxytocin) exert rapid antidepressant and anxiolytic

formulations favoring biliary clearance over renal.143 effects by modulating serotonin or oxytocin
receptors.150
Tablel. List of suitable drug candidates for intranasal nanoparticulate delivery
. 5 :
5 5% : 3 e :
g g = < =] g )
s | ¥ = $3 £ g8 5 | £ 5
|5 s 2E g $E E58 |3 g
1. Estradiol Chitosan NP Ionic interaction- | 269.3+31.6 | +25.4 64.7% The 151
prepared lipid concentratio
nanocarriers ns of
estradiol-
loaded NPs
were quite
high
2 Rivastigmin | Chitosan with | Polymeric 163.7+7.6n | 45.30+6.21 853 % Significant 152-
e tween 80 nanoparticles m mV drug loading | 153
prepared using ion was seen
gelation method using
chitosan
nanoparticle
S, with
reduced
accumulatio
n in the liver,
spleen, and
heart.
3 Donepezil Lutrol Melt emulsification | 112.5+2.44 | -23.2mV 98.7+4.01 Brain 154
F127/Carbap | high pressure | nm % concentratio
ol 934 hmozenization n is higher
than that of
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the free

drug.

Curcumin

Lactoferrin

Desolvation
method

84.8+6.5nm

+22.844.3m
\'

248.1%

When
compared to
free
curcumin,
the
permeability
of curcumin
nanoparticle
S was
significantly
enhanced.

155

Caffeic acid

transferrin

Liposome

139+9nm

+56.30

23+4%

There was
disaggregati
on activity
against the
Ap42

peptide by
Tf-CA

liposomes.

156

Rhein and
Polydopami
ne

Fe-Rh/Pda
NPs

Metal nanoparticles

75.14+173

-227 - (-
10.5mv)

27.71+6.86

Rhein
more
bioavailable
to the brain
when
encased in
nanoparticle
s than was
administere
d alone.

was

157

Galantamin
e

Chitosan/
Chitosan
alginate
complex NP

Ionotropic gelation

240nm

+58mv

67%

Prolonged
release.
There
no
significant
neurotoxicit
y caused by
the new
formulation.

was

158

Tacrine

Poly (n-butyl
cyanoacrylate

with
polysorbate
80

Lipid nanocarriers
synthesized via
emulsion
polymerization

117.4nm

-10.0+0.9

22%

Compared to
free tacrine
and
uncoated
nanoparticle
S, tacrine
concentratio
ns in the
brain were
shown to be
higher when
poly (n-butyl
cyanoacrylat
e)
nanoparticle
S were
coated with
1%
polysorbate
80.

159

Doxorubicin

Stealth
(PEG2000)
and non-

Lipid nanocarriers
synthesized via
high-pressure

118+0.92

+22.5+8.68

38.40+8.94

The outcome
is a higher

doxorubicin

160
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stealth SLN

homogenization

concentratio
n.

10

Curcumin

mannose

Liposome

100nm

-3.6%4.3

94.23+2.88
6

The
absorption
and
accumulatio
n of
curcumin
liposomes in
N2a cells
were
enhanced.

161

11

Estradiol

Polylactide-
co-glycolide
(PLGA)  with
tween 80

Polymeric
nanoparticles

98.3£2.6

78.9x2.1

51.34+5.59

Compared to
free  drugs,
coated
nanoparticle
s
demonstrate
d superior
brain
absorption.

162

12

RHT
(Rivastigmi
ne
Hydrogen
Tartrate)

Eudragit
RL100

nanoprecipitation

118+0.92

+22.5+8.68

38.40+8.94

Nanoparticle
s of eudragit
loaded with
RHT have
the potential
to increase
nasal
bioavailabilit
y by
effectively
adhering to
the nasal
surface.

163

13

Simvastatin

Simvastatin-
Loaded PCL
(poly-e-
caprolactone

Nanocapsules

202.5+£18.0

-22.2%3.2

99.8+0.7

Prepared
NPs
demonstrate
d great
bioavailabilit
y and
shorter
delivery
times.

164

14

Simvastatin

Simvastatin
loaded
Lecithin/chito
san
nanoparticles

Nanoparticles

212.6+7.2

+40.4£2.1

99.3+1.1

Prepared
NPs
demonstrate
d great
bioavailabilit
y and
shorter
delivery
times.

165

15.

Buspirone
HCL

BUH thiolated
chitosan

Ion gelation

226.7+2.52n
m

+39.2+3.1

81.13+2.8

Higher
concentratio
n in brain.

166

16

Agomelatin
e

Agomelatine
with PLGA

NPs

167.70£0.42
nm

17.90mv+2.

70

91.25+1.70
%

Absolute

bioavailabilit
y and brain
delivery of
agomelatine
were  both
greatly

167
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enhanced by
intranasal
injection of
solid  lipid
nanoparticle
S.
17 | Duloxetine Duloxetine Lipid carriers 265.13+9.85 | 2.7940.44m | 98.13+0.50 | Better brain | 168
nanostructure \' % targeting &
d lipid decreased
carriers side effects
18 | Folic acid Niosomes 3.05-5.625 69.42% High 169
absorption
through
nasal cavity
19 Chitosan Selegiline 186+21.45 70+2.71 215+34.71 | Attenuation | 170
. Hydrochloride of the
selegiline thiolated chitosan oxidative
NPs stress  and
restoring the
mitochondri
al complex
activity
20 | Venlafaxine | Alginate Venlafaxine 173.74£2.5 37.50+1.74 81.3+1.9 More 7
alginate NPs enhanced
excellent
brain/blood
ratios
21 | Aripiprazol | Gellan gum | Transferosome by | 72.12+0.72n | - 97.06+0.10 | Higher 172
e (APZ-TFS-Gel | using ion triggered | m 55.56+1.9m | % systemic and
) deacetylation v brain
bioavailabilit
y
22 | Haloperidol | GMS,comprito | Solid lipid | 115.1+2.78 -16.7 71.56£1.56 | Increased 173
1 ATO 888, | nanoparticles using haloperidol
precirol ATO 5 | Modified concentratio
emulsification- ns in brain
diffusion technique tissue as
compared to
free drug
23 | Lurasidone | Oil (Camptex | Nanoemulsion 48.07+3.29 -0.20+0.01 97.87+0.70 | Increased 174
335EP, prepared using 2% concentratio
Capryol 90) high pressure ns of
homogenization Lurasidone
in brain
24 | Huperzine Lactoferrin NPs were prepared | 153.2+13.7n | +35.625.2m | 73.8+5.7 Better 175
A (Huperzia | conjugatedN- | using emulsion | m \ permeability
serrata) trimethylated | solvent evaporation
chitosan
25 | Rutin chitosan NPs prepared using | 85-100nm _ _ Better 176
Inotropic gelation permeability
than oral
administrati
on
26 | Memantami | PLGA Nanoprecipiation 58.04nm -23mV 89% Higher 177
ne followed by concentratio
ultrasonification n of drug at
the  target
site
27 | Donepezil _ Nano colloidal | 16nm -7.22mv _ The 178
and carrier  prepared concentratio
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Memantine

using low emulsion
technique

n in the
brain is
much higher
than free
drug

28

Erythropoie
tin

Polysorbate80

SLN

219.9+£15.6n
m

41.4+3.6

The results
showed
SLNs
potential
ability to
hinder A
effects

179

29

Leuprolide
acetate

Chitosan

Nanoparticles

254.3+£10.7

18.0£0.2mv

85.6+0.8

Great
promise for
AD was
discovered
for the
chitosan
nanoparticul
ate
formulation
of leuprolide
acetate.

180

30

Escitalopra
m and
Paroxetine

Lauroglycol
90 and
PrecirolATO 5

emulsion
using

Nano
prepared
High-
pressurehomogeniz
ation

165+2.01n
m

11.2+0.400

44.5+5.23
and 83.1
+8.49

Higher
concentratio
n of drug in
the brain
and lesser
toxicity

181

31

Risperidone

Compritol888
ATO

SLNs prepared by
solvent diffusion-
solvent evaportaion

148.05+£0.85

-25.35%£0.45

59.65+1.18
%

Higher

concentratio
n of drug
achieved by
using nano
formulation
as compared
to free drug

182

32

Zolmitripta
n

Triglyceride

emulsion
using

Micro
prepared
titration

35+25nm

-38.90+2.05

98.77+0.83
%

Effective
delivery  of
drug to the
brain

183

33

Amiloride

Carbitol

Nanoemulsion

89.36+11.18
nm

9.83+0.12m
\'

80.36%

Rapid onset
of action due
to direct
nose-to-
brain access

184

34

Rivastigmin
e

CPP peptide

Liposomes

166.3+17.4

-10.5+2.4

33.4+6.6

Improved
brain
delivery and
BBB
penetration.

185

35

Ziprasidone

Gelucire43/01
and 44/14

NLC was prepared
using hot
homogenization
followed by ultra-
sonification

119.62

70.83%

Higher
concentratio
n of drug in
the brain as
compared to
free drug

36

Letrozole

Triacetin,
tween 80, and
PEG-400

Nano emulsion by
aqueous titration
method

95.59+2.34n
m

7.12+0.12m
A%

97.37+1.13
%

Improved
anticonvulsa
nt activity

187
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37

Piperine

Chitosan

Nanoparticles by
dispersion

248.50nm

+56.30mv

81.70%

Increased
bioavailabilit
y of drug

188

38

Erythropoie
tin

Polysorbate
80

SLNs using double
emulsion method

219.9+£15.6n
m

22.4+0.8mV

41.4+3.6

Enhanced
neuroprotec
tion

189

39

Queritin

PEG
stearate

660-

Nanoemulsion
using high pressure
homozenization

131.00+0.25

+7.9£0.24

>99

Enhanced
concentratio
n of drug at
the  target
site

190

40

Insulin

Poly(N-vinyl
pyrrolidone)-
co-acrylic acid
nanogels

Nanogels

75

-12+6.9

74.03%

Changes in
mucosal
integrity
were
observed.

191

41

Temozolom
ide

Cyclodextrin
conjugared
Chitosan and
PEG-
adamantane
polymer

Gold-nanoparticles
by nucleophilic
substitution

31.3+20nm

-15mV

82.89+8.14
%

Intramuscul
ar
administrati
on of
temozolomi
de gold
nanoparticle
S was
performed.
The results
showed that
the rat brain
had a higher
drug
content.

192

42

Carbamaze
pine

Carboxymethy
I chitosan

Nanoparticles

218.76%2.41

-33.3

80%

Greater drug
concentratio
n was found
in several
parts of the
brain when
carbamazepi
ne-loaded
dendrimers
were used.

193

43

Haloperidol

Tween 20

Dendrimers

15.10+£5.4

10.7+1.75

Haloperidol
containing
dendrimers
were
developed
and
administere
d  through
intranasal
route. The
study
showed
dendrimers
can be a
appropriate
drug
delivery
system for
drug
targeting to
brain for

poorly water

194
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soluble
drugs.

44

Bromocripti
ne

Chitosan

Polymeric
nanoparticles were
prepared using
ionic gelation
technique

161.3+4.7n
m

+40.3£2.7m
\'

84.2+3.5

Enhanced
concentratio
n of drug.

195

45

Tarenflurbil

PLGA

Nanocarrier by
emulsification and
solvent  diffusion
method

<200nm

23.13+2.32
mV

64.11+2.21
%

For
intranasal
delivery,
tarenflubril
was encased
in PLGA
nanoparticle
S. The
efficiency of
entrapment
was
enhanced.
Evidence
suggested
that drug
concentratio
ns in the
brain were
higher.

196

46

Camptothec
in

PEG,

poly(e-
caprolactone)

MPEG/

Micelles

88.5+£20.2

10.4+2.84

62.5+£9.17

After the
intratracheal
injection of
micelles
loaded with
camptotheci
n, rats with
cerebral
glioma
tumours had
an increase
in  survival
time.

197

47

Doxorubicin

PLGA

Dendrimers

156+10.85n
m

10.0x2.1mV

19.01+1.58
%

Higher
permeability
through BBB
via
intranasal
administrati
on

198

48

Disulfiram

PEG2000

Ion sensitive
nanoemulsion

63.4+1.1nm

23.520.2mV

89.02+0.32

The
nasal
administrati
on with
minimal
systemic
distribution
may explain
why
disulfiram-
loaded
intranasal
nanoemulsio
n
successfully
inhibited
tumour

local

199
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growth  in
vivo and
prolonged

the life span
of glioma-
bearing rats.

49 | Nicardipine | Chitosan Polymeric

nanoparticles

439.6£11.9n | +21.05+£0.48 | 78

Intracerebra | 200
mV |
haemorrhag
e treatment
options may
include
nicardipine-
loaded
nanoparticle
S, which
have shown
rapid drug
transport to
the brain
after
intranasal
administrati
on.

Chitosan Ionic
glutamate

50 | Rasagiline gelation
technology was
used to prepare

NPs

151.1+10.31

96.43+4.23 | Enhanced 201
bioavailabilit
y and brain
uptake

51 | Ropinirole Chitosan NPs prepared using
ionic gelation

technique

173.7+2.32

69.6+3.3 Increased 202
concentratio
n of drug at
the  target

site

52 | Venlafaxine | Hyaluronic Transbilosomes
acid were prepared
using film

hydration

185.6x4.9n | -

69.6%2.6n Higher 203
39.8+1.7mV | m bioavailabilit
y of VLF to
the brain

53 | Zonisamide | Carbopol Microemulsion

54.95% Enhanced 204
bioavailabilit

y

54 | Olanzapine | Chitosan Ionotropic gelation

322+18

87.615.2 Improved 205
systemic

absorption

9. Conclusion and future prospect:

Nanoparticulate delivery system is considered as a
novel and promising route for a number of
neurodegenerative diseases. Bypassing the blood-brain
barrier (BBB), a major obstacle in neuropharmacology
and by the intranasal route the medications can directly
deliver to the brain. The use of nanoparticles enables
targeted delivery to specific brain regions, decreased
systemic adverse effects, and regulated and sustained
release of therapeutic medicines. Previous research
revealed that, a variety of therapeutic compounds,
including as tiny molecules, peptides, proteins, and
genes, can be delivered through intranasal
administration. Due to the non-invasive nature of the
administration method, intranasal nanoparticulate
delivery systems have demonstrated potential in

ISSN: 2250-1177 [147]

improving bioavailability, enhancing therapeutic
efficacy, and improving patient compliance for
neurodegenerative disorders like Alzheimer's disease,
Parkinson's disease, and Huntington's disease. It has
been observed from past research that, Intranasal
nanoparticulate delivery systems possess the capacity
to lessen neuroinflammation, encourage
neuroprotection, and support neuro-regeneration,
thereby providing therapeutic advantages for delaying
or stopping the progression of disease. Even though
intranasal delivery has several benefits, there are still
issues that must be pointed out and resolved. These
include enhancing the stability and pharmacokinetics of
the drug-loaded nanoparticles, establishment of safety,
overcoming nasal mucosal clearance mechanisms and
optimizing nanoparticle formulations for improved
targeting and release features. Additional research is

CODEN (USA): JDDTAO
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required to establish long-term impacts of intranasal
delivery systems on the brain and general health.
Combination medicines that target several pathogenic p
athways of neurodegenerative
illnesses may be delivered more easily via these platfor
ms.

Intranasal nanoparticlebased systems may be customize
d

to meet the demands of particular patients as our knowl
edge of the genetic and molecular variances in neurodeg
enerative disorders expands, improving therapeutic res
ults. Although pre-clinical research has yielded
encouraging outcomes, clinical translation is essential to
the broad use of intranasal nanoparticulate devices.
Commercialising these treatments successfully will
require overcoming regulatory obstacles, establishing
safety and efficacy, and solving manufacturing
scalability. Intranasal nanoparticulate delivery systems
have a bright future ahead for the management of
neurodegenerative illnesses.
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SLN: Solid Lipid Nanoparticle
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