Mathane et al.

Journal of Drug Delivery & Therapeutics. 2025; 15(10):201-211

Available online on 15.10.2025 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which
permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original
author and source are credited

Open Access Full Text Article

'.) Check for updates . .
Review Article

Biodegradable Polymer Use in Drug Delivery Systems: A Comprehensive

Review

Aditya M. Mathane*, Pooja R. Hatwar ", Dr. Ravindra L. Bakal

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Article Info: Abstract

Article History:

Received 10 July 2025
Reviewed 02 Sep 2025
Accepted 26 Sep 2025
Published 15 Oct 2025

Biodegradable polymers have revolutionized the field of drug delivery systems, offering a
promising solution to the limitations of traditional drug administration techniques. These
polymers can be designed to degrade at specific rates, releasing therapeutics in a controlled and
sustained manner, thereby improving bioavailability and reducing side effects. This review
provides an overview of biodegradable polymers, including natural polymers like collagen,

albumin, and gelatin, as well as synthetic polymers like polyesters, polyorthoesters, and
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polyphosphoesters. Here discuss the types of biodegradable polymers, their mechanisms, and

benefits in drug delivery systems, including controlled release, targeted release, transdermal
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Introduction:

Drug delivery systems (DDS), which aim to maximise
therapeutic effectiveness while minimising side effects,
are critical to therapy administration efficiency.
Traditional drug administration techniques frequently
have drawbacks such as systemic toxicity, rapid
elimination, and low bioavailability. Because of their
ability to release medicines in a controlled, sustained,
and targeted manner, biodegradable polymers are now
an essential component of sophisticated drug delivery
systems 1. Biodegradable polymers are materials that can
be degraded by various environmental microorganisms,
such as bacteria and fungi, to produce water and carbon
dioxide 2. Biodegradable polymers are being developed
as an alternative to non-biodegradable polymer
materials in a variety of applications 3. Biodegradation of
biodegradable polymers is defined as the chemical
decomposition of substances accomplished through the
enzymatic work of microorganisms, resulting in a change
in chemical composition, mechanical and structural
properties, and the formation of metabolic products,
which are environmentally friendly materials such as
methane, water, biomass, and carbon dioxide 4. The most
effective way to manage non-biodegradable plastic waste
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is to replace the usage of uneconomical non-
biodegradable materials for recycling or reuse with
biodegradable polymers, which are environmentally
friendly 5. Because of the environmental contamination
caused by the usage of non-biodegradable materials,
research and development on biodegradable materials
has risen ¢. Biodegradable polymers are materials that
can function for a limited period before disintegrating
into easily disposed products following a regulated
process 7. They could be generated from a number of
wastes or bioresources, including food, animal, and agro-
waste, as well as other sources including starch and
cellulose*. Biodegradable plastics and polymers were
first developed in the 1980s 8. Polyesters were the first
successful biodegradable polymers created for suture
materials °. Bioplastics made from renewable resources
are frequently less expensive than those made from
microbial resources, causing producers to focus on
producing bioplastics from renewable resources 7. The
usage of biodegradable polymers has environmental
benefits such as raw material regeneration,
biodegradation, and reduced carbon dioxide emissions,
which contribute to global warming 1°. Biodegradable
polymers can be consumed by microorganisms like
bacteria and fungi, which then transform them into
CODEN (USA): JDDTAO
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methane, CO2, and H20. The composition of the
substance determines the biodegradation process 1. The
biodegradation process is influenced by the polymer's
molecular weight, shape, structure, and chemical and
radiation treatments 12. Biopolymers are another name
for biodegradable polymers 13. The use of biodegradable
or renewable polymers offers an alternate option.
Therefore, there is a considerable increase in the
manufacture and use of bio-based and biodegradable
polymer materials, which can help reduce environmental
issues related to waste polymer materials 8. Research on
renewable resources focusses on using corn, soy,
sugarcane, potato, rice, or wheat, as well as oil-rich seeds
or fermentation products, as raw materials to
manufacture biopolymeric polymers 14 The use of
biomass to make biopolymers offers numerous
advantages, as biomass-derived polymers are
biodegradable and very easy to recycle 8. Experts
estimate that polymer manufacture consumes up to 7%
of global oil and gas supplies 5.

Biodegradable and Nonbiodegradable:
1 Biodegradable polymers:

Biodegradable polymers undergo degradation, non-
enzymatically and enzymatically and generate a
harmless, biocompatible by-product 6. Biodegradable
polymers have a notable emphasis on the chemistry in
the scheme of new molecules in targeted drug delivery
applications. The use of biocompatible polymers reduces
the side effects of a given drug 7. Biodegradable
biomaterials have no constant inflammatory effect, good
permeability, and good therapeutic properties 18,
Biodegradable polymers are materials that can be

Types of Biodegradable Polymer:
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degraded by various environmental microorganisms,
such as bacteria and fungi, into water and carbon dioxide
2, Biodegradation methods or decomposition begin on
the polymer surface as a result of the action of
microorganisms' extracellular enzymes, which generate
oligomers. These matching oligomers subsequently enter
the microorganism cell, where they serve as carbon
sources and are converted into CO2 and water 1°.

2 Nonbiodegradable polymer:

Local antibody injection is carried out using clinically
non-biodegradable polymers. Acrylic polymers, cellulose
derivatives, and silicon are among the most common non-
biodegradable polymers 1!7. Polymethyl methacrylate
(PMMA) is an acrylic-based, non-biodegradable polymer
that is mostly employed in bone cement or PMMA beads
18 Because of the drawbacks of non-biodegradable
polymers, scientists are working on developing
biodegradable, biocompatible polymer synthesis for a
drug delivery system 16, The usage of nonbiodegradable
polymer materials is dangerous to human health because
they contain phthalates, which are chemical substances
found in thermoplastics 17. Human exposure to these
components comes through food consumption and has
been linked to negative health impacts, including
hormone disturbance 1°. The most effective way to
manage non-biodegradable plastic waste is to replace the
usage of uneconomical non-biodegradable materials for
recycling or reuse with biodegradable polymers, which
are environmentally friendly 5. Because of the
environmental contamination caused by the usage of
non-biodegradable materials, research and development
on biodegradable materials has risen ©.
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Figure 1: Types of biodegradable polymers 29.
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Natural Polymer:
Protein based polymers: - Collagen, Albumin, Gelatin 21.

Polysaccharides: - Starch, Agarose, alginate, carrageenan,
hyaluronic acid, dextran, chitosan, cyclodextrins 22.

Synthetic Polymer:

Polyesters: - Poly (lactic acid), poly (glycolic acid), poly
(hydroxy butyrate), poly (e-caprolactone), poly (B-malic
acid), poly (dioxanones) 23.

Polyorthoesters: - Poly (sebacic acid), poly (adipic acid),
poly (terephthalic acid) and various copolymers 24,

Polyamides: - Poly (amino carbonates), poly amino acids
25

Polyphosphoesters: - Polyphosphates, poly
phosphonates, poly phosphagens 26.

Others: - Poly (cyanoacrylates), polyurethanes, poly
ortho esters, poly dihydropyrans, polyacetals 27.

Non-Biodegradable:

Cellulose derivatives: - Carboxymethyl cellulose, ethyl
cellulose, cellulose acetate, cellulose acetate propionate,
hydroxypropyl methyl cellulose 28,

Silicones: - Polydimethylsiloxane, colloidal silica 2°.

Acrylic polymers: - Polymethacrylates, poly (methyl
methacrylate), poly hydro (ethyl- methacrylate) 3°.

Others: - Polyvinyl pyrrolidone, ethyl vinyl acetate,
poloxamers, polyamines 31.

Natural Polymer
Protein-Based Polymer
1 Collagens:

The most prevalent proteins in mammals are collagens.
There are 28 members of the collagen family that have at
least one triple-helical domain 32. Three distinguishing
characteristics define the entire family of glycoproteins
that are collectively referred to as "collagen." The amino
acid repeating sequence [Gly-X-Y] n, both with and
without breaks, is the first of these 33. The second
distinguishing property is that proline and its
hydroxylated counterpart, hydroxyproline, respectively,
occupy the X and Y locations. Third, collagen has a
distinct quaternary structure due to the formation of the
right-handed triple helix from three left-handed
polyproline achains of the same length 34. The structure
of the many collagen types, their splice variations, the
existence of extra non-helical domains, their assembly,
and their functions are all highly complex and diverse 35.
Although the peptides were heterogeneous polymers, the
development of solid-state peptide synthesis allowed for
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the synthesis of peptides with specific lengths and
sequences to simulate biological activity and elucidate
triple-helix stability principles 36.

2 Albumin:

Albumin is the most prevalent plasma protein (35-50 g/L
of human serum). Albumin is considered harmless, with
low immunogenicity, biocompatibility, and

biodegradability. Most critically, it acts as a transporter
for many chemicals in the plasma 37. Albumin improves
drug solubility and targeting efficacy, and a number of
nanoscale drug delivery methods have been investigated
as anticancer agents 38. Protein-polymer bioconjugates
combine the strengths of both components to address
challenges in biological applications 39.

Figure 2: Activity of albumin polymer and drug 37
3 Gelatin:

Gelatin derived from fish skin or bones is known for its
biocompatibility, biodegradability, good solubility, non-
immunogenicity, low cost, and biological origin. Its most
notable feature is the abundance of arginine-glycine-
aspartic acid (RGD) groups that promote cell adherence,
migration, and differentiation 40, Many researchers have
turned their focus to gelatin, which is one of the most
prominent natural polymers. Even though gelatin is made
from collagen, it is less expensive than cell 41. The cell
polymer construct paradigm, which involves infusing a
suspension of cells into an erodable porous scaffold,
serves as the foundation for many tissue engineering
techniques. Numerous characteristics of the developing
tissue, such as food availability and growth kinetics, cell-
cell interactions, extracellular matrix deposition, and
morphological changes, are determined by the three-
dimensional arrangement of cells implanted within the
scaffold 42. Scaffolds that combine bone cells with natural
and synthetic biopolymers or composites are thought to
be a promising way to get around the drawbacks of the
traditional method of treating bone injuries 43.
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Figure 3: Cross-sectional SEM images of freeze-dried (A) GelMA, (B) GelMA-SF, (C) GelMA-SNAP, and (D) GelMA-SF-SNAP

10,41,

Polysaccharides:
1 Starch:

Starch is an emergent polymer in biomedical research
due to its ease of availability, low cost, and biological
properties #4. Starch polymer has been employed as a
powder and film in tissue engineering and haemostasis
applications #5. The starch is semicrystalline in form, with
glucose units connected by glycosidic linkages 6. Protein
in starch is essential for creating a clean and transparent
solution #47. Phosphate in starch in the form of
monophosphate improves solution stability and slows
retrogradation rate 8.

2 Agarose:

Agarose is a well-known marine polysaccharide with
reversible thermos gelling tendency, excellent
mechanical characteristics, strong bioactivity, and
switchable chemical reactivity for functionalisation 4°.
The majority of polysaccharides display a high surface
charge. This event occurs when the drug carrier hits an
impediment during its circulation within the body, such
as protein corona formation 0. While agarose has a
neutral surface charge at varying pH levels, this property
allows agarose to transport drugs with little protein
corona formation and improves delivery efficiency 5.
Drug carriers have low drug absorption, pharmacological
leakage, inadequate targeting effects, and difficulties
monitoring cellular events after administration;
nonetheless, agarose and its derivatives are

distinguished by their high efficacy in delivery processes
52
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Figure 4 (a) Original image (1 wt.% agarose gel without
any interpenetrating component). (b) Binary projection
(grayscale thresholding using MaxEntropy algorithm) of
the original image. (c) An image mask is provided by the
application of the ‘Analyze particles’ tool. (d) Image mask
is provided by the application of the ‘Analyze skeleton’
tool 53.

3 Chitosan:

Chitosan (Ch), derived from chitin deacetylation, is one of
the most often utilised biopolymers. Chitin is a
polysaccharide found in the exoskeletons of arthropods
such as lobster and crab, as well as the endoskeletons of
cephalopod molluscs such as squid, both of which are
frequent fishing industry waste items 54, Chitosan is the
only known natural polycation with a greater DD%,
increasing its charge density potential 55. Functional
chitosan derivatives can be classified into two groups
based on their chemical structure: linker-containing
derivatives and linker-free derivatives. Linkers are
described as extra structural fragments between the
CODEN (USA): JDDTAO
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inserted functional substituent and the polymer
backbone 56. Some chitosan inhibits nematode growth
and development, while others have antiviral action.
Chitosan promotes plant growth and development,
induces disease resistance, and improves abiotic stress
tolerance 7. Chitosan supports scar-free wound healing
in animals and people, some appear to limit cancer cell
proliferation, some may have anti-inflammatory or anti-
oxidant potential, and a variety of other biomedically
important bioactivities have also been described 8.

Synthetic Polymer:
Polyesters:
1 Polylactic Acid:

Polylactic acid polymer interference screws are
commonly Q5 used in anterior cruciate ligament (ACL)
reconstructions, especially in proximal tibia fixation 5°.
However, several concerns have been raised, including
the acid products during its degradation in vivo 0. In
recent years, biodegradable magnesium (Mg) based
implants have become attractive because of their
favourable mechanical properties, which are more
similar to those of natural bone when compared with
other degradable materials, such as polymers, apart from
their alkaline nature during degradation 61.

2 Poly glycolic acid:

Poly (lactic-co-glycolic acid) (PLGA) is one of the most
studied biodegradable polymers in a variety of biological
applications, including drug delivery and tissue
engineering 62. Polymeric biomaterials have been widely
employed in commercial biomedical goods for decades ¢3.
Poly (lactic-co-glycolic acid) or poly(lactide-co-glycolide)
(PLGA) is a thermoplastic co-polyester composed of
various monomer ratios that is hydrolysed in vivo into
non-toxic lactic and glycolic acids, which are metabolised
in the tricarboxylic acid cycle and eliminated via carbon
dioxide and water ¢4 According to research findings,
increasing glycolic acid concentration in PLGA
(PLA/PGA) results in faster degradation because to
increased hydrophilicity 5.

Figure 5: Poly glycolic acid suture 66
Polyorthoesters:
1 Poly sebacic acid:

Polyorthoesters are a type of biodegradable and
biocompatible polymer utilised for long-term
administration of bioactive substances ¢7. The rate of
polymer breakdown is greatly dependent on the device's
molecular weight, hydrophobicity, pH, crystallinity,
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porosity, and  surface area®®.  Biocompatible
polyanhydrides, such as poly(sebacic acid) (PSA) derived
from sebacic acid, breakdown more quickly than other
biocompatible polymers, such as poly(esters) ¢°. The PSA
microparticles were spherical, ranging in size from many
hundreds of nanometres to a few tens of micrometres 7°.
PSA-based polymeric microparticles can be used as
carriers for long-term, consistent nutrition delivery 71.

2 Poly adipic acid:

Poly(adipic anhydride) decomposed faster than its
hydrophobic counterpart, poly(sebacic anhydride) 72. In
general, the polymer chain's breakdown rates slow down
as its water solubility decreases 73. Thin films are created
from poly(adipic anhydride) blends in various ratios, and
films are also made from the copolymer poly(salicylic
acid-co-sebacic acid) 74. These films are intended to serve
as sacrificial layers for self-regenerating functional
coatings, such as those that regenerate antibacterial
surface activity 75.

Polyphosphoesteres:
Polyphosphate:

Polyphosphate (polyP) is a linear arrangement of
inorganic phosphates that defies its structural simplicity
by performing an astonishing number of distinct
functions in the cell 76. Polyphosphate (polyP), an
extremely simple polyanion, has long been known to play
a role in a wide range of cellular processes, from stress
resistance, biofilm formation, and virulence in bacteria to
bone mineralisation, blood clotting, and mammalian
target of rapamycin (mTOR) signalling in mammals 77.
Inorganic polyphosphates (polyP) are linear polymers
made of dozens to hundreds of phosphate residues 78.
Inositol polyphosphates (IPs) and  inositol
pyrophosphates (PP-IPs) control a variety of biological
functions in eukaryotic cells 7°. Both bacteria and their
eukaryotic hosts manufacture inorganic polyphosphate
(polyP), which seems to have a number of significant
functions in the interactions between those species 0.

Non Biodegredable Polymer:
Cellulose Derivative:
1 Carboxymethyl Cellulose:

Carboxymethyl cellulose (CMC) is a water-soluble
cellulose derivative and a prominent type of cellulose
ether formed by the chemical attack of alkylating
reagents on activated non-crystalline areas of cellulose 81.
Carboxymethyl cellulose (CMC)-based wound dressing
materials have sparked intense interest because to their
noble qualities, which include biocompatibility,
biodegradability, tissue resemblance, low cost, and non-
toxicity 82. It has a wide range of uses in the biomedical
and pharmacological industries. CMC's hydrophilic
nature allows it to be blended and crosslinked with other
materials such as synthetic polymers, natural polymers,
and inorganic materials, allowing for the development of
novel wound dressing biomaterials 8. Carboxymethyl
cellulose (CMC) has been shown to be useful in the
pharmaceutical sector and is used in a variety of drug
delivery methods, such as hydrogels, quantum dots,
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magnetic mesoporous nano carriers, and

nanocomposites 84,
2 Ethyl Cellulose:

Ethyl cellulose (EC) is produced by chemically
substituting the naturally occurring polymer cellulose 85.
Ethyl cellulose (EC), a water-insoluble polymer, could be
employed to delay medication release and improve oral
drug bioavailability 86. EC is hydrophobic in nature and is
widely employed as a coating material, tablet binder, in
microcapsules and microspheres, and in the manufacture
of matrix-type controlled release tablets 87. Ethyl
cellulose nanoparticles boosted oral bioavailability and
could treat fungal infections safely and efficiently,
avoiding the negative effects of some intravenous
preparations 88,

Silicons:
Polydimethylsiloxane:

Polydimethylsiloxane (PDMS)-based elastomers have
been widely employed in biological applications for many
years 8. PDMS is noted for its minimal toxicity,
physiological inertness, high biocompatibility, and blood
compatibility. PDMS-based devices include drainage
implants for glaucoma patients, blood pumps, mammary
prosthesis, cardiac pacemaker leads, medical adhesives,
and denture liners 9. Polydimethylsiloxane (PDMS) has
become a microfluidics industry standard due to its
simple construction technique and material properties
like as gas permeability, optical transparency, and
flexibility 9. PDMS is a crosslinked polymer of
hydrophobic dimethylsiloxane oligomers, which poses
two problems for its application in cell culture systems 92

Colloidal / Mesoporous Silica:

Mesoporous silica (MPS), created via the supramolecular
polymer templating process, is one of the most appealing
nanomaterials for biomedical applications such as drug
administration, labelling, and tissue engineering °3.
Nanomaterial pore shapes have been identified as one of
the primary factors contributing to nanotoxicity due to
differences in cellular absorption and immune response
94, Silica is generally thought to be non-cytotoxic 5. MPS
nanoparticles are more biocompatible than colloidal
silica and show great promise for use in biomedical and
biotechnological applications 9.

Acrylic Polymer: -
Polymethacrylate

Polymethacrylate is the most often utilised organic
polymer for casting monoliths for biomolecular
separation 7. Polymethacrylate has long been employed
in pharmaceutical preparations to produce controlled
release in tablets, although it was only recently
introduced into liposome modification 98,
Polymethacrylate monoliths generally perform well in
chromatography, and in some situations, the efficiency
improves with increasing flow rate 2. Polymethacrylate
monoliths have become increasingly popular in research
applications, allowing for high throughput biomolecule

purification on semi-preparative and preparative scales
100
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Mechanism And Benefits of Biodegradable
Polymer in Drug Delivery System

Control Drug Release:
Mechanism:

Biodegradable polymers can be designed to disintegrate
at certain rates, giving precise control over the timing and
rate of drug release 101

This regulated degradation allows therapeutic drugs to
remain in the bloodstream or at the target site for longer
periods of time 102,

Controlled release medication delivery uses drug-
encapsulating devices that allow therapeutic agents to be
released at controlled rates over long periods of time,
ranging from days to months 103,

Benefits:

Medicine administration frequency is reduced since the
medicine is released gradually 101,

Steady release eliminates the peaks and troughs
associated with traditional dosage, resulting in optimal
medication levels102,

Controlled release minimises the likelihood of damage
from large initial doses 103.

Total drug usage was reduced when compared to usual
therapy 104,

Targeted Drug Release:
Mechanism:

Biodegradable polymers can be engineered to respond to
specific stimuli (such as pH, temperature, and enzymes)
found in the target tissue or disease site 105.

This targeting capability ensures that the medicine is
released largely at the point of action 106,

Benefits:

Higher local medication concentrations can be achieved,
improving the therapeutic efficacy 106,

Reduces drug distribution to non-target organs, lowering
the possibility of systemic adverse effects 10.

Enhanced targeting can result in better therapeutic

outcomes, particularly in cancer and localised infections
107

Transdermal Drug Delivery System:
Mechanism

Polymers are utilised in patches or gels to transfer
medications through the skin for systemic effects 108,

TDD is a painless way of systemically administering
medications that involves putting a drug formulation to
undamaged and healthy skin 10,

Benefits: -

Transdermal patches for consistent release of hormones
108

Analgesic patches for the treatment of persistent pain 109,
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Patches to help people quit smoking 108,
Gene Delivery Systems

Mechanism

Gene therapy is made easier by biodegradable polymers,
which both shield and transport genetic material (DNA,
RNA) to target cells 1.

The creation of superior drug delivery vehicles is crucial
for the body's breakdown of gene therapy medications
and their efficient distribution to target tissues, cells, and
organelles 110,

Benefits

Delivery of genes that boost the immune system or cause
cancer cells to undergo apoptosis 111,

Delivery of functional genes to correct genetic
abnormalities 119,

Distribution of DNA vaccines that trigger robust immune
reactions 112,

Tissue Engineering and Regenerative Medicine
Mechanism

In order to promote tissue regeneration, biodegradable
scaffolds release growth factors and offer a supporting
framework for cell growth 113,

A key component of tissue engineering is the creation of
complex scaffolds that offer the support and signals
required for cell growth and differentiation 114

Benefits

Scaffolds including chondrogenic or osteogenic
components 113,

Skin-graft and wound-healing scaffolds 115

Scaffolds that supply neurotrophic nutrients and
promote nerve development 114,

Future Prospective

Based on the present market size, share, growth, demand,
and trends, it is predicted that biopolymer consumption
and production patterns will increase over the next
several years. However, one of the biggest obstacles to
biopolymers capacity to compete with plastics generated
from petroleum is still their high cost of manufacture 2.

Enhancing drug encapsulation and release kinetics
methods to attain the best possible therapeutic results.
Drug loading capacity and controlled release will be
improved by advancements in formulation science and
drug-polymer interactions 1.

Simplifying regulatory procedures to enable the
commercialisation and approval of medication delivery
devices based on biodegradable polymers. Industry,
academics, and regulatory bodies working together will
create uniform standards and hasten market access 116.

Future Trend 117

Copolymers with hydrophilic/hydrophobic interactions.
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Complexation networks responding via hydrogen or ionic
bonding.

Polymers as nanoparticles for immobilization of enzymes,
drugs, peptides, or other biological agents.

New biodegradable polymers.

New blends of hydrocolloids and carbohydrate-
based polymers.

Conclusion:

Biodegradable polymers have transformed the field of
drug delivery, offering a promising solution to the
limitations of traditional drug administration techniques.
Their ability to degrade at specific rates, releasing
therapeutics in a controlled and sustained manner, has
improved bioavailability and reduced side effects. As
research continues to advance, we can expect to see the
development of new biodegradable polymers, blends,
and nanoparticles, which will further enhance the
efficacy and safety of drug delivery systems. With
ongoing innovation and collaboration between industry,
academia, and regulatory bodies, biodegradable
polymers will play a crucial role in shaping the future of
drug delivery and regenerative medicine, ultimately
improving patient outcomes and quality of life. The
potential of biodegradable polymers in drug delivery
systems is vast, and their impact will be significant,
enabling the treatment of various diseases and
improving human health.
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