

A Comprehensive Literary Review of Bronchial Asthma (*Zīq-Un-Nafas Shu'Bi*) and its Management in the Unani System of Medicine

Nilophar 1*, Mohd Noman Taha 2, Shaikh Mohd Razik 3, Abdullah 2, Abid Ali Ansari 4

1 Assistant Professor, Department of Mahiyatul Amraz (Pathology) Deoband Unani Medical Collage Deoband, (DUMC) Saharanpur UP, India

2 Assistant Professor, Department of Ilmul Advia (Pharmacology) Deoband Unani Medical Collage Deoband, (DUMC) Saharanpur UP, India

3 PG Scholar Department of Mahiyatul Amraz (Pathology), National Institute of Unani Medicine (NUIM) Bangalore India

4 Professor & Head Department of Mahiyatul Amraz (Pathology), National Institute of Unani Medicine (NUIM) Bangalore India, India

Article Info:

Article History:

Received 10 July 2025
Reviewed 22 Aug 2025
Accepted 28 Sep 2025
Published 15 Oct 2025

Cite this article as:

Nilophar, Taha MN, Abdullah, Ansari AA, Razik SM, A Comprehensive Literary Review of Bronchial Asthma (*Zīq-Un-Nafas Shu'Bi*) and its Management in the Unani System of Medicine, Journal of Drug Delivery and Therapeutics. 2025; 15(10):104-114 DOI: <http://dx.doi.org/10.22270/jddt.v15i10.7401>

*For Correspondence:

Nilophar, Assistant Professor, Department of Mahiyatul Amraz (Pathology) Deoband Unani Medical Collage Deoband, (DUMC) Saharanpur UP, India

Abstract

Lung diseases are among the leading global health concerns, affecting more than 500 million people and accounting for nearly 10% of annual deaths. Asthma, derived from the Greek verb *aazein* meaning "to pant," was first mentioned in Homer's Iliad and later recognized in the Corpus Hippocraticum as a medical condition. Initially used for general breathlessness, it was more clearly defined in the 19th century by Henry Hyde Salter as a disorder characterized by episodic breathing difficulty due to airway narrowing. In the Unani System of Medicine (USM), asthma is classified under *Amrād-i-Majāri* (respiratory disorders). This paper explores the Unani perspective of bronchial asthma through classical references and modern research. Literature search included classical texts such as *Al-Qanoon*, *Kitab al-Hawi*, *Zakhira Thabit bin Qara*, *Kulliyat*, and *Tibbe Akbar*, along with modern databases (PubMed, Google Scholar, Science Direct, Web of Science, and Scopus). A total of 23 classical Unani books, 18 original research articles, and 34 review articles were reviewed. Scholars like *Buqrat*, *Jalinus*, *Razi* and *Ibn Sina* described asthma as *Rabw*, *Buhr*, and, *Dīq al-Nafas*, and recommended single drugs (*Adusa*, *Aslussus*, *Banafsha*, *Afteemoon*, *Unnab*) and compound formulations (*Sharbat-e-Banafsha*, *Sharbat-e-Ejaz*, *Sharbat-e-Unnab*, *Safoof-e-Dama*). The collected data were analysed and systematically organized to highlight the relevance of Unani approaches in asthma management.

Keywords: *Amrād-I-Majari*, *Dīq al-Nafas*, Asthma, lung disease, *Rabw*, USM

Objective

The objective of this study is to review the ancient concept of *Dīq al-Nafas* mentioned in the Unani system of medicine in the light of available new information and to appraise the effects of herbs to update the current knowledge regarding the use of Single and compound herbs for management of *Dīq al-Nafas* (Bronchial asthma).

Methodology

A manual literature survey of classical Unani texts such as *Kamilus Sana'a*, *Alqanoon Fit Tib*, *Zakhira Khwarazm Shahi*, *Kitab Al-Adwiyya wal Aghziyya*, *Kitab al-Mukhtarat Fit tib*, *Muheet-e-Azam*, *Bayaz-e-Kabeer*, *Qarabadeen Qadri*, *Makhzanul mufradat*, *Khazain-ul Advia* etc., was conducted. Scientific names of Unani medicinal plants in line with their morphological description, the traditional names of prescribed herbs were matched with the current scientific names. Scientific databases like Google Scholar, Science Direct, Scopus and Web of Science etc,

were searched for available literature on *Dīq al-Nafas* (Bronchial asthma).

Introduction

Asthma is defined as a chronic disease characterized by recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person. Symptoms may occur several times a day or week, and for some people, they worsen during physical activity or at night.¹

Due to the widespread exposure to harmful environmental, occupational, and behavioural inhalants, chronic respiratory diseases remain among the most common non-communicable conditions globally.³ According to the World Health Organization (WHO), approximately 262 million individuals globally were living with asthma in 2019, showing a decline compared to 1990, when the prevalence was higher. The age-standardized global prevalence in 2019 was reported as 3415.53 per 100,000 population. Asthma prevalence

varies significantly by country, region, socioeconomic status, and local geography. In the same year, asthma was responsible for an estimated 455,000 deaths, the majority of which occurred in low- and lower-middle-income countries.⁵

In the first edition of his textbook *The Principles and Practice of Medicine* (1840), Sir William Osler, a founder of Johns Hopkins Medical School and a pioneer of modern Western medicine, described asthma as involving bronchial muscle spasms, mucosal swelling, and a distinct type of small airway inflammation. He observed that asthma often resembled hay fever, tended to run in families, and commonly began in childhood, sometimes persisting into old age. Osler also noted a wide variety of triggers for asthma attacks, including allergens like dust or animals, emotional stress, overeating, respiratory infections, and weather changes. He highlighted specific sputum characteristics, such as Leyden crystals, Curschmann spirals, and gelatinous "Perles".⁷

The hallmarks of asthma are intermittent, reversible airway obstruction; chronic bronchial inflammation with eosinophils; bronchial smooth muscle cell hypertrophy and hyperactivity; and increased mucus secretion. (Robbins)

The terms "Zeeq" and "Nafas," which imply "narrowing" and "breathing," respectively, combine to form the phrase "*Dīq al-Nafas / Dīq al-Nafas*." To put it another way, it indicates trouble breathing. Ancient doctors and thinkers like *Buqrat* (Hippocrates, 433–377 BC) and *Jalinus* (Galen, 129–210 AD) both referred to *Dīq al-Nafas*.⁹

Buqrat described this disease as breathlessness or panting.

Majusi has also mentioned this disease in his book *Kamil al-Sana'ah* with reference to *Buqrat* and *Jalinus*. Unani scholars have mentioned this disease under different headings in their treatises, e.g., *Rabw*, *Buhar*, *Dama*, *Intasabun Nafas*, etc.¹⁰

Dīq al-Nafas is a condition in which there is difficulty in breathing due to narrowing in the air passages caused by the accumulation of *Balgham Lazij* (viscous phlegm) in *Urooq-e-Khashna* (bronchioles).

It is also known as *Intisāb al-Nafas*, which is also a combination of two words, '*Intisab*' meaning 'to stand' and '*Nafas*' meaning 'breath'. In this condition, sometimes the patient is unable to breathe or feels uneasy in a sitting or lying position. So, he stands to take breath and feels comfortable.^{11,12}

Throughout the centuries, research and medical advancements have provided valuable insights into the causes, diagnosis, and treatment of Asthma. In this review, we will explore the historical context, etiology, pathogenesis, and evolution of our understanding of Asthma.

Historical Approach in Bronchial Asthma

It is believed that respiratory discomfort was foremost documented in China around 2330 BCE. The Greeks, Hebrews, Romans, and Chinese all recognized asthma as

a medical condition. The term "asthma" is derived from the Greek word *asthmaino*, meaning "panting" or "gasping." In Greek, it was first used by Hippocrates (433–377 BCE) to describe respiratory distress. However, in ancient classifications, asthma was considered less severe than *orthopnoea* but more severe than *dyspnoea*, and the term also implied the presence of an associated sound or wheezing. Unlike some modern perspectives, ancient physicians described asthma as a spasmodic or paroxysmal condition, meaning it occurred in sudden episodes, yet breathing remained difficult between attacks. Hippocrates, who viewed illness as a natural process with a logical progression similar to the unfolding of a Greek tragedy helped liberate internal medicine from the constraints of superstition. Although they only sporadically acknowledged asthma and attributed its primary causes merely to environmental factors, particularly cold and dampness.¹³

Next, Galen (130–201 CE) was the first to establish a connection between the upper and lower airways and to identify bronchospasm as an underlying cause of respiratory distress. From ancient times to the middle Ages, asthma did not receive significant medical attention. Instead, the term was broadly used to describe various cardiac and pulmonary dyspnoeic conditions. During this period, physicians adhered strictly to the medical paradigms set by Hippocrates and Galen, which were considered the gold standard.

In the 12th century, Maimonides (1135–1204), the physician of Sultan Saladin, provided one of the earliest documented therapeutic approaches to asthma. In his *Treatise on Asthma*, he emphasized the importance of relaxation, avoidance of opium, proper personal and environmental hygiene, and dietary regulation as essential components of asthma management.

By the 16th century, the German physician Georgius Agricola (previously Georg Bauer, 1494–1555) made significant contributions to understanding occupational asthma. He was among the first to recognize the link between environmental factors and airway symptoms, particularly in miners. To mitigate respiratory issues, he advocated the use of protective masks to prevent inhalation of dust.

During the Renaissance period, seasonal allergen exposure was already recognized as a trigger for airway symptoms. Physicians of the time recommended avoiding allergenic factors and prescribed cold baths every 14 days or once a month as a primary treatment for asthma.

The modern concept of bronchial asthma began to take shape in the early 1800s, particularly with the invention of the stethoscope by René Laennec (1781–1826). His discovery allowed for better clinical identification of bronchospasm, distinguishing asthma as a specific airway disorder. Additionally, physicians began recognizing the familial clustering of asthma and allergic conditions, laying the foundation for future research into its genetic and immunological aspects.¹⁴

Avicenna (980–1035 AD) defined asthma, or *Dama*, as a respiratory disorder affecting the lungs and the entire

bronchial tree. It is characterized by difficulty in breathing related to short and quick breaths like strangulation.¹⁵

Rabw refers to the viscous secretions that accumulate in the trachea, resulting in dyspnoea and restricting the lungs' ability to absorb air. As a result, breathing becomes more frequent.¹⁶ as if someone is running, and the breath becomes short, a condition known as panting,

gasping, or dyspnoea. Also known as **Buhr** or **Dīq al-Nafas**.^{17,18,19,20}

The condition is incurable in old age and yet difficult to treat in the young.²¹

It can also appear as epilepsy and tetanus seizures.^{12,16,17,18,22}

Several Atibba have expressed it with differing interpretations.

<p>Avicenna (<i>Ibne Sina</i>)¹¹ (980-1035 AD)</p>	<p>Defined asthma, or <i>Dama</i>, as a respiratory disorder affecting the lungs and the entire bronchial tree. It is characterized by difficulty in breathing related to short and quick breaths like strangulation.²⁸ <i>Rabw</i> refers to the viscous secretions that accumulate in the trachea¹², resulting in dyspnoea and restricting the lungs' ability to absorb air.¹² As a result, breathing becomes more frequent¹² as if someone is running, and the breath becomes short, a condition known as panting, gasping, or dyspnoea. Also known as <i>Buhr</i> or <i>Dīq al-Nafas</i>.^{14,15,21,15} The condition is incurable in the old age and yet difficult to treat in the young.¹² It can also appear as epilepsy and tetanus seizures.^{11,14,15,12,12}</p> <p>This disease is typically acquired from both paternal and maternal offshoot.^{14,33} The morbid matter cannot be concocted in the lungs of old men due to their cold temperaments. And it does not have adequate faculty to eliminate and evacuate the morbid materials from the trachea. When a person with that disease sleeps liable to prone breathing difficulty and shorter span.¹² Other philosophers differentiate <i>Dīq al-Nafas</i> from <i>Rabw</i>.</p> <p>Ibn Sina stated that <i>Rabw</i> is difficulties in breathing, respiration of a diseased person resembles labored breathing (who works hard) and its breath is not devoid of expansion, tawwatur (frequency), and Sighr (shortness), whether accompanied with difficulty or not. <i>Intiṣāb al-Nafas</i> (orthopnoea) is a severe kind of <i>Dīq al-Nafas</i> and <i>Rabw</i>.^{14,15,12}</p> <p><i>'Usr al-Nafas</i> (breathlessness) is caused by the congestion of lung vessels it is called <i>Buhr</i> and <i>Rabw</i> and the congestion of the tracheal branches ('<i>Urūq-i-Khashna</i>, or bronchioles) is called <i>Intiṣāb al-Nafas</i> stated by some physicians.</p>
<p>Ali Ibne Abbas Al- Majusi¹⁹</p>	<p>States that <i>Buhr</i> and <i>Rabw</i> refer to congestion in the lungs' vessels. Furthermore he mentions, <i>Intiṣāb al-Nafas</i> (orthopnoea) refers to the congestion of the tracheal branches ('<i>Urūq-i-Khashna</i>, or bronchioles) since the air cannot pass to the lungs until the subject in upright position. It is because cold thick viscous humour sticks into the passage of lungs.</p> <p>In other words all respiratory illnesses such as <i>Rabw</i> and <i>Buhr</i> are due to airway narrowing. When this narrowing affects the branches of the trachea, it causes <i>Diqun nafas</i> and <i>Intiṣāb al-Nafas</i>; when it affects the arteries of the lungs, it causes <i>Rabw</i> and <i>Buhr</i>.¹⁵ Some other philosophers differentiate between, <i>Buhr</i> and <i>Rabw</i>. <i>Buhr</i> represents the congestion of the lungs' vessels, and <i>Rabw</i> represents the congestion of the bronchioles.^{21,12}</p>
<p>Sahib Khulasa Mahmud Ibn Muhammad Chughmini⁹¹</p>	<p>Sahib Khulasa states that <i>Rabw</i> is a disorder of lung in which the patients is compelled to breathe constantly, even while they are at rest. The condition is also referred to as <i>Buhr</i> and <i>Dīq al-Nafas</i>.</p>
<p>Najibuddin Samarqandi</p>	<p>Najibuddin Samarqandi did not distinguish between <i>Buhr</i>, <i>Dīq al-Nafas</i>, and <i>Rabw</i>. He says that all three are interchangeable terms.</p>
<p>Zakriya Razi</p>	<p><i>Rabw</i> is a condition in which a person suffers from severe cough with expectoration, difficulty in breathing, face and eyes become red, heaviness in the chest, feels that throat is obstructed. In this state, the patient is unable to lie down, being forced to sit upright in order to breathe.²⁹</p>

Types of *Dīq al-Nafas*

1. ***Dīq al-Nafas Qaṣīr***: This disorder is caused by a weakening or constriction of the muscle that cause the chest in movement. In bronchial asthma, airway obstruction is caused by the following four mechanisms:

- Bronchial smooth muscle contraction;
- Edema of the walls of the airways;
- Mucous clogging of the bronchioles;
- Irreversible alterations in the lungs (remodelling).

2. *Dīq al-Nafas Mutatābi'*:

Extreme heat or hot inflammation occurs in the diaphragm. On account of hot inflammation and extreme heat cause the diaphragm to excite the related muscles (moving respiratory muscles), allowing cool air to enter the body. This manifestation is seen in asthma.

3. *Dīq al-Nafas Mustaqīm*:

This is a condition in which the respiratory muscles' secretions descend or become weak or flaccid, and Tanaffus straightens. When the patient sits up straight, *Mustaqīm* breathing occurs because the muscles are fixed in place. Suffocation may result from the patient's upper and lower muscles colliding while they are lying on their side.

4. *Dīq al-Nafas Qawī*:

This kind of breathing happens when the lungs are inflamed.

5. *Dīq al-Nafas D'yīf*:

This kind is caused by thick *Burūdat*.

6. *Dīq al-Nafas 'asīr*:

It occurs due to thick morbid matter that obstructs the respiratory system or thick flatus that traps in the chest or on the sides of the chest. Sometimes, breathing trouble is due to an abnormality in brain or cervical vertebrae or flatus in the uterus and abnormal morbid materials. Sometimes the morbid matter travels toward the chest and lungs, breathing becomes more difficult.²³

Razi states that bronchial asthma classifies into four different forms:²⁶

1. **'Azīm Mutawātir**: It is an indication of *Ikhtilāt al-Dhīhn* (A disoriented mental state below *Junūn*'s level).

2. **'Azīm Mutawātir**: it is an indication of suffering stated by Galen.

3. **'Azīm Sarī'**: Representing *Ikhtilāt al-Dhīhn*.

4. **'Azīm Sarī'**: pain signal.

In his book, Razi did not mention of third and fourth types.

According to Jalinus, *Rabw* begins to start epileptic seizure-like attacks if the disease is left and untreated.¹²

Muhammad Tabari identified three types of bronchial asthma.²³

Type 1:

Rabw Haqīqī, this condition is caused by obstruction of tracheal branches by cold secretions. If there is a cough, prognosis is good; if not, ascites is the disease's outcome. Breathlessness can occasionally occur, but it is not always the case.

Type 2:

Caused by tracheal branch narrowing due to lung abscess. That swelling therefore stays like a hot inflammation rather than maturing or releasing pus. This patient has a fever, thirst, and burning sensation in addition to breathing similar to a *Rabw* patient. Hot *Sawdāwī*, aberrant blood, or blood thickening are the causes of this inflammation. The first type is manifested by no thirst, no breathing difficulty and cough with sputum and in second type has the restlessness and burning sensation.

Type 3:

As a result of the chest muscles' flaccidity. This flaccidity (A pathological state defined by the loss of rigidity of muscles leading to their weakness), is produced by the accumulation of humour in the chest from the head, weakening of the chest, or change of temperament. Breathlessness is a constant feature of this kind of patient, and they occasionally cease breathing.²⁴

Causes:

- Samarqandi* was the first to explain the cause of *Rabw*.²⁵
- The main cause of dyspnoea of *Dīq al Nafas* patients is the narrowing of '*Urūq-i-Khushūna* (Bronchioles), which can occur when *Raqīq Khīlṭ* or *Balgham* become lodged in the airways and reducing airflow.²⁷
- Ghalīz Ruṭūbāt* which restricts the air passages.^{27,29}
- Prolonged accumulation of *Fāsid Mawād* in the chest.^{27,29}
- Ghalīz Riyāḥ* collate in the airways.^{11,27}
- Burūdat Harārat* of lungs.^{21,28}

Asthma may be congenital; in this case lungs do not expand properly due to the smallness and firmness of the chest.^{17,19,27}

The most common cause is a build-up of thick phlegm in the trachea.^{18,31,27,26,32,35}

The humours which are developed by the coldness of the lungs. Sometimes *Awrām-i-Riyā* resulting from *Balgham Ghalīz* or *Şafrā'* and *Dam*¹⁷ Narrowing of airways due to any cause.^{21,36} *Imtilā'-i-Mi'da*,^{22,27} *Waram* lungs (Inflammation of air passages). *İnşibāb Mawād-i-Nazla* i.e. exudation and buildup of *Balgham Lazij* (viscid phlegm) *Imtilā'-i-Şadr* (Thoracic congestion)¹² *Yubūsat* (dryness)¹² *Ihtibās Riyāḥ*¹⁵

Secondary causes of Asthma-like *Dhāt al-Janb* (Pleurisy), *Sill-o-Diq* (Pulmonary Tuberculosis), *Dhāt al-Ri'a* (Pneumonia), *Waram Sho'b Muzmin* (Chronic Bronchitis), *Waram -i-qalb*, *Waram al-Kulya* (Nephritis),

it is called as *Dīq al-Nafas Shirki*.^{15,12,14,19,37} Sometimes, humours are neither present in the lungs nor the pulmonary arteries, but they are present in the stomach, and their flow is directed from the head to the stomach or produced in the stomach itself these humors move towards the liver.^{11,14,12}

In modern medicine discuss cause of Asthma is a multifactorial disease resulting from a combination of genetic susceptibility and environmental influences. A strong familial tendency has been observed, particularly in individuals with a history of atopic diseases such as eczema or allergic rhinitis. Genetic studies have identified several loci, including regions on chromosome 5q that are associated with the regulation of immune responses involving interleukins like IL-4 and IL-13, which contribute to airway inflammation and hyper responsiveness.

1. Signs & symptoms:

- 1. Breathlessness.^{11,14,21,12,33,33}
- 2. Difficulty in breathing. (orthopnoea)
- 3. Cough with or without expectoration.²¹
- 4. Wheezing.^{11,14,21,12,33,38} (Chest tightness is induced by phlegm retention. (Chest constriction)^{21,15,12,38,102}
- 5. Burning sensation during breathing.^{11,14,21,12,33,38}
- 6. Pulse is deep, fast, and soft.^{14,11,12,33,38}
- 7. Respiration is deep, fast, and frequent. Symptoms are aggravated when the patient lying in the supine position.^{14,33}
- 8. Severe thirst when the cause is dryness.^{12,38}

Etiopathogenesis:

The disease involves three processes (1) *Sū'-i-Mizāj* (2) *Sū'-i-Tarkīb* (3) *Tafarruq al-Ittiṣāl*

Sū'-i-Mizāj is classified into two types:

1. *Sū'-i-Mizāj Sāda*
2. *Sū'-i-Mizāj-Māddī*. *Dīq al-Nafas* is *Sū'-i-Mizāj Māddī* involving *Balgham*, which leads to *Sū al-Tarkīb* constriction of bronchioles.^{4,11}

Ahmad Tabri has described three pathogenic alterations:

1. *Rabw Haqīqī* is caused by *Ruṭūbāt Bārida* accumulated in the trachea (*Qaṣaba'-i-Ri'a*). It may or may not be accompanied by shortness of breath (*Intiṣāb*). Its symptoms include thirst, loud breathing, and expectoration in the cough.

2. Waram that narrows the airways; this type of Waram is caused by other *Khilt* that has been mixed with blood as well as *Hārr Sawdāwī Khūn*. It is characterized by fever, burning sensation, restlessness, thirst, and shortness of breath.
3. A cascade of material from the brain, also known as *Du'f Sadr*, *Sū'-i-Mizāj Hārr*, or *Sū'-i-Mizāj Bārid*, results in *Istirkhā'* of the thoracic muscles. It is always associated with shortness of breath and, in rare cases, apnoea.¹⁵ Ibn-i-Sina states that congenital shortening of the thoracic cavity, *Awrām* of the airways, *Khilt Ghalīz* accumulating in the airways, and *Burūdat* and *Yubūsat* of the airways are the causes of *Dīq al-Nafas*.¹⁴

The term *status asthmaticus* (a severe condition in which asthma attacks occur one after the other without interruption) was first used by Zakaria Razi. He considered the most serious type of asthma as *Intiṣāb al-Nafas*. Razi indicates that three pathological alterations take place in *Dīq al-Nafas*, *Awrām Sadr* and the accumulation of blood, pus, or *Khilt Ghalīz* around the lungs; and *Insibāb Nazla-i-dāyma* from the head into the lungs. After reviewing the literature, Majoosi has given a novel concept regarding bronchial asthma.²¹

Hakim Ajmal Khan concurs with the hypothesis that respiratory muscle spasm causes airway blockage. He indicates that it is incredibly tough to treat. *Ghalīz Bārid Ruṭūbāt* which may be *Balgham*, *Sawdā*, or both, causes bronchial asthma³⁹. Chronic inflammation, nonspecific airway hyperreactivity, and reversible airway blockage are the hallmarks of the pathophysiology of bronchial asthma. The recurrent airflow limitation is driven by inflammatory mediators leading to bronchoconstriction, airway oedema, hyper responsiveness, and airway remodelling. The first response of the bronchial smooth muscle to an inhaled allergen or irritant is bronchoconstriction. Asthma is typically diagnosed by a complete reverse of airway blockage, although in many cases, there is only a partial or absent reversal of obstruction.⁴⁰

Recurrent episodes of acute-onset dyspnoea, usually during the night or early morning, are the hallmark signs of asthma. Breathlessness that occurs frequently, usually during the night or early morning, is the primary symptom of bronchial asthma. Further symptoms include cough, wheezing, and a sense of tightness in the chest. Asthmatic symptoms frequently emerge after physical exercise.

Table 1: Brief description of Single herbs used in asthma and their Unani pharmacological actions.

Sr No	Unani Name	Botanical Scientific Name	Part used	Unani pharmacological actions	Pharmacological activity
1	Adusa	Justicia adhatoda L.	Leaf/ root	<i>Munaffith-i Balgham; Dāfi'-i-Su'āl</i> ^[1]	Anti-allergic; ^[41] antihistaminic; ^[42] antioxidant ^[43]
2	Aftimoon	Cuscuta reflexa Roxb.	Seed	<i>Mukhrij-i Balgham; Muhallil</i> ^[5]	Anti-inflammatory; ^[44] antioxidant ^[45]
3	Anjeer Zard	Ficus carica L.	Leaves/ Fruit	<i>Mukhrij-i Balgham; Muhallil</i> ^[5] ,	Anti-inflammatory; ^[46] antioxidant ^[47]
4	Anisoon	Pimpinella anisum L.	Seed	<i>Mukhrij-i Balgham</i> ^[10]	Bronchodilator ^[48]
5	Aslussoos	Glycyrrhiza glabra L.	Root	<i>Mukhrij-i Balgham</i> ^[10]	Antihistaminic; ^[49] antiallergic ^[50]
6	Banafsha	Viola odorata L.	Leaves/ Flowers	<i>Munaffith-i Balgham</i> ^[5]	Anti-bronchitis; anti-inflammatory; anti-asthmatic ^[51]
7	Behidana	Cydonia oblonga Mill.	Seed	<i>Munaffith-i Balgham; Mugharri wa Muzliq</i> ^[10,14]	Antiallergic; ^[52] bronchodilator ^[53]
8	Badiyan (seeds)	Foeniculum vulgare Mill.	Seed	<i>Mundij-i Balgham; Mukhrij-i Balgham</i> ^[5]	Bronchodilator; ^[54] Antioxidant ^[55]
9	Chob Zard	Curcuma longa L.	Rhizome	<i>Muhallil; Mukhrij-i Balgham</i> ^[10]	Antiallergic; ^[56] anti-inflammatory ^[57]
10	Darchini	Cinnamomum verum J. Persl.	Bark	<i>Munaffith-i Balgham; Muhallil</i> ^[5]	Anti-inflammatory; ^[58] antiallergic ^[59]
11	Gaozaban	Borago officinalis L.	Flowers/ Leaves	<i>Munaffith-i Balgham</i> ^[10]	Bronchodilator; anti-inflammatory; antioxidant ^[60]
12	Ghafis	Agrimonia eupatoria L.	Flowers	<i>Muhallil</i> ^[10]	Anti-inflammatory; antioxidant ^[61]
13	Hulba	Trigonella foenum-graecum L.	Seed	<i>Munaffith-i Balgham; Mundij-i Balgham</i> ^[1]	Anti-inflammatory; antioxidant ^[62]
14	Hilteet	Ferula foetida (Bunge) Regel.	Oleo-gum-resin	<i>Mukhrij-i Balgham; Muhallil</i> ^[5]	Relaxant; antioxidant ^[63]
15	Irsa	Iris ensata Thunb.	Root	<i>Munaffith-i Balgham; Muhallil; Mundij-i Balgham</i> ^[14]	Bronchodilator; antihistamine; anti-inflammatory ^[64]
16	Khubbazi	Malva sylvestris L.	Seed/Herb	<i>Munaffith-i Balgham; Dāfi'-Su'āl</i> ^[1]	Anti-inflammatory; ^[65] antioxidant; antiallergic ^[66]
17	Khatmi	Althaea officinalis L.	Seed/Root	<i>Munaffith-i Balgham; Dāfi'-Su'āl</i> ^[5]	Anti-inflammatory; antitussive; soothing ^[67]
18	Kalonji	Nigella sativa L.	Seed	<i>Munaffith-i Balgham; Muhallil</i> ^[5]	Antiallergic; anti-inflammatory; antioxidant ^[68]
19	Kakra Singhi	Pistacia chinensis Bunge	Leaves	<i>Mukhrij-i Balgham</i> ^[14]	Anti-inflammatory; antispasmodic ^[69]
20	Katan	Linum usitatissimum L.	Seed	<i>Mulattif; Dāfi'- Su'āl</i> ^[10]	Anti-inflammatory; antioxidant ^[70]

21	Maweez Munaqqa	Vitis vinifera L.	Fruit	<i>Munaqqi-i-sadr; Mundij-i Balgham</i> ^[14]	Antihistamine inhibition; cytokine reduction ^[71]
22	Parsioshan	Adiantum capillus-veneris L.	Whole herb	<i>Munaffith-i Balgham; Mulattif; Muhallil</i> ^[5]	Anti-inflammatory; antioxidant ^[72]
23	Qust	Saussurea costus (Falc.) Lipsch.	Root	<i>Munaffith-i Balgham</i> ^[10]	Anti-inflammatory; antiallergic ^[73]
25	Sapistan	Cordia dichotoma G. Forst.	Fruit	<i>Munaffith-i Balgham; Mulattif</i> ^[14]	Broncho-relaxant; ^[74] anti-inflammatory ^[75]
26	Saboos-e Gandum	Triticum aestivum L.	Bran/Seed	<i>Munaffith-i Balgham; Muhallil</i> ^[14]	Bronchodilator; anti-interleukins ^[76]
27	Sahejna	Moringa oleifera Lam.	Seed/Leaf	<i>Muhallil; Munaffith-i Balgham</i> ^[10]	Antihistaminic; anti-asthmatic ^[77]
28	Taj Qalmi	Cinnamomum cassia (L.) J.Presl	Bark	<i>Munaffith-i Balgham</i> ^[14]	Anti-inflammatory; antiallergic ^[78]
29	Tulsi	Ocimum sanctum L.	Leaves	<i>Munaffith-i Balgham</i> ^[10]	Bronchodilator; ^[79] anti-asthmatic; anti-inflammatory ^[80]
30	Ustukhuddus	Lavandula stoechas L.	Leaves/ Flowers	<i>Muhallil; Mushil-i-Balgham; Mushil-i-Sawda</i> ^[14]	Tracheal relaxant; anti-inflammatory ^[81]
31	Unnab	Ziziphus jujuba Mill.	Leaves/ Seed/ Fruit	<i>Munaffith-i Balgham; Dāfi'-Su'āl</i> ^[1,10]	Antiallergic; antiasthmatic ^[82]
32	Unsul	Urginea indica (Roxb.) Jessop.	Root/ Rhizome	<i>Muhallil; Munaffith-i Balgham</i> ^[5]	Bronchodilator; antioxidant ^[83]
33	Zufa Khushk	Hyssopus officinalis L.	Flower/ Herb	<i>Muhallil; Munaffith-i Balgham</i> ^[1]	Anti-inflammatory; airway remodeling effects ^[84]
34	Zanjabeel	Zingiber officinale Roscoe	Rhizome	<i>Munaffith-i Balgham</i> ^[10]	Bronchodilator; inhibits acetylcholine ^[85]
35	Zarambaad	Zingiber zerumbet (L.)	Rhizome	<i>Munaffith-i Balgham</i> ^[10]	Antiallergic; antioxidant ^[86]

* Munaffith-i Balgham (expectorant) drugs expel the excretible morbid matters from the body while Dāfi- Su'āl (antitussive) relieves excessive cough.

* Muhallil (resolvent) drugs resolve inflammation caused by the morbid matters in the body (Kabir, 2003)

Table 2: Compound formulations used in asthma (Dīq al-Nafas).⁹⁰

Sr No	Formulation	Drug form	Pharmacological action	Therapeutic uses	Dosage
1	Barshasha ^[87]	Semi-solid	<i>Munawwim; Musakkin-i-Alam</i>	<i>Suāl-i Muzmin; Nazla-o-Zukam</i>	1-3 g orally
2	Habb-e Hindi Zeeqi ^[87]	Pills	<i>Munaffith-i Balgham; Dafi'a Tashannuj</i>	<i>Dīq al-Nafas</i>	1-2 pills (250-500 mg each) BD
3	Habb-e Dīq al-Nafas ^[89]	Pills	<i>Munaffith-i Balgham</i>	<i>Dīq al-Nafas</i>	1-2 pills daily
4	Lauq-e Katan ^[89]	Semi-solid	<i>Munaffith-i Balgham</i>	<i>Dīq al-Nafas</i>	5-10 g linctus
5	Lauq-e Motadil ^[88]	Semi-solid	<i>Mundij; Munaffith-i Balgham; Musakkin-i Suāl</i>	<i>Dīq al-Nafas; Suāl; Nazla</i>	5-10 g linctus BD
6	Lauq-e Nazli ^[88]	Semi-solid	<i>Munaffith-i Balgham</i>	<i>Nazla-o-Zukam; Suāl</i>	5-10 g linctus
7	Lauq-e Dīq al-Nafas ^[89]	Semi-solid	<i>Munaffith-i Balgham</i>	<i>Dīq al-Nafas</i>	5-10 g linctus

8	Lauq-e Dīq al-Nafas Balghami ^[88]	Semi-solid	<i>Munaffith-i Balgham; Musakkin-i Suāl</i>	<i>Dīq al-Nafas; Suāl-i Muzmin</i>	5-10 g linctus
9	Kushta Abrak Safaid ^[87]	Calx	<i>Munaffith-i Balgham; Dafī-e Suāl</i>	<i>Dīq al-Nafas; Suāl</i>	125-250 mg
10	Kushta-e Qaran-ul-Eyyal ^[87]	Calx	<i>Munaffith-i Balgham; Muhallil Waram</i>	<i>Dhāt al-Janb; Dhāt al-Ri'a</i>	60-120 mg
11	Sharbat-e Sadar ^[87]	Syrup	<i>Munaffith-i Balgham; Mundij</i>	<i>Suāl; Dīq al-Nafas; Nazla Muzmin; Sill</i>	10-20 ml BD
12	Sharbat-e Banafsha ^[87]	Syrup	<i>Mundij; Mulayyin-i-Am'a</i>	<i>Nazla; Suāl; Hummā; Qabz</i>	10-20 ml BD
13	Sharbat-e Ejaz ^[87]	Syrup	<i>Munaffith-i Balgham; Musakkin-i Suāl</i>	<i>Suāl; Nazla-o-Zukam</i>	10-20 ml BD
14	Sharbat-e Unnab ^[87]	Syrup	<i>Munaffith-i Balgham; Musakkin-i Suāl</i>	<i>Suāl</i>	10-20 ml BD
15	Safoof-e Dama ^[87]	Powder	<i>Munaffith-i Balgham</i>	<i>Dīq al-Nafas; Suāl-i Muzmin; Suāl-i Balghami</i>	3-5 g powder

Discussion

Asthma is a chronic respiratory condition that continues to challenge modern healthcare systems due to its high prevalence, recurrent nature, and associated morbidity. While contemporary medicine has advanced in diagnosis and management, limitations such as adverse effects of long-term pharmacotherapy and high treatment costs necessitate exploration of complementary approaches.

The Unani System of Medicine (USM), with its holistic principles and centuries-old clinical observations, offers a unique perspective on asthma. Classical Unani scholars like *Jalinoos*, *Razi*, *Majusi*, *Tabri*, *Ibn Sina* and *Arzani* described asthma under the terms *Rabw*, *Buhr*, and *Dīq an-Nafas*, emphasizing not only symptomatology but also underlying humoral imbalances. Their recommended therapies included single drugs (*Adusa*, *Aslussus*, *Banafsha*, *Afteemoon*, *Unnab*) and compound formulations (*Sharbat-e-Banafsha*, *Sharbat-e-Ejaz*, *Sharbat-e-Unnab*, *Safoof-e-Dama*), which aim to restore balance, relieve symptoms, and improve overall quality of life.

This review reveals that many classical remedies possess pharmacological activities supported by contemporary studies such as Bronchodilation, anti-inflammatory, mucolytic, and antioxidant effects demonstrating the scientific relevance of Unani prescriptions. Furthermore, the integration of lifestyle modifications, diet, and regimental therapies in USM highlights its comprehensive approach compared to the predominantly pharmacological focus of modern medicine.

However, there remain challenges: limited large-scale clinical trials, lack of standardized formulations, and the need for rigorous safety and efficacy evaluations. Bridging this gap requires collaborative research integrating Unani principles with modern methodologies, which may yield safer, cost-effective, and accessible interventions for asthma.

Conclusion

Asthma remains a major global health challenge, requiring safe and effective management approaches. The Unani System of Medicine, enriched by classical texts and the works of scholars like *Razi*, *Tabri*, *Majusi* and *Ibn Sina*, provides valuable perspectives on asthma (*Rabw*, *Buhr*, *Dīq an-Nafas*). Remedies include single herbs such as *Adusa*, *Aslussus*, *Banafsha*, *Afteemoon*, *Katan*, *Khatmi*, *Sapistan* and *Unnab* etc. along with compound formulations like *Sharbat-e-Banafsha*, *Sharbat-e-Ejaz*, *Sharbat-e-Unnab*, *Sharbat-e-Adusa* and *Safoof-e-Dama*. This review highlights the holistic Unani approach, which addresses both symptoms and underlying causes. Integrating traditional wisdom with modern evidence may enhance asthma care and reaffirm the relevance of Unani medicine in contemporary healthcare.

Author Contributions: All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the work.

Concept and design: Nilophar & Mohd Noman Taha

Acquisition, analysis, or interpretation of data: Shaikh Mohd Razik & Mohd Noman Taha,

Drafting of the manuscript: Mohd Noman Taha & Nilophar

Critical review of the manuscript for important intellectual content: Nilophar, Mohd Noman Taha & Abdullah

Supervision: Professor Abid Ali Ansari

Financial support and sponsorship: Nil.

Conflicts of interest: No conflict of interest

References

1. World Health Organization. Asthma [Internet]. Geneva: World Health Organization; 2023 [cited 2025 May 12]. Available from: <https://www.who.int/news-room/fact-sheets/detail/asthma>
2. Sakula A. Henry Hyde Salter (1823-71): A biographical sketch. Thorax. 1985;40(12):887-8.

<https://doi.org/10.1136/thx.40.12.887> PMid:3913047
PMCID:PMC460219

3. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet.* 2018 Nov 10;340(10112):1789-858.
4. Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2019 (GBD 2019) Results [Internet]. Seattle, WA: IHME, University of Washington; 2020. Available from: <https://vizhub.healthdata.org/gbd-results/>
5. World Health Organization. Asthma [Internet]. Geneva: WHO; 2023 Available from: <https://www.who.int/news-room/fact-sheets/detail/asthma>
6. Singh S, Salvi S, Mangal DK, et al. Prevalence, time trends and treatment practices of asthma in India: The Global Asthma Network study. *ERJ Open Res.* 2022;8(2):00528-2021. <https://doi.org/10.1183/23120541.00528-2021> PMid:35651368
PMCID:PMC9149387
7. Osler W. The Principles and Practice of Medicine. 1st ed. New York: D. Appleton and Company; 1840. p. 112-505.
8. Anonymous, WHO international standard terminologies on Unani medicine, Department of Integrated Health Services World Health Organization (WHO), Geneva, 2022; 253.
9. Azhar MU, Mustehasan, Adhami SM, Siddiqui KM, Khan MA, Ahmad MN. Clinical Study of A Polyherbal Unani Formulation in Dīq al-Nafas (Bronchial Asthma), CCRUM publication New Delhi, 2014; 7-10.
10. Razi ABMBZ. Kitab al-Hawi (Urdu translation by CCRUM) Vol.4th. New Delhi: CCRUM; 2008 p: 75-77
11. Sina 1. Al-Qanoon fil Tibb (Urdu translation by Kantoori GH) Vol.1. New Delhi: Idara Kitabul Shifa; 2010 p: 201-205
12. Arzani A. Tibb-i-Akbar [Husain M, trans]: New Delhi: Idara Kitab-us-Shifa; 2015 p 198
13. Edmund I. Herney, M.D., La Jolla, Caliy. Edmund L. Keeney M.D.
14. J. Tod Olin,36 - Exercise-Induced Asthma: Strategies to Improve Performance, Editor(s): Donald Y.M. Leung, Stanley J. Szefler, Francisco A. Bonilla, Cezmi A. Akdis, Hugh A. Sampson, Pediatric Allergy: Principles and Practice (Third Edition), Elsevier, 2016, Pages336-342.e2, ISBN 9780323298712, <https://doi.org/10.1016/B978-0-323-29875-9.00036-7>
15. Khan MA. Ikseer Azam [Kabiruddin M, trans]. New Delhi: Idara Kitabus Shifa; 2011 p 337
16. Razi ABMBZ. Kitab al-Hawi (Urdu translation by CCRUM) Vol.4th. New Delhi: CCRUM; 2008 p 75-77
17. Sina I. Al-Qanoon fil Tibb (Urdu translation by Kantoori GH) Vol.1. New Delhi: Idara Kitabul Shifa; 2010. P 227
18. Jurjani I. Zakhira Khwarizam Shahi (Urdu Translation by H.H. Khan).New Delhi: Idara Kitabul Shifa; 2010 p: 324
19. Majooси IA. Kamilus-Sana'ah [Kantoori GH, trans]. New Delhi: Idara Kitabus Shifa; 2010 p 179
20. Khan MA. Ikseer Azam [Kabiruddin M, trans]. New Delhi: Idara Kitabus Shifa; 2011 p 277
21. (Razi ABMBZ. Kitab al-Hawi) Vol.1. New Delhi: CCRUM; 2005 p 75-77
22. Baghdadi AI. Kitabal-Mukhtärât fi'l Tibb (Urdu translation by Central Council for Research in Unani Medicine). Vol.1. New Delhi: CCRUM; 2005 p 98-91
23. Al-Tabari AABSR. Firdaus-ul-Hikmat [Shah MA, trans]. New Delhi: Idara Kitabus Shifa; 2010 p 210
24. Tabri ABM, Al Molijat-i-buqratiya [CCRUM] V 1 New Dehi: CCRUM: 1995 p 130
25. Anonymous. Amraz-e-Riya. New Delhi: CCRUM; 1995 p 37
26. Razi ABMBZ. Kitab al-Hawi (Urdu translation by CCRUM) Vol.4th. New Delhi: CCRUM; 2008. P 75-77
27. Arzani A. Tibb-i-Akbar [Husain M, trans]: New Delhi: Idara Kitab-us-Shifa; 2015 p 221
28. Khan MA. Ikseer Azam [Kabiruddin M, trans]. New Delhi: Idara Kitabus Shifa; 2011 p 303
29. Razi IZ. Kitab al-Mansoori. [Central Council for Research in Unani Medicine, trans]. New Delhi: CCRUM; 1991. P. 351
30. Ibn Rushd AW. Kitabul Kulliyat. (Urdu Translation). Lahore: Maktaba Daniyal; 2017 p 265
31. Bhat MDA, Khan AB, Hakim MH. Unani Aspect of Cardiac Arrhythmia- A Review. Indian
32. Jalinoos. Kitab Fi Firaq Al-Tib (Urdu Translation by Rahman HSZ). Aligarh:Ibn Sina Academy; 2008 p 16
33. AMH. Ghina Muna (Urdu translation). New Delhi: CCRUM; 2008 p 234
34. Manniche L. Sacred luxuries: fragrance, aromatherapy, and cosmetics in ancient Egypt. Cornell University Press; 1999.
35. Patwa A, Shah A. Anatomy and physiology of respiratory system relevant to anesthesia. *Indian J Anaesth.* 2015 Sep;59(9):533-41. <https://doi.org/10.4103/0019-5049.165849> PMid:26556911
PMCID:PMC4613399
36. Razi AHF. Ilmul-akhlaq [Masumi MSH, trans]. New Delhi: Kitab bhawan; 1978
37. Kabiruddin M. Tarjuma Kabir, part-2, Matba Daftarul Maseeh. Delhi; 1933. 557-58,71.
38. Razi AMBZ. Kitabul Fakhir Fit Tib (Urdu Translation by CCRUM) Vol. 1. New Delhi: CCRUM Ministry of H&FW; 2008.
39. Lopez K, Whitehead L. Communication in Palliative Care [Internet]. Brisbane (AU): Exon Publications; 2018. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK470401>
40. Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J. Harrison's principles of internal medicine, 19e. Vol. 1. McGraw-Hill New York, NY, USA.; 2015.
41. Paliwa JK, Dwivedi AK, Singh S, Gutpa RC. Pharmacokinetics and in-situ absorption studies of a new antiallergic compound 73/602 in rats. *International journal of pharmaceutics.* 2000 Mar 20;197(1-2):213-20. [https://doi.org/10.1016/S0378-5173\(00\)00324-0](https://doi.org/10.1016/S0378-5173(00)00324-0) PMid:10704808
42. Athiya V, Gupta S, Chourasiya A. Phytochemical Screening and Assessment of Adhatoda Vasica (Leaf) For Antihistaminic Activity. *Journal of Drug Delivery and Therapeutics.* 2019 Dec 19;9(4-s):1092-5.
43. Saran N, Anandharaj B, Bupesh G, Vasanth S, Surendhar PA. In vitro antioxidant potential of *Justicia adhatoda* leaf extracts against 1, 1-diphenyl picryl hydrazyl, hydroxyl, and nitrous oxide free radicals. *Drug Invention Today.* 2019 Aug 15;12(8):1736-40.
44. Khan HMA. Muhit-i-Azam. New Delhi: Central Council for Research in Unani Medicine (CCRUM); 2012. Vol I-III p. 547
45. Geetha T, Varalakshmi P. Anti-inflammatory activity of lupeol and lupeol linoleate in rats. *Journal of ethnopharmacology.* 2001 Jun 1;76(1):77-80. [https://doi.org/10.1016/S0378-8741\(01\)00175-1](https://doi.org/10.1016/S0378-8741(01)00175-1) PMid:11378285
46. Khan AU, Gilani AH. Natural Products Useful in Respiratory Disorders: Focus on Side-Effect Neutralizing Combinations. *Phytotherapy Research.* 2015 Sep;29(9):1265-85. <https://doi.org/10.1002/ptr.5380> PMid:26061992
47. Ali B, Mujeeb M, Aeri V, Mir SR, Faiyazuddin M, Shakeel F. Anti-inflammatory and antioxidant activity of *Ficus carica* Linn. Leaves. Natural product research. 2012 Mar 1;26(5):460-5. <https://doi.org/10.1080/14786419.2010.488236> PMid:21644169
48. Yang XM, Yu W, Ou ZP, Ma HL, Liu WM, Ji XL. Antioxidant and immunity activity of water extract and crude polysaccharide from *Ficus carica* L. fruit. *Plant Foods for Human Nutrition.* 2009

Jun;64(2):167-73. <https://doi.org/10.1007/s11130-009-0120-5> PMid:19466553

49. Khare CP. Indian Medicinal Plants: An Illustrated Dictionary. Berlin: Springer; 2008. <https://doi.org/10.1007/978-0-387-70638-2> PMCID:PMC2705749

50. Boskabady MH, Ramazani-Assari M. Relaxant effect of Pimpinella anisum on isolated guinea pig trachea. *J Ethnopharmacol.* 2001;74(1):83-8. [https://doi.org/10.1016/S0378-8741\(00\)00314-7](https://doi.org/10.1016/S0378-8741(00)00314-7) PMid:11137352

51. Singh SK, Patel JR, Dubey PK, Thakur S. A review on anti-asthmatic activity of traditional medicinal plants. *International journal of pharmaceutical sciences and research.* 2014 Oct 1;5(10):4097.

52. Lee YM, Kim DK, Kim SH, et al. Antianaphylactic activity of *Poncirus trifoliata* fruit extract. *J Ethnopharmacol.* 1996;54(2-3):77-84. [https://doi.org/10.1016/S0378-8741\(96\)01451-1](https://doi.org/10.1016/S0378-8741(96)01451-1) PMid:8953421

53. Kabir HM. *Makhzan-ul Mufradat al-Ma'ruf Khawas-ul Advia.* Deoband: Faisal Publishers; 2000. P 232

54. Huber R, Stintzing FC, Briemle D, Beckmann C, Meyer U, Gründemann C. In vitro antiallergic effects of aqueous fermented preparations from *Citrus* and *Cydonia* fruits. *Planta Medica.* 2012 Mar;78(04):334-40. <https://doi.org/10.1055/s-0031-1280455> PMid:22193979

55. Janbaz KH, Shabbir A, Mehmood MH, Gilani AH. Insight into mechanism underlying the medicinal use of *Cydonia oblonga* in gut and airways disorders. *J Anim Plant Sci.* 2013 Jan 1;23:330-6.

56. Miraj S, Kiani S. Study of antibacterial, antimycobacterial, antifungal, and antioxidant activities of *Foeniculum vulgare*: A review. *Der Pharmacia Lettre.* 2016;8(9):200-5.

57. Ma C, Ma Z, Fu Q, Ma S. Curcumin attenuates allergic airway inflammation by regulation of CD4+ CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. *Fitoterapia.* 2013 Jun 1; 87:57-64. <https://doi.org/10.1016/j.fitote.2013.02.014> PMid:23500387

58. Karaman M, Firinci F, Cilaker S, et al. Anti-inflammatory effects of curcumin in chronic asthma (murine). *Allergol Immunopathol (Madr).* 2012;40(4):210-4. <https://doi.org/10.1016/j.aller.2011.04.006> PMid:21862198

59. Khan IA, Aziz A, Munawar SH, Manzoor Z, Afzal A. Evaluation of Counter Irritant Potential of Aqueous Bark Extract of Cinnmon Loureiroi. *Int J Pharm Res Allied Sci.* 2014; 3:30-5.

60. Pel P, Kim YM, Chin YW. Chemical Constituents with Antiallergic Activity from the Barks of *Cinnamomum cambodianum* Collected in Cambodia. *Bulletin of the Korean Chemical Society.* 2015 Jan;36(1):384-7. <https://doi.org/10.1002/bkcs.10022>

61. Asadi-Samani M, Bahmani M, Rafieian-Kopaei M. The chemical composition, botanical characteristic and biological activities of *Borago officinalis*: a review. *Asian Pacific journal of tropical medicine.* 2014 Sep 1;7: S22-8. [https://doi.org/10.1016/S1995-7645\(14\)60199-1](https://doi.org/10.1016/S1995-7645(14)60199-1) PMid:25312125

62. Rao YK, Geethangili M, Fang SH, Tzeng YM. Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: a comparative study. *Food and Chemical Toxicology.* 2007 Sep 1;45(9):1770-6. <https://doi.org/10.1016/j.fct.2007.03.012> PMid:17475387

63. Liu Y, Kakani R, Nair MG. Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. *Food Chemistry.* 2012 Apr 15;131(4):1187-92. <https://doi.org/10.1016/j.foodchem.2011.09.102>

64. Gholamnejad Z, Byrami G, Boskabady MH, Iranshahi M. Possible mechanism (s) of the relaxant effect of asafoetida (*Ferula assa-foetida*) oleo-gum-resin extract on guinea-pig tracheal smooth muscle. 2012: 10-16

65. Benso B, Franchin M, Massarioli AP, Paschoal JA, Alencar SM, Franco GC, Rosalen PL. Anti-inflammatory, anti-osteoclastogenic and antioxidant effects of *Malva sylvestris* extract and fractions: in vitro and in vivo studies. *PLoS One.* 2016 Sep 19;11(9): e0162728.

<https://doi.org/10.1371/journal.pone.0162728> PMid:27643502 PMCID:PMC5028055

66. Afshar AA, Ghafarzade S, Yavari B, Athari SS. Survey the effect of Herbal Medicine on pathogenesis of Eosinophilic Chemotactic Factors in experimental Allergic Asthma. *Adv Biores.* 2014;5(1):160-4.

67. Shah SA, Akhtar N, Akram M, Shah PA, Saeed T, Ahmed K, Asif HM. Pharmacological activity of *Althaea officinalis* L. *Journal of Medicinal Plants Research.* 2011 Oct 30;5(24):5662-6.

68. Saleh S, El Denshary E, Mahran N. *Nigella sativa* (Black seed) oil: anti-inflammatory and antioxidant effects in experimental models of allergic asthma. InFirst USIM International Conference on Medicine and Health (ICMH2012), Kuala Lumpur. <http://dx.doi.org/10.13140/2.1.2012.5096>.

69. Wu X, Xiao F, Zhang Z, Li X, Xu Z. Research on the analgesic effect and mechanism of bornyl acetate in volatile oil from *Amomum villosum*. *Zhong yaocaiZhongyaocai Journal of Chinese medicinal materials.* 2005 Jun 1;28(6):505-7.

70. Zanwar AA, Hegde MV, Bodhankar SL. In vitro antioxidant activity of ethanolic extract of *Linum usitatissimum*. *Pharmacology online.* 2010; 1:683 96.

71. Arora P, Ansari SH, Najmi AK, Anjum V, Ahmad S. Investigation of antiasthmatic potential of dried fruits of *Vitis vinifera* L. in animal model of bronchial asthma. *Allergy, Asthma & Clinical Immunology.* 2016 Dec;12(1): 1-2. <https://doi.org/10.1186/s13223-016-0145-x> PMid:27536321 PMCID:PMC4988050

72. Choi MS, Do KM, Park YB, Jeon SM, Jeong TS, Lee YK, Lee MK, Bok SH. Effect of naringin supplementation on cholesterol metabolism and antioxidant status in rats fed high cholesterol with different levels of vitamin E. *Annals of Nutrition and Metabolism.* 2001;45(5):193-201. <https://doi.org/10.1159/000046729> PMid:11585976

73. Sunkara Y, Robinson A, Babu KS, Naidu VG, Vishnuvardhan MV, Ramakrishna S, Madhavendra SS, Rao JM. Anti-inflammatory and cytotoxic activity of chloroform extract of roots of *Saussurea lappa* Clarke. *Journal of Pharmacy Research.* 2010;3(8):1775-8.

74. Al Bayaty MA. Mechanism of the tracheal smooth muscle relaxant activity of the *Cordia myxa* plant extract in sheep. *The Iraqi Journal of Veterinary Medicine.* 2008 Dec 31;32 (2):214-26. <https://doi.org/10.30539/iraqjvm.v3i2.755>

75. Hussain N, Kakoti BB, Rudrapal M, Sarwa KK. Anti-inflammatory and Antioxidant Activities of *Cordia dichotoma* Forst. *Biomed. Pharmacol. J.* 2020 Dec 1; 13:2093-9. <https://doi.org/10.13005/bpj/2090>

76. Rajanand MG, Nageswari AD, Irshad PP, Ramasamy C. Does dose reduction of an inhaled corticosteroid with the addition of leukotriene antagonist is clinical significance in asthma patients. An aandomized clinical trial. *World Appl Sci J.* 2013; 24:276-81.

77. Aggarwal AN, Chaudhry K, Chhabra SK, D Souza GA, Gupta D, Jindal SK, Katiyar SK, Kumar R, Shah B, Vijayan VK. Prevalence and risk factors for bronchial asthma in Indian adults: a multicenter study. *Indian Journal of Chest Diseases and Allied Sciences.* 2006 Jan 18;48(1):13.

78. Makino T, Shiraki Y, Mizukami H. Interaction of gypsum and the rhizome of *Anemarrhena asphodeloides* plays an important role in antiallergic effects of byakkokeiishito in mice. *Journal of natural medicines.* 2014 Jul;68(3):505 12. <https://doi.org/10.1007/s11418-014-0827-y> PMid:24554438 PMCID:PMC4353874

79. Vinaya M, Kamdod MA, Swamy M, Swamy M. Bronchodilator activity of *Ocimum sanctum* Linn. (Tulsi) in mild and moderate asthmatic patients in comparison with salbutamol: a single-blind cross-over study. *Int J Basic Clin Pharmacol.* 2017 Mar;6(3):511. <https://doi.org/10.18203/2319-2003.ijbcp20170543>

80. Singh S, Agrawal SS. Anti-asthmatic and anti-inflammatory activity of *Ocimum sanctum*. *International Journal of pharmacognosy.* 1991 Jan 1;29(4):306-10. <https://doi.org/10.3109/13880209109082904>

81. Arantes S, Candeias F, Lopes O, Lima M, Pereira M, Tinoco T, Cruz-Morais MJ, Martins R. Pharmacological and Toxicological Studies of Essential Oil of Lavandula stoechas subsp. Luisieri. *Planta Med* 2016; 82(14): 1266-1273 <https://doi.org/10.1055/s-0042-104418> PMid:27124241

82. Naik SR, Bhagat S, Shah PD, Tare AA, Ingawale D, Wadekar RR. Evaluation of antiallergic and anti-anaphylactic activity of ethanolic extract of *Zizyphus jujuba* fruits in rodents. *Revista Brasileira de Farmacognosia*. 2013 Sep 1;23(5):811-8. <https://doi.org/10.1590/S0102-695X2013000500014>

83. Bashir S, Abbas S, Gilani AH, Khan A. Studies on bronchodilator and cardiac stimulant activities of *Urginea indica*. *Bangladesh Journal of Pharmacology*, 2013 May 20;8(3):249-54. <https://doi.org/10.3329/bjp.v8i3.14825>

84. Ma X, Ma X, Ma Z, Sun Z, Yu W, Wang J, Li F, Ding J. The Effects of Uygur Herb *Hyssopus officinalis* L. on the Process of Airway Remodeling in Asthmatic Mice", Evidence-Based Complementary and Alternative Medicine, vol. 2014, <https://doi.org/10.1155/2014/710870> Mid:25383084 PMCid:PMC4212596

85. Ghayur MN, Gilani AH, Janssen LJ. Ginger attenuates acetylcholine-induced contraction and Ca²⁺ signaling in murine airway smooth muscle cells. *Canadian journal of physiology and pharmacology*.

2008 May;86(5):264-71. <https://doi.org/10.1139/Y08-030> PMid:18432287

86. Tewtrakul S, Subhadhirasakul S. Anti-allergic activity of some selected plants in the Zingiberaceae family. *Journal of ethnopharmacology*. 2007 Feb 12;109(3):535-8. <https://doi.org/10.1016/j.jep.2006.08.010> PMid:16978816

87. Anonymous. National Formulary of Unani Medicine. Part I. New Delhi: CCRUM, Ministry of Health & Family Welfare, Govt. of India; 2006.

88. Anonymous. National Formulary of Unani Medicine. Part III (1st ed.). New Delhi: Dept. of AYUSH, Ministry of Health & Family Welfare, Govt. of India; 2001.

89. Anonymous. National Formulary of Unani Medicine. Part V. New Delhi: Dept. of AYUSH, Ministry of Health & Family Welfare, Govt. of India; 2008.

90. Ahmed, N., Zakir, M. , Alam, M. A., Javed, G., & Minhajuddin, A. (2022). Management of asthma (دیق الـنافـس) in Unani system of medicine. *International Journal of Health Sciences*, 6(S1), 13036 13054. <https://doi.org/10.53730/ijhs.v6nS1.8271>

91. Chughmini MM. *Khulasat al-Qanoon*. Arabic Publisher Berut Lebanon: Al-balagh press; 2002. p. 103