

Maternal Hypoxia and Its Epigenetic Imprint: Long-Term Implications on Immune System Ontogeny and Forensic Biomarker Identification in Offspring

Augustine Chinedu Ihim ¹, Chinaza Favour Onyeje ¹, Tochukwu Anthony Ikwell ^{1*}, Patrick Chinedu Obi ², Ini Edeh ³, Donatus F. N. Ozuruoke ⁴, Romanus Ogai Ogalagu ⁵

¹ Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.

² Department of Internal Medicine, Federal University Teaching Hospital, Owerri, Nigeria

³ Medical Laboratory Science Council of Nigeria

⁴ Department of medical laboratory science, Faculty of medical and health sciences, Newgate University, Minna.

⁵ Department of Biochemistry, Tansian University, Umunya, Nigeria

Article Info:

Article History:

Received 18 Aug 2025

Reviewed 09 Oct 2025

Accepted 26 Oct 2025

Published 15 Nov 2025

Cite this article as:

Ihim AC, Onyeje CF, Ikwell TA, Obi PC, Edeh I, Ozuruoke DFN, Ogalagu RO, Maternal Hypoxia and Its Epigenetic Imprint: Long-Term Implications on Immune System Ontogeny and Forensic Biomarker Identification in Offspring, Journal of Drug Delivery and Therapeutics. 2025; 15(11):115-123 DOI: <http://dx.doi.org/10.22270/jddt.v15i11.7431>

*For Correspondence:

Tochukwu Anthony Ikwell, Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Awka, Nigeria.

Abstract

Maternal hypoxia is a critical disruptor of fetal development, with enduring consequences for immune system ontogeny. This review examines the multifactorial impacts of intrauterine oxygen deprivation, emphasizing its role in impairing immune competence through disruptions in T and B cell differentiation, altered cytokine signaling, and long-lasting epigenetic reprogramming. The fetal immune system, highly sensitive to oxygen levels during gestation, is particularly vulnerable to these changes, which elevate lifelong susceptibility to infections, allergies, autoimmune diseases, and chronic inflammation. Hypoxia-inducible factors (HIFs) mediate many of these effects by interacting with epigenetic regulators such as DNA methylation, histone modifications, and non-coding RNAs that modulate gene expression without altering the DNA sequence. In addition to pathophysiological outcomes, the review highlights the forensic potential of hypoxia-induced epigenetic markers. These stable, exposure-sensitive modifications offer promising tools for reconstructing prenatal environments in post-mortem investigations, especially when traditional pathological indicators are absent. Technologies including bisulfite sequencing, pyrosequencing, and droplet digital PCR are evaluated for their utility in detecting these markers in degraded biological samples. This paper also addresses geographic and socioeconomic disparities that exacerbate hypoxia risks, particularly in high-altitude and low-resource settings, and underscores the importance of prenatal care, nutritional optimization, and early intervention. Based on a structured literature review of peer-reviewed studies from 2019 to 2024, this work integrates emerging evidence linking maternal hypoxia to immune dysfunction, developmental programming, and forensic science. It advocates for interdisciplinary research and public health strategies aimed at mitigating hypoxia-related risks and improving maternal-fetal outcomes across the lifespan.

Keywords: Maternal hypoxia, Forensic Biomarkers, Forensic Epigenetics, Immune dysfunction, Epigenetics Markers

INTRODUCTION

Maternal hypoxia refers to a reduced level of oxygen in the maternal bloodstream during pregnancy, which can impair oxygen delivery to the fetus. This condition has profound implications for fetal development, including the ontogeny and functional programming of the immune system.¹ Optimal maternal health and normal placental function are critical for embryogenesis, fetal growth, and perinatal survival.² Persistent maternal hypoxia can cause significant injury to vital organs and compromise placental efficiency, resulting in acute and long-term fetal consequences such as intrauterine growth restriction (IUGR), asphyxia, multiorgan dysfunction, preterm birth, and perinatal death.

Oxygen is essential for fetal development as it supports aerobic respiration, the primary pathway for cellular energy generation. Hypoxic conditions impair mitochondrial function, thereby disrupting ATP production and hindering critical processes such as cell proliferation and differentiation.³ These disruptions are particularly detrimental to the development of immune cells, including lymphocytes and macrophages. The thymus, which orchestrates the maturation of T lymphocytes, is especially oxygen-sensitive; reduced oxygen availability leads to a diminished output of functional T cells, ultimately impairing the offspring's capacity for adaptive immune responses.⁴ Similarly, hypoxia interferes with B-cell differentiation in the bone marrow, compromising antibody production and further undermining immune system integrity.⁵

The immune system begins to form and function in utero, and its early development is intimately influenced by the immunological microenvironment at the maternal-fetal interface.⁶ Understanding immune system development during gestation is essential because disruptions in this tightly regulated process, whether due to maternal hypoxia, infection, inflammation, or other stressors can have profound implications for neonatal immune competence and long-term susceptibility to diseases. A key rationale lies in the critical roles played by decidual immune cells, which are present in large numbers in the human endometrium and decidua from the time of implantation. These immune cells are not passive bystanders but active regulators of implantation, placental development, tissue remodelling, and immune tolerance. Decidual immune cells play pivotal roles in early pregnancy by regulating implantation, placental formation, and maternal-fetal immune tolerance.⁷ Uterine natural killer (uNK) cells dominate this environment, promoting vascular remodelling and trophoblast support through cytokine and growth factor secretion. Decidual macrophages, primarily of the M2 phenotype, assist in tissue remodelling, angiogenesis, and suppressing inflammation via interactions with uNK cells.⁸ T cells, especially regulatory subsets, reinforce fetal tolerance, while CD8+ T cells may facilitate trophoblast invasion. Though less abundant, dendritic cells contribute by modulating T-cell responses and supporting uNK cell activity. Together, these cells form a coordinated immune network essential for fetal development. Disruption, such as by maternal hypoxia, can impair immune programming in the fetus, emphasizing the critical need to study immune development in utero as a determinant of long-term health.

Suboptimal conditions during fetal and neonatal life significantly shape long-term physiological functions and disease risk in adulthood. This underpins the widely accepted concepts of developmental programming and the Developmental Origins of Health and Disease (DOHaD).⁹ Adverse intrauterine environments especially during critical periods can disrupt immune system development, leading to permanent immune dysfunction.¹⁰ This dysfunction may increase susceptibility to inflammatory and immune-related diseases in later life, indicating that many such adult disorders may have origins rooted in early developmental exposures.

PLACENTA INSUFFICIENCY-INDUCED MATERNAL HYPOXIA

Adequate tissue oxygenation is essential for normal placental development. Conditions like high altitude, anemia, infections, chronic inflammation, and maternal diseases (e.g., cyanotic heart disease) can limit oxygen supply, leading to placental insufficiency.¹¹ This dysfunction can impair hormone production and nutrient transfer, causing complications such as fetal growth restriction and maternal pre-eclampsia (PE), a major contributor to maternal and infant morbidity and mortality. PE typically presents with hypertension, edema, proteinuria, and vascular inflammation in the

mother, and growth abnormalities in the fetus. Although hypoxia is strongly linked to placental disorders and Fetal Growth Restriction (FGR), the exact role of oxygen in placental development and trophoblast differentiation remains poorly understood.¹² Understanding the molecular mechanisms of hypoxia-driven placental dysfunction is critical to uncovering the causes of placental insufficiency, maternal hypertension, and related fetal outcomes.

Maternal hypoxia is a significant global health issue, with its impact shaped by geographic, socioeconomic, and healthcare disparities. Women living at high altitudes are particularly vulnerable due to chronic low oxygen levels. Meanwhile, in low-resource regions, even mild hypoxic conditions can lead to severe outcomes due to inadequate healthcare access. Addressing these disparities is essential for developing effective, targeted interventions to improve maternal and fetal health in high-risk populations.

FETAL PROGRAMMING AND IMMUNE SYSTEM ONTOGENY

Immune system maturation is a tightly regulated process that begins in early embryonic development and extends through childhood. It is essential for building effective innate and adaptive immune responses.

The first critical phase occurs around the third week of gestation, when hematopoietic stem cells (HSCs) the source of all immune cells emerge in the yolk sac and migrate to the fetal liver, the primary hematopoietic organ until the bone marrow takes over later.¹³ During this phase, the fetus develops key innate immune cells like macrophages, dendritic cells, and granulocytes, which are essential for early immune defense. Around week 8, the thymus begins to develop, initiating a major stage in adaptive immunity. Here, T cells undergo rigorous maturation, including positive and negative selection, ensuring they recognize self-MHC molecules and eliminating those that strongly bind self-antigens key to preventing autoimmunity.¹⁴ By the end of the second trimester, the fetus possesses a diverse pool of T cells capable of responding to various antigens.

B lymphocytes (B cells) begin maturing in the bone marrow and spleen during fetal development.¹⁵ These cells are essential for antibody production and the humoral immune response. Through somatic recombination, B cells develop a wide range of antigen specificities.¹⁶ However, their early function is limited, as the fetus depends largely on maternal antibodies transferred via the placenta for protection. The third trimester marks a critical phase in immune maturation. By this stage, both innate and adaptive immune systems are more developed, and the fetus begins to produce pro-inflammatory cytokines, indicating functional immune activity. Still, fetal immune responses remain weaker than those of older children or adults, as the immune environment is adapted to tolerate maternal antigens. After birth, immune development accelerates through environmental exposure, including contact with pathogens, maternal breast milk, and vaccinations.¹⁷ These stimuli drive the continued maturation of T and B

cells. In the neonatal period, T helper (Th) cell responses are biased toward Th2, promoting antibody-mediated immunity. This gradually shifts toward a balanced Th1/Th2 response as the immune system matures.¹⁸

MECHANISMS OF MATERNAL HYPOXIA IMPACT ON IMMUNE SYSTEM DEVELOPMENT

Maternal hypoxia affects the developing immune system in the fetus by disrupting immune cell development, altering cytokine expression, and inducing epigenetic changes. These disruptions can result in long-term immune impairments, increasing the risk of infections, autoimmune disorders, and chronic inflammation in later life.

Alterations in Immune Cell Population

Maternal hypoxia disrupts fetal immune development primarily by altering the composition and function of key immune cell populations. One major target is T cell development in the thymus, where hypoxia impairs both differentiation and maturation. Offspring exposed to in utero hypoxia have been found to possess reduced numbers of mature T cells, compromising their adaptive immune responses and increasing long-term vulnerability to infections and autoimmune conditions.^{19,20} B cell development is similarly affected. Hypoxic conditions can suppress B cell production in the bone marrow, resulting in lower immunoglobulin levels and weakened humoral immunity.²⁰ This deficiency not only heightens susceptibility to bacterial and viral infections but also impairs the child's ability to generate effective responses to vaccinations.²¹

The innate immune system also shows marked dysfunction. Hypoxia-exposed macrophages display reduced phagocytic activity, limiting their capacity to clear pathogens. Additionally, the number and function of natural killer (NK) cells, essential for early defense against viral infections, are significantly diminished in hypoxic offspring.²¹

Changes in Cytokine Profiles

Cytokines are key signalling molecules that regulate immune responses by maintaining a balance between pro-inflammatory and anti-inflammatory signals, which is crucial for immune homeostasis. Maternal hypoxia disrupts this balance, altering cytokine profiles and predisposing offspring to immune dysregulation.¹³

Under hypoxic conditions, there is an increased production of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- α). Elevated levels of these cytokines during gestation can have lasting effects, promoting chronic inflammation and raising the risk of autoimmune diseases like rheumatoid arthritis and multiple sclerosis.²¹ Concurrently, hypoxia reduces anti-inflammatory cytokines like interleukin-10 (IL-10), which normally help regulate immune responses and prevent tissue damage. This imbalance fosters heightened immune reactivity in offspring exposed to maternal hypoxia.¹ The altered cytokine milieu affects immune cell differentiation and function. For example, elevated IL-6 impairs T cell differentiation, favouring pro-

inflammatory T helper 17 (Th17) cells, which are linked to autoimmune disorders.²⁰ These cytokine changes have long-term impacts on immune regulation, increasing susceptibility to infections and immune-mediated diseases.

Epigenetic Modifications

Epigenetic modifications are a key pathway through which maternal hypoxia impacts immune system development. These changes alter gene expression without modifying the DNA sequence itself and include mechanisms such as DNA methylation, histone acetylation, and regulation by non-coding RNAs, all of which can affect genes critical to immune function.²²

Maternal hypoxia induces epigenetic changes in important immune-related genes, disrupting immune cell development and function. For example, hypoxia-driven DNA methylation can silence genes necessary for T cell differentiation, reducing thymic T cell production.²³ Likewise, histone modifications can influence cytokine gene expression, causing abnormal increases in pro-inflammatory cytokines like IL-6 and TNF- α .²¹ Because these epigenetic marks are heritable, the effects of in utero hypoxia on immune development may persist into adulthood. Offspring may carry epigenetic signatures that increase their risk of chronic inflammation, autoimmune diseases, and other immune disorders later in life. Understanding these epigenetic influences is essential for designing therapies to reverse such changes and enhance long-term immune health.

FORENSIC DETECTION OF EPIGENETIC MARKERS

In recent decades, genetic analysis has been widely used on biological tissues to determine individuals' DNA profiles, often supporting legal investigations. More recently, attention has shifted to epigenetics, the study of molecular mechanisms like DNA methylation, histone modification, chromatin remodelling, and non-coding RNAs that regulate gene expression without altering the DNA sequence. A key feature of epigenetics is its sensitivity to environmental factors. Stress, lifestyle, diet, and drug exposure can trigger epigenetic changes that help the body adapt by modifying gene activity. These changes may persist long after the original trigger and, in some cases, be passed to future generations, a phenomenon known as epigenetic inheritance.²⁴ Epigenetic changes influenced by environment, substance use, and life experiences can affect behaviour, making them highly relevant to forensic science. Their impact may aid in evaluating the role of offenders or victims in legal cases. The reversible and inheritable nature of these modifications also broadens their application in forensic medicine and presents valuable research opportunities for forensic psychiatry in criminal case management.^{24,25}

DNA methylation and applications in forensics

DNA methylation, first identified in 1948, was later linked to gene regulation in 1973.²⁴ It adds a methyl group to cytosine, forming 5-methylcytosine (5mC), which typically silences genes. This occurs mainly at CpG sites,

especially in CpG islands found in gene promoters, though patterns vary across the genome.^[26] Methylation maintains genomic stability by silencing cryptic elements and repressing repetitive sequences.^{27,28} It is catalyzed by DNMT3a/3b for *de novo* methylation, with DNMT3l assistance, and maintained by DNMT1 during replication.²⁴ The process is reversible via TET enzymes or passively through replication. Forensically, methylation aids in identifying body fluids (blood, saliva, semen, etc.), distinguishing monozygotic twins, and predicting smoking habits through CpG markers.²⁴

Animal and human studies show that post-mortem interval (PMI) can influence DNA methylation, particularly 5-methylcytosine levels, which increased over time in rats.²⁹ However, human data indicate relative methylation stability within forensic PMIs. Blood, brain, and buccal swab samples showed minimal degradation and consistent methylation up to 42 days postmortem,³⁰ while stability in the neocortex was confirmed up to 72 hours.²⁴ As most forensic autopsies occur within this timeframe, DNA methylation can typically be assessed without significant PMI-related bias.

Histone modifications and applications in forensics

Nuclear DNA is wrapped around histone proteins to form chromatin. Since 1964, histones have been known to undergo post-translational modifications primarily acetylation and methylation, which regulate chromatin structure and gene expression. Acetylation typically activates transcription, while methylation can either activate (e.g., H3K4) or repress (e.g., H3K9, H3K27) gene expression. These modifications, often occurring in combination, form a complex regulatory "histone code", still not fully understood, and function in coordination with DNA methylation to control chromatin accessibility.²⁴

In forensic science, histone modifications remain underexplored due to technical challenges. However, research has demonstrated post-mortem stability of H3K27Ac and H3K4me3 in human brain tissue,³¹ and distinct histone patterns in specific neurons.³² In rats, H3K27 modifications were less stable with increasing PMI, while H3K4me3 remained stable up to 72 hours postmortem in the human prefrontal cortex even in cases involving methamphetamine use and HIV.³¹ These findings support their potential use in transcriptional profiling when RNA quality is poor. Also, histone-modifying enzyme activity (acetyltransferases, methyltransferases) remained unaffected by PMI, storage, pH, or neurochemical parameters up to 5 hours, with no impact on RNA integrity.²⁴

Non-coding RNA and applications in forensics

Non-coding RNAs (ncRNAs), though not translated into proteins, play key regulatory roles and are considered epigenetic mechanisms.³³ Structural types include tRNA, rRNA, snRNA, and snoRNA. Regulatory ncRNAs, such as long non-coding RNAs (lncRNAs, >200 bp) and microRNAs (miRNAs), influence gene expression and chromatin remodelling.³³ MiRNAs operate post-transcriptionally via RNA interference, guiding the RISC

complex to degrade or repress target mRNAs. They are both regulated by and regulate epigenetic modifiers.²⁴

In forensics, miRNAs are useful for identifying body fluids due to their short length and high stability.³⁴ Their resistance to degradation makes them suitable for estimating post-mortem interval (PMI). Studies show stable expression of miR21 and miR205 up to 24 h PMI, and miR16, miR34a, miR124a, and miR134 up to 96 h.²⁴

Detection Technologies for Epigenetic Markers in Forensic Science

Current high-throughput technologies for quantitative, single-nucleotide resolution analysis of DNA methylation across multiple CpG sites require high-quality DNA and a substantial panel of epigenetic markers.

DNA Methylation Microarrays

DNA methylation microarray is a high-throughput screening method that utilizes methylation-sensitive restriction enzymes to profile methylated fragments and interrogate them to a CpG island microarray. The principle of differential methylation hybridization, the first array-based method, was described by Huang et al. for genome-wide screening of hypermethylated CpG islands in tumor cells.³⁵ This method provides a cost-effective and reproducible means of analyzing biologically relevant genomic regions. However, their effectiveness is constrained by the need for large quantities of high-molecular-weight DNA and the limited scope of methylation-sensitive restriction enzymes, which do not target all cytosines. This limitation reduces the method's precision, especially when the methylation change occurs at a CpG site not encompassed by available enzyme recognition sites, an issue particularly relevant in forensic analyses where isolated epigenetic alterations can influence phenotypic interpretation.

DNA Methylation Bisulfite Genomic Sequencing

Bisulfite genomic sequencing is considered the gold standard for detecting 5-methylcytosine at single-base resolution. The method involves treating single-stranded DNA with sodium bisulfite, which converts unmethylated cytosines to uracils while leaving methylated cytosines unchanged. During PCR, uracils are amplified as thymines, enabling the distinction between methylated and unmethylated sites using specific primers. Traditionally reliant on Sanger sequencing of cloned PCR products, recent advances in next-generation sequencing have made whole-genome bisulfite sequencing faster and more cost-effective.³⁵

Bisulfite Pyrosequencing

This is a widely accessible and straightforward method commonly used in forensic laboratories. It involves bisulfite treatment of DNA followed by amplification of specific gene regions using targeted primers and real-time sequencing through a sequencing-by-synthesis approach.³⁶ During DNA synthesis, the incorporation of nucleotides releases inorganic pyrophosphate (PPi), which reacts with APS and ATP sulfurylase to generate ATP. In the presence of luciferin and luciferase, ATP drives a light-emitting reaction producing oxyluciferin, with the

emitted light captured by a CCD camera. The resulting signal is displayed as a quantitative Pyrogram. Enzymatic degradation of excess ATP and unincorporated nucleotides by apyrase ensures clean sequencing progression. This technique enables precise, high-resolution analysis of methylation at individual CpG sites and is favoured in forensic epigenetics due to its accuracy, sensitivity, and quantitative capability.³⁵

Pyrosequencing operates on a high-throughput platform capable of analyzing multiple CpG sites within an amplicon in real time.³⁵ While it offers advantages such as long read lengths and rapid processing, its performance can be compromised by incomplete bisulfite conversion, potentially leading to false-positive results and misinterpretation of methylation data. Additionally, despite its precision, the method is limited by relatively high costs and reduced sensitivity.

Methylation Quantitative PCR

Methylation quantitative PCR (qPCR) is a real-time PCR technique that detects and quantifies DNA methylation following bisulfite treatment.³⁷ This process distinguishes methylated from unmethylated cytosines by using fluorescence-based detection with sequence-specific primers and probes that bind to the target region. It is a highly sensitive and quantitative method capable of assessing methylation levels across entire PCR fragments containing multiple CpG sites.³⁸ In forensic applications, qPCR is widely used for both qualitative and quantitative analysis of human DNA. Two main variants are employed: SYBR™ Green-based qPCR, which targets one or a few CpG sites in single-plex reactions, and the more sensitive TaqMan™ probe-based qPCR, which allows multiplexing through the use of different fluorescent dyes.³⁵

Droplet digital PCR (ddPCR) has recently gained attention as a more advanced method for detecting DNA methylation compared to traditional qPCR. This technique involves dividing a DNA sample into approximately 20,000 nanoliter-sized water-oil emulsion droplets, with each droplet functioning as an independent PCR reaction.³⁵ Fluorescence is measured in each droplet to determine the presence or absence of the target sequence. Unlike qPCR, which relies on relative quantification, ddPCR provides absolute quantification of methylation levels, enhancing accuracy and sensitivity.

EPIGENETIC REPROGRAMMING IN HYPOXIA-EXPOSED OFFSPRING

Epigenetic modifications such as DNA methylation, histone changes, and non-coding RNA regulation are vital mechanisms that control gene expression without changing the DNA sequence. During pregnancy, hypoxia can trigger these modifications, significantly affecting placental function and fetal development by altering the expression of genes critical for cellular growth, immune regulation, and organ formation.³⁹

Substantial evidence supports the role of hypoxia and hypoxia-inducible factors (HIFs) in early embryonic development.⁴⁰ In the placenta, suppression of HIF-1 α and HIF-2 α impairs its formation, highlighting their critical role in placentation. Trophoblast invasion a key

event in successful pregnancy, occurs under low oxygen conditions. Hypoxia induces TET1 expression via HIF-1 α , promoting trophoblast migration and invasion during early gestation.⁴¹ Knockdown of HIF-1 α prevents the fusion of the chorion and allantois, necessary for placenta formation, implicating HIF in the regulation of integrins that mediate this fusion. Hypoxia also enhances integrin expression.⁴⁰ HIF activity is essential for branching morphogenesis, which shapes organ systems including the nervous, respiratory, and renal systems, as well as the salivary and mammary glands.⁴² Inhibition of HIF reduces vascularization in the placental labyrinth, disrupting nutrient transfer from mother to fetus.⁴⁰

During trophoblast formation, HIF-1 α and HIF-2 α are highly expressed in cells contacting the uterine lining. Dual knockout of these subunits hinders trophoblast subgroup formation, affirming HIF's role in their proliferation.⁴⁰ As fetal development proceeds, HIF interacts with the Notch signaling pathway. Under hypoxia, HIF can activate Notch, influencing blood and neural cell fate.⁴³ Moreover, hypoxia and HIFs contribute significantly to bone development, chondrogenesis, cardiac morphogenesis, angiogenesis, and neural crest formation.^{44,45} Overall, HIFs are central to cellular proliferation and differentiation throughout embryonic and fetal development.

Hypoxia modifies DNA methylation patterns in the placenta, affecting genes involved in inflammation, which may impair immune cell development.⁴⁶ It also triggers histone modifications, including increased acetylation, which can either promote or suppress immune-related gene expression. HIF-1 α , a key hypoxia-response factor, regulates enzymes that modify chromatin, thereby influencing the accessibility of immune-regulatory genes.⁴⁷ It alters the expression of specific microRNAs and long non-coding RNAs, which can affect genes controlling inflammation and immune responses. These epigenetic changes are stable, heritable, and may predispose offspring to immune dysfunction and chronic inflammatory conditions later in life.

EMERGING EVIDENCE LINKING MATERNAL HYPOXIA TO IMMUNE SYSTEM PROGRAMMING

Recent investigations have increasingly illuminated the impact of maternal hypoxia on immune system development in offspring, emphasizing the critical role of adequate oxygenation during gestation. Evidence now shows that the consequences of such intrauterine oxygen deprivation extend beyond fetal growth restriction, influencing lifelong immunological health.

A seminal study demonstrated that maternal hypoxia disrupts the normal development of T cell populations in offspring.⁴⁸ Using a murine model, the researchers found that hypoxia during pregnancy led to a marked reduction in T cell numbers and impaired cytokine secretion in the progeny deficiencies that compromise immune responsiveness to pathogens. These findings suggest that oxygen deprivation during gestation may program long-term immunodeficiencies. Complementing this, research which explored the pro-inflammatory consequences of prenatal hypoxia, reported elevated levels of IL-6 and

TNF- α in offspring born to hypoxia-exposed mothers, indicating a heightened inflammatory state.⁴⁹ This dysregulation was associated with an increased predisposition to autoimmune and inflammatory diseases, thereby linking early-life hypoxic stress to the pathogenesis of chronic immune-related disorders in adulthood. A separate investigation of the association between maternal hypoxia and allergic disease susceptibility revealed a higher incidence of asthma and other atopic conditions among children born to hypoxic pregnancies. The authors attributed this to a potential shift toward a Th2-skewed immune profile, a hallmark of allergic responses, suggesting that hypoxic gestational environments may bias immune system development toward hypersensitivity disorders.⁵⁰

Epigenetic studies have further deepened this understanding. A study reported that maternal hypoxia triggers persistent epigenetic alterations in immune-regulatory genes. Specifically, changes in DNA methylation patterns were observed in genes crucial for immune function, raising the possibility that these modifications may contribute to long-term immune dysregulation across the lifespan.⁵¹ In a broader analysis, through systematic review of recent studies, it was reported that maternal hypoxia impairs immune development evidenced by reduced immune cell counts, disrupted cytokine profiles, and greater vulnerability to infections.⁵² Zhao and colleagues emphasized the need for targeted research to unravel the molecular mechanisms involved and to develop preventative interventions, particularly for at-risk maternal populations.

LONG-TERM IMMUNE IMPAIRMENTS IN HYPOXIA-EXPOSED OFFSPRING

Maternal hypoxia exerts significant influence on the immunological development and functional capacity of offspring, with implications that extend from early life into adulthood. These effects encompass various domains, notably immune cell differentiation, infection susceptibility, chronic inflammatory responses, and predisposition to autoimmune disorders. Among the most immediate consequences is the disruption of immune cell development. Evidence suggests that reduced oxygen availability during gestation impairs the maturation and differentiation of key immune cell populations such as T cells, B cells, and dendritic cells. For example, hypoxic conditions have been shown to disturb the balance between CD4+ helper T cells and CD8+ cytotoxic T cells, potentially weakening the adaptive immune response and diminishing the offspring's ability to mount effective defences against pathogens and immune-related insults.^{39,53,54,55}

Offspring of mothers exposed to hypoxic conditions during pregnancy are more likely to demonstrate increased susceptibility to infections.⁵⁶ This vulnerability stems from disrupted immune cell development and impaired immune function, which collectively weaken the child's ability to mount adequate responses against pathogens. Studies have consistently linked maternal hypoxia to higher incidences of respiratory and other infectious diseases in early life.⁵⁶ This heightened risk not

only compromises early childhood health but also contributes to increased rates of illness and greater demand on healthcare services. Furthermore, maternal hypoxia has been shown to induce a pro-inflammatory state in the offspring, often persisting beyond infancy. Elevated levels of inflammatory cytokines associated with prenatal hypoxia can result in chronic, low-grade inflammation.⁵⁷ Such a state adversely impacts multiple organ systems and has been implicated in the pathogenesis of long-term conditions such as metabolic syndromes and cardiovascular disease. Persistent inflammation may also disrupt immune homeostasis, increasing the risk of further immune-related complications in later life.

The impact of maternal hypoxia on the offspring's immune system extends beyond early life, contributing to long-term health risks. Disrupted immune development due to prenatal hypoxia is associated with a higher likelihood of chronic conditions such as metabolic syndrome, cardiovascular disease, and certain cancers.⁵⁷ These outcomes emphasize the need to address maternal hypoxia to support both immediate and lifelong health in offspring. Additionally, maternal hypoxia may impair immune tolerance mechanisms, increasing the risk of autoimmune disorders. A weakened ability to distinguish between self and non-self can trigger persistent inflammation and tissue damage, reinforcing the critical role of maternal health during pregnancy.

POTENTIAL INTERVENTIONS

Mitigating the effects of maternal hypoxia on fetal immune development requires a multifaceted approach focused on prevention, early detection, and targeted support. Regular prenatal care is vital for monitoring oxygen levels and managing conditions like anaemia or respiratory illness. Supplemental oxygen may be beneficial for high-risk pregnancies, including those at high altitudes or with chronic lung disease. Nutritional support emphasizing vitamins A, C, D, E, zinc, and omega-3s is essential, and counselling can guide informed dietary choices.^{58,59,60} Additional strategies include improving living environments, encouraging moderate exercise, and managing stress through mindfulness-based practices. Continued research into anti-inflammatory and antioxidant therapies may offer future interventions. Education, multidisciplinary care, and long-term monitoring of at-risk children are crucial to improving outcomes.⁶¹

FORENSIC IMPLICATIONS OF MATERNAL HYPOXIA-INDUCED EPIGENETIC CHANGES

Maternal hypoxia triggers a cascade of epigenetic modifications particularly DNA methylation, histone alterations, and changes in non-coding RNA expression that imprint long-lasting changes on the developing fetus.⁶² In forensic science, this has profound implications as such epigenetic marks can serve as retrospective indicators of prenatal environmental exposures, including chronic or acute hypoxia, with potential application in post-mortem investigations, exposure history reconstruction, and population-specific forensic profiling.²⁴

One of the core forensic utilities of epigenetic signatures lies in their persistence across developmental stages and, crucially, in post-mortem tissues. For instance, hypoxia-induced DNA methylation changes in genes regulating oxygen homeostasis, immune programming, or cardiac function may remain detectable in neonatal or pediatric remains.⁶³ This makes it possible to infer prior intrauterine stress conditions particularly where conventional pathological markers are absent or non-specific. Emerging forensic research supports the notion that epigenetic markers can differentiate between gestational hypoxia and other stressors, adding specificity to forensic assessments in cases of unexplained stillbirth, sudden infant death syndrome (SIDS), or suspected prenatal neglect.⁶⁴

Detecting such changes in forensic contexts is increasingly feasible, even in degraded or limited samples. Techniques such as bisulfite conversion followed by PCR or sequencing (e.g., methylation-specific PCR, pyrosequencing), next-generation sequencing of methylomes, and chromatin immunoprecipitation (ChIP) for histone modifications are now adapted for forensic-grade tissue handling.⁶⁵ Dried blood spots, paraffin-embedded fetal tissues, or even preserved hair follicles may retain measurable epigenetic marks.⁶⁶ Recent advances have improved the sensitivity and robustness of these methods, making them viable even in suboptimal forensic specimens. Beyond individual case investigations, epigenetic markers induced by maternal hypoxia may inform broader forensic inquiries. These include geospatial inference (e.g., altitude-associated hypoxia signatures in mountain or highland populations), environmental exposure mapping, or population-level stress exposure analysis in disaster zones.

These epigenetic tools do not replace traditional DNA profiling but complement it. While STR and SNP-based profiling confirm identity⁶⁷, epigenetic analysis contributes functional context like exposure history, physiological state at time of death, or developmental abnormalities. Maternal hypoxia-induced epigenetic changes represent a novel class of biomarkers with strong forensic potential.⁶⁸ Their stable, exposure-sensitive nature can enhance forensic reconstructions by providing developmental context, exposure timelines, and mechanistic insight especially when integrated with existing genomic and pathological evidence.

CONCLUSION

Maternal hypoxia emerges as a critical intrauterine stressor with profound and lasting effects on fetal immune ontogeny, developmental programming, and long-term health. Disrupted oxygen supply during pregnancy not only compromises placental efficiency and fetal growth but also impairs the maturation and differentiation of key immune cells such as T cells, B cells, and innate immune components. These impairments are driven by a combination of direct cellular stress, altered cytokine milieus, and, crucially, stable epigenetic modifications that reprogram immune function well into postnatal life.

The influence of hypoxia on fetal immunity aligns with the broader principles of the Developmental Origins of Health and Disease (DOHaD), highlighting that suboptimal conditions during critical windows of development can predispose individuals to chronic inflammation, autoimmunity, allergic disorders, and increased infection risk. The role of hypoxia-inducible factors (HIFs) in mediating organogenesis and immune differentiation further emphasizes the need for oxygen homeostasis during gestation. Emerging research underscores how hypoxia-driven epigenetic changes particularly in DNA methylation, histone architecture, and non-coding RNA expression can act as molecular signatures of prenatal adversity, with both pathophysiological and forensic utility. Clinically, these findings necessitate a proactive, interdisciplinary approach to maternal care, particularly in high-risk populations such as those living at high altitudes or with limited healthcare access. Interventions targeting nutritional adequacy, oxidative stress, and inflammation may buffer the deleterious effects of prenatal hypoxia on immune development. Moreover, forensic science stands to benefit from the integration of epigenetic biomarkers in assessing in utero hypoxic exposures, offering novel insights into prenatal environments where conventional markers fall short.

Conflicts of Interest: The authors declare no potential conflict of interest concerning the contents, authorship, and/or publication of this article.

Authors Contributions: All authors have equal contributions in the preparation of the manuscript and compilation.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting this paper are available in the cited references.

Ethical approvals: Not applicable.

REFERENCES

1. Cao Y, Zhang Y, Zhou M, Wang W. Maternal hypoxia induces epigenetic modifications and immune dysregulation in offspring. *Am. J. Obstet. Gynecol.* 2021; 224(5):488.e1-488.e11. <https://doi.org/10.1016/j.ajog.2021.03.039> PMid:3393235
2. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. In: *Seminars in Cell & Developmental Biology*. 2022 Nov 1; 131:66-77. Academic Press. <https://doi.org/10.1016/j.semcd.2022.03.039> PMid:35393235
3. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. *Nat. Rev. Mol. Cell Biol.* 2020; 21:268-283. <https://doi.org/10.1038/s41580-020-0227-y> PMid:32144406 PMCid:PMC7222024
4. Steinert EM, Vasan K, Chandel NS. Mitochondrial metabolism regulation of T cell-mediated immunity. *Annu. Rev. Immunol.* 2021;39(1):395-416. <https://doi.org/10.1146/annurev-immunol-101819-082015> PMid:33902315 PMCid:PMC10403253
5. Zhang J, Wu X, Ma J, Long K, Sun J, Li M, Ge L. Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells. *Front. Immunol.* 2022; 13:967576. <https://doi.org/10.3389/fimmu.2022.967576> PMid:36045669 PMCid:PMC9421003

6. Bian Q, Fu B. Immunological microenvironment at the maternal-fetal interface. *J. Reprod. Immunol.* 2022; 151:103632. <https://doi.org/10.1016/j.jri.2022.103632> PMid:35504113
7. Wang J, Han T, Zhu X. Role of maternal-fetal immune tolerance in the establishment and maintenance of pregnancy. *Chin. Med. J.* 2024;137(12):1399-406. <https://doi.org/10.1097/CM9.0000000000003114> PMid:38724467 PMCid:PMC11188918
8. Parasar P, Guru N, Nayak NR. Contribution of macrophages to fetomaternal immunological tolerance. *Hum. Immunol.* 2021;82(5):325-31. <https://doi.org/10.1016/j.humimm.2021.02.013> PMid:33715911 PMCid:PMC8062290
9. Chen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. *Mol. Hum. Reprod.* 2016;22(8):858-65. <https://doi.org/10.1093/molehr/gaw036> PMid:27226490 PMCid:PMC4986419
10. Zainal NH, Nor NH, Saat A, Clifton VL. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. *Hum. Immunol.* 2022;83(5):437-46. <https://doi.org/10.1016/j.humimm.2022.02.002> PMid:35183391
11. Obeagu EI, Obeagu GU, Igwe MC. The Silent Threat: Hypoxia and Maternal Health Implications. *Int. J. Curr. Res. Med. Sci.* 2023;9(11):8-15. 12. Thompson LP, Pence L, Pinkas G, Song H, Telugu BP. Placental hypoxia during early pregnancy causes maternal hypertension and placental insufficiency in the hypoxic guinea pig model. *Biol. Reprod.* 2016;95(6):128. <https://doi.org/10.1095/biolreprod.116.142273> PMid:27806942 PMCid:PMC5315426
13. Zhao X, Liu X, Gu X, Zhang L, Wang Y. The effects of maternal hypoxia on fetal immune system development and its long-term consequences. *Pediatrics.* 2018;142(4):1-9.
14. Zheng SJ. T-Cell Development, Maturation, and Activation. In: *Veterinary Molecular Immunology*. Singapore: Springer Nature Singapore; 2024. p. 81-106. https://doi.org/10.1007/978-981-99-8929-4_4
15. Wang Y, Liu J, Burrows PD, Wang JY. B cell development and maturation. *B Cells Immunity Tolerance.* 2020;1-22. https://doi.org/10.1007/978-981-15-3532-1_1 PMid:32323265
16. Wang Y, Liu J, Burrows PD, Wang JY. B cell development and maturation. *B Cells Immunity Tolerance.* 2020;1-22. https://doi.org/10.1007/978-981-15-3532-1_1 PMid:32323265
17. Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. *Front. Immunol.* 2021; 12:683022. <https://doi.org/10.3389/fimmu.2021.683022> PMid:34054875 PMCid:PMC8158941
18. Howard FH, Kwan A, Winder N, Mughal A, Collado-Rojas C, Muthana M. Understanding immune responses to viruses-do underlying Th1/Th2 cell biases predict outcome? *Viruses.* 2022;14(7):1493. <https://doi.org/10.3390/v14071493> PMid:35891472 PMCid:PMC9324514
19. Zhang H, Wang Y, Xu M, Wang M, Liu J, Xu Z. Maternal hypoxia and immune cell development: Effects on fetal immunity and disease susceptibility. *Front. Immunol.* 2019; 10:1-10.
20. Prasad S, Rath G, Hooja N. Fetal immune system development and maternal hypoxia: A complex interaction. *J. Immunol.* 2022;145(8):1155-1161.
21. Miller SL, Hemmings DG, Pollock CA, Wing DA, Walker DW. Maternal hypoxia and fetal development: A review of the consequences of chronic hypoxia on the fetus and newborn. *Am. J. Obstet. Gynecol.* 2020;206(4):259-272. <https://doi.org/10.1016/j.ajog.2020.01.029> PMid:31978438
22. Kumar H, Chaudhary A, Singh A, Sukhija N, Panwar A, Saravanan K, Bhaladhere A, Kaisa K, Panigrahi M. A review on epigenetics: Manifestations, modifications, methods & challenges. *J. Entomol. Zool. Stud.* 2020;8(4):01-6. <https://doi.org/10.22271/j.ento.2020.v8.i4ai.7453>
23. McNamee EN, Korns Johnson D, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. *Immunol. Res.* 2013; 55:58-70. <https://doi.org/10.1007/s12026-012-8349-8> PMid:22961658 PMCid:PMC3919451
24. Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. *Int. J. Leg. Med.* 2024; 138:701-719. <https://doi.org/10.1007/s00414-024-03165-8> PMid:38242965 PMCid:PMC11003920
25. Gerra ML, Gerra MC, Tadonio L, Pellegrini P, Marchesi C, Mattfeld E, Gerra G, Ossola P. Early parent-child interactions and substance use disorder: an attachment perspective on a biopsychosocial entanglement. *Neurosci. Biobehav. Rev.* 2021; 131:560-580. <https://doi.org/10.1016/j.neubiorev.2021.09.052> PMid:34606823
26. Cain JA, Montibus B, Oakey RJ. Infragenic CpG islands and their impact on gene regulation. *Front. Cell Dev. Biol.* 2022; 10:832348. <https://doi.org/10.3389/fcell.2022.832348> PMid:35223855 PMCid:PMC8873577
27. Feng JX, Riddle NC. Epigenetics and genome stability. *Mamm. Genome.* 2020; 31:181-195. <https://doi.org/10.1007/s00335-020-09836-2> PMid:32296924
28. Deniz Ö, Frost JM, Branco MR. Regulation of transposable elements by DNA modifications. *Nat. Rev. Genet.* 2019; 20:417-431. <https://doi.org/10.1038/s41576-019-0117-3> PMid:30894697
29. Sjöholm LK, Ransome Y, Ekström TJ, Karlsson O. Evaluation of post-mortem effects on global brain DNA methylation and hydroxymethylation. *Basic Clin. Pharmacol. Toxicol.* 2018; 122:208-213. <https://doi.org/10.1111/bcpt.12875> PMid:28834189 PMCid:PMC5991080
30. Rhein M, Hagemeier L, Klintschar M, Muschler M, Bleich S, Frieling H. DNA methylation results depend on DNA integrity - role of post mortem interval. *Front. Genet.* 2015; 6:133087. <https://doi.org/10.3389/fgene.2015.00182> PMid:26042147 PMCid:PMC4435253
31. Basova L, Lindsey A, McGovern AM, Ellis RJ, Marcondes MC. Detection of H3K4me3 identifies NeuroHIV signatures, genomic effects of methamphetamine and addiction pathways in postmortem HIV+ brain specimens that are not amenable to transcriptome analysis. *Viruses.* 2021; 13:544. <https://doi.org/10.3390/v13040544> PMid:33805201 PMCid:PMC8064323
32. Koshi-Mano K, Mano T, Morishima M, Murayama S, Tamaoka A, Tsuji S, Toda T, Iwata A. Neuron-specific analysis of histone modifications with post-mortem brains. *Sci. Rep.* 2020; 10:3767. <https://doi.org/10.1038/s41598-020-60775-z> PMid:32111906 PMCid:PMC7048733
33. Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. *Non-Coding RNAs Colorectal Cancer.* 2016; 30:3-17. https://doi.org/10.1007/978-3-319-42059-2_1 PMid:27573892
34. Rocchi A, Chiti E, Maiese A, Turillazzi E, Spinetti I. MicroRNAs: an update of applications in forensic science. *Diagnostics.* 2020; 11:32. <https://doi.org/10.3390/diagnostics11010032> PMid:33375374 PMCid:PMC7823886
35. Sabeeha S, Hasnain SE. Forensic epigenetic analysis: the path ahead. *Med. Princ. Pract.* 2019; 28:301-308. <https://doi.org/10.1159/000499496> PMid:30893697 PMCid:PMC6639569
36. Higashimoto K, Hara S, Soejima H. DNA methylation analysis using bisulfite pyrosequencing. In: *Epigenomics: Methods Protoc.* 2022; 3-20. https://doi.org/10.1007/978-1-0716-2724-2_1 PMid:36173562
37. Bendixen KK, Mindegaard M, Epistolio S, Dazio G, Marchi F, Spina P, Arnspang EC, Soerensen M, Christensen UB, Frattini M, Petersen RK. A qPCR technology for direct quantification of methylation in untreated DNA. *Nat. Commun.* 2023; 14:5153. <https://doi.org/10.1038/s41467-023-40873-y> PMid:37620381 PMCid:PMC10449789

38. Mawlood SK, Dennany L, Watson N, Pickard BS. The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. *Forensic Sci. Int.* 2016; 264:132-138. <https://doi.org/10.1016/j.forsciint.2016.03.047> PMid:27108355

39. Obeagu EI, Obeagu GU. Molar pregnancy: Update of prevalence and risk factors. *Int. J. Curr. Res. Med. Sci.* 2023;9(7):25-28. <https://doi.org/10.19080/JGWH.2023.25.556169>

40. Dunwoodie SL. The role of hypoxia in development of the mammalian embryo. *Dev. Cell.* 2009; 17:755-773. <https://doi.org/10.1016/j.devcel.2009.11.008> PMid:20059947

41. Koklanaris N, Nwachukwu JC, Huang SJ, Guller S, Karpisheva K, Garabedian M, et al. First-trimester trophoblast cell model gene response to hypoxia. *Am. J. Obstet. Gynecol.* 2006; 194:687-693. <https://doi.org/10.1016/j.ajog.2006.01.067> PMid:16522398

42. Tsuji K, Kitamura S, Makino H. Hypoxia-inducible factor 1alpha regulates branching morphogenesis during kidney development. *Biochem. Biophys. Res. Commun.* 2014; 447:108-114. <https://doi.org/10.1016/j.bbrc.2014.03.111> PMid:24690177

43. Hu YY, Fu LA, Li SZ, Chen Y, Li JC, Han J, et al. Hif-1alpha and Hif-2alpha differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. *Cancer Lett.* 2014; 349:67-76. <https://doi.org/10.1016/j.canlet.2014.03.035> PMid:24705306

44. Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. *Dev. Biol.* 2003; 258:432-442. [https://doi.org/10.1016/S0012-1606\(03\)00126-X](https://doi.org/10.1016/S0012-1606(03)00126-X) PMid:12798299

45. Scully D, Keane E, Batt E, Karunakaran P, Higgins DF, Itasaki N. Hypoxia promotes production of neural crest cells in the embryonic head. *Development.* 2016; 143:1742-1752. <https://doi.org/10.1242/dev.131912> PMid:27190038

46. Obeagu EI, The Relationship between Exercise and Hemoglobin Levels in Pregnant Women: A Review, *International Journal of Medical Sciences and Pharma Research*, 2025;11(1):34-39 <https://doi.org/10.22270/ijmspr.v11i1.138>

47. Chen Y, Gaber T. Hypoxia/HIF modulates immune responses. *Biomedicines.* 2021;9(3):260. <https://doi.org/10.3390/biomedicines9030260> PMid:33808042 PMcid:PMC8000289

48. Chen S, Zhang W, Wang L. Maternal hypoxia induces immune dysfunction in offspring through epigenetic modifications. *Nat. Commun.* 2021;12(1):1-15. <https://doi.org/10.1038/s41467-021-25151-6>

49. Wu J, Wang Y, Chen J. Maternal hypoxia-induced inflammation in offspring: Mechanisms and consequences. *Front. Immunol.* 2022; 13:1-15. <https://doi.org/10.3389/fimmu.2022.818173> PMid:35663991 PMcid:PMC9160234

50. Hohlfeld J, Kuepper M, Weichenhan D. Maternal hypoxia and the risk of asthma in children. *Allergy.* 2019;74(7):1380-1391. <https://doi.org/10.1111/all.13723> PMid:30656708 PMcid:PMC6640081

51. Liao X, Jiang Y, Zhao H. Maternal hypoxia alters DNA methylation in the offspring and impacts immune function. *Front. Immunol.* 2021; 12:1-13. <https://doi.org/10.3389/fimmu.2021.713013>

52. Obeagu EI, Gamade SM, Obeagu GU. The roles of neutrophils in pregnancy. *Int. J. Curr. Res. Med. Sci.* 2023;9(5):31-35. <https://doi.org/10.22270/ijmspr.v10i2.98>

53. Ibebuike JE, Ojie CA, Nwokike GI, Obeagu EI, Nwosu DC, Nwanjo HU, Agu GC, Ezenwuba CO, Nwagu SA, Akujuobi AU. Barriers to utilization of maternal health services in southern senatorial district of Cross Rivers state, Nigeria. *Int. J. Adv. Multidiscip. Res.* 2017;4(8):1-9. <https://doi.org/10.22192/ijamr.2017.04.08.001>

54. Zhao H, Wong RJ, Stevenson DK. The impact of hypoxia in early pregnancy on placental cells. *Int. J. Mol. Sci.* 2021;22(18):9675. <https://doi.org/10.3390/ijms22189675> PMid:34575844 PMcid:PMC8466283

55. Obeagu EI, Obeagu GU. Maternal hypoxia: Impact on immune system development in offspring. *Elite J. Health Sci.* 2024;2(8):45-57.

56. Obeagu EI, Obeagu GU, The vital role of blood transfusions during pregnancy: A comprehensive review, *Asian J Dent Health Sci.* 2024;4(1):26-31 <https://doi.org/10.22270/ajdhs.v4i1.58>

57. Patel J, Landers K, Mortimer RH, Richard K. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. *Placenta.* 2010;31(11):951-957. <https://doi.org/10.1016/j.placenta.2010.08.008> PMid:20869770

58. Obeagu EI, Obeagu GU, Anemia in pregnancy: Mentzer index as a predictor for iron supplementation needs, *International Journal of Medical Sciences and Pharma Research*, 2024;10(4):39-43 <https://doi.org/10.22270/ijmspr.v10i4.121>

59. Obeagu EI. Hypoxia-induced signaling in the pathogenesis of vaso-occlusive crisis. *Elite J. Haematol.* 2024;2(7):36-43.

60. Suhag A, Berghella V. Intrauterine growth restriction (IUGR): etiology and diagnosis. *Curr. Obstet. Gynecol. Rep.* 2013;2(2):102-11. <https://doi.org/10.1007/s13669-013-0041-z>

61. Sun BZ, Moster D, Harmon QE, Wilcox AJ. Association of preeclampsia in term births with neurodevelopmental disorders in offspring. *JAMA Psychiatry.* 2020;77(8):823-829. <https://doi.org/10.1001/jamapsychiatry.2020.0306> PMid:32236510 PMcid:PMC7113825

62. Zhao Y, Mu H, Zhao A, Feng S, Wang R. Research progress of epigenetic modification on the regulation of transporters under hypoxia. *Curr. Drug Metab.* 2023; 24:106-113. <https://doi.org/10.2174/138920022466230405115442> PMid:37038690

63. Huang Y, Qu S, Xiao Y, Jian H, Liang W. Progress in age estimation based on DNA methylation. *J. Forensic Sci. Med.* 2023; 9:360-366. https://doi.org/10.4103/jfsm.jfsm_129_23

64. Dieckmann L, Czamara D. Epigenetics of prenatal stress in humans: the current research landscape. *Clin. Epigenet.* 2024; 16:20. <https://doi.org/10.1186/s13148-024-01635-9> PMid:38308342 PMcid:PMC10837967

65. Li Y. Modern epigenetics methods in biological research. *Methods.* 2021; 187:104-113. <https://doi.org/10.1016/j.ymeth.2020.06.022> PMid:32645449 PMcid:PMC7785612

66. Duong VA, Park JM, Lim HJ, Lee H. Proteomics in forensic analysis: applications for human samples. *Appl. Sci.* 2021; 11:3393. <https://doi.org/10.3390/app11083393>

67. Gettings KB, Tillmar A, Sturk-Andreaggi K, Marshall C. Review of SNP assays for disaster victim identification: cost, time, and performance information for decision-makers. *J. Forensic Sci.* 2024; 69:1546-1557. <https://doi.org/10.1111/1556-4029.15585> PMid:39021258

68. Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine hypoxia and epigenetic programming in lung development and disease. *Biomedicines.* 2021; 9:944. <https://doi.org/10.3390/biomedicines9080944> PMid:34440150 PMcid:PMC8394854