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1. Introduction: introduction that expands specifically on the theme of Al-
driven drug discovery as a strategy to reduce reliance on
animal studies, building upon but distinct from the text
you provided.>6

The discovery and development of novel therapeutics is
a cornerstone of modern medicine, yet the traditional
pipeline remains fraught with inefficiencies. A new drug

typically requires over a decade of research and For decades, animal models have been regarded as the
development, with costs frequently surpassing two “gold standard” for evaluating pharmacokinetics,
billion U.S. dollars.’?2 Even with such investments, pharmacodynamics, safety, and toxicity before advancing
attrition rates are alarming—only about 10% of compounds into human trials. Yet, despite their
candidates that reach clinical trials ultimately gain widespread use, animal studies are increasingly
regulatory approval. The reasons are multifaceted: lack of criticized on scientific, ethical, and regulatory grounds.
efficacy in humans despite promising preclinical results, From a scientific standpoint, interspecies differences
unforeseen toxicities, suboptimal pharmacokinetic often limit the predictive validity of animal models. Drugs
properties, and challenges in identifying appropriate that demonstrate safety and efficacy in rodents, non-
patient subgroups.3 High-throughput screening (HTS), human primates, or other model organisms may still fail
one of the most widely employed methods, often yields in human clinical trials.” This translational gap
hit rates as low as 2-3%, resulting in vast amounts of contributes to the staggering attrition rates observed in
wasted resources.* Here is a detailed academic-style pharmaceutical pipelines, where the majority of
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candidates identified as promising in animal models
ultimately do not succeed in human testing. From an
ethical perspective, the use of animals raises concerns
that resonate strongly with the principles of the 3Rs—
Replacement, Reduction, and Refinement—which aim to
minimize harm and promote alternatives.89:10

Simultaneously, the regulatory environment is gradually
shifting. Several jurisdictions, including the European
Union, India, and the United States, have strengthened
guidelines encouraging non-animal-based approaches in
early drug development. The U.S. Food and Drug
Administration Modernization Act 2.0 (2022) marked a
significant milestone, formally recognizing non-animal
methodologies such as computational models, organ-on-
chip platforms, and otherin silicotools as valid
alternatives to animal testing for preclinical evaluation.
These shifts reflect a growing consensus that to enhance
both predictive accuracy and ethical responsibility, the
pharmaceutical industry requires transformative
innovations beyond traditional models. Among the
emerging technologies, artificial intelligence (AI) and
machine learning (ML) represent a particularly powerful
set of tools poised to accelerate this transition.!!

In this context, artificial intelligence (AlI) and machine
learning (ML) have emerged as disruptive forces. These
technologies promise to transform the discovery pipeline
by reducing reliance on trial-and-error approaches,
improving predictive accuracy, and uncovering patterns
hidden within massive datasets that surpass human
analytical capacity. The pharmaceutical industry has
invested heavily in Al initiatives, with both start-ups and
established companies reporting breakthroughs in target
discovery, structure-based design, and drug repurposing.
Academic research has paralleled this momentum,
producing innovative model architectures and
benchmarks.12

The Role of Al in Rethinking Preclinical Research

Artificial intelligence, encompassing subfields such as
machine learning, deep learning, and natural language
processing, has already demonstrated transformative
potential in optimizing nearly every stage of drug
discovery. What is particularly noteworthy is its capacity
to provide computationally driven predictions of drug
behaviour in ways previously only approximated through
animal studies. For example, predictive models of drug
toxicity, metabolism, and target engagement are
becoming increasingly sophisticated.’3 Al can now
simulate complex biological responses by leveraging
vast, multimodal datasets from genomics,
transcriptomics, proteomics, metabolomics, and clinical
data repositories. These predictive insights enable
researchers to flag liabilities, forecast pharmacokinetic
outcomes, and even model adverse reactions in silico
before moving compounds into costly and ethically
burdensome in vivo studies.

Unlike animal models, which are constrained by species-
specific biology, Al systems learn directly from human-
relevant data sources, including real-world evidence and
patient-derived  datasets.!#15  Such  approaches
potentially mitigate interspecies translation failures,
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offering higher external validity when anticipating
clinical success. For instance, deep learning algorithms
trained on human toxicogenomic datasets can predict
organ-specific drug toxicity with a precision rivalling
traditional animal-based toxicology study. Similarly,
graph neural networks (GNNs) and transformer
architectures, adapted to chemical informatics, allow
unprecedented accuracy in molecular property
predictions, further reducing the reliance onin
vivo validation.16.17

Emergence of In Silico Models as Animal Alternatives

Advances in Al have also accelerated the convergence
between computational modelling and experimental
innovations such asorganoids, organ-on-a-chip
platforms, and multi-omics integration. These hybrid
models reduce the need for animal experimentation by
supplying datasets that can be fed into machine-learning
pipelines to refine their predictive performance. For
example, microfluidic liver-on-chip devices combined
with Al-enabled image analysis create a high-throughput
framework for detecting hepatotoxicity earlier than
conventional rodent assays. Similar systems are being
developed for cardiotoxicity, neurotoxicity, and renal
safety. By enhancing the fidelity of human-relevant
models, Al not only reduces but, in some cases, may
entirely replace specific categories of animal study.!8

Furthermore, in silico clinical trials, powered by Al and
computational biology, are gaining attention as
legitimate frameworks to approximate population-level
drug responses without involving animal surrogates.
Virtual patient cohorts can be modelled using machine
learning to capture variability in age, sex, genetics,
comorbidities, and polypharmacy. These simulations can
forecast heterogeneous treatment responses, guide dose
selection, and optimize trial design—all functions that
previously required extensive preclinical animal
experimentation.!®

Ethical and Societal Drivers of Change

Reducing the reliance on animal testing is not merely a
technological ambition but also a response to shifting
ethical and societal priorities. Public opposition to
animal experimentation is rising, and consumer-driven
industries such as cosmetics have already witnessed
large-scale bans on animal testing worldwide. The
pharmaceutical sector, though long reliant on animal
studies due to regulatory mandates, is now being
compelled to align with these ethical imperatives. Al-
driven alternatives meet this demand by delivering data-
rich, human-centric modelsthat promise not only
compliance with the 3Rs but also improved translational
accuracy. This ethical-technological synergy underpins
much of the current momentum toward reformulation of
drug discovery pipelines.20

Challenges in Implementation

Despite enormous promise, the integration of Al into
drug discovery as a direct alternative to animal testing
faces several challenges. First, issues of data availability
and quality remain paramount. High-performing Al
models require large, curated datasets that are often
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fragmented, proprietary, or noisily labelled. Toxicology
data, in particular, are still heavily reliant on animal-
derived datasets, creating potential biases in algorithm
training. Second, the interpretability and transparency of
Al models pose hurdles for regulatory acceptance. Black-
box predictions—even when accurate—struggle to gain
regulatory confidence compared to empirically validated
animal studies. Third, equity and access concerns persist,
as the most advanced Al infrastructures are concentrated
in high-resource settings, leaving underfunded labs and
low-income regions at risk of exclusion from these
scientific advances.?!

Finally, while Al offers powerful simulation capabilities,
rigorous validation protocols will be required before
computational models can fully displace animal studies
in regulatory toxicology. Ongoing initiatives, such as the
OECD’s  efforts to  standardise  Al-enabled in
silico methods, are critical in advancing acceptance
within policymaking bodies. Collaboration among
academia, industry, and regulators will therefore
determine the speed and scope of this transition.21.22

Toward a Hybrid and Responsible Future

It is unlikely that animal testing will be fully abolished in
the near term. Instead, Al should be conceived as a driver
of progressive reduction, wherein computational and
predictive methods incrementally displace animal
studies across specific stages of drug discovery. Already,
compound screening, ADMET (absorption, distribution,
metabolism, excretion, and toxicity) profiling, and early
safety assessments are areas in which machine learning
has shown enough promise to significantly reduce in
vivo workload. As virtual models become increasingly
precise, researchers can prioritize only the most
promising compounds for limited animal validation,
thereby complying with ethical imperatives while also
improving pipeline efficiency.?3
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The vision for the coming decade is an Al-augmented
drug discovery paradigm where human-relevant data,
advanced computing, and predictive analytics form the
backbone of preclinical research. In such a system,
animals may serve only as confirmatory tools rather than
default platforms, marking a profound paradigm shift.24
Ultimately, this trajectory aligns advances in artificial
intelligence with the dual imperatives of scientific
innovation and compassionate ethics, offering a future
where new medicines reach patients faster, cheaper, and
with minimised animal suffering.2425

The central aim of this manuscript is to critically review
advances in Al-driven drug discovery between 2019 and
2024, while situating them within broader scientific and
ethical frameworks. Specifically, the objectives are:

1. To provide an overview of the evolution of Al
applications in drug discovery.

2. To examine methodological frameworks employed in
systematic reviews of the field.

3. To analyse specific applications of AI/ML across
different stages of the pipeline.

4. To evaluate strengths, weaknesses, and translational
challenges of these approaches.

5. To identify research gaps and propose future directions
for responsible implementation.26

This review distinguishes itself by offering a comparative
perspective that juxtaposes modern architectures such
as GNNs and transformers against classical ML
approaches, while also interrogating persistent issues of
data quality, interpretability, and equitable access. By
synthesising findings across multiple domains, it aims to
guide researchers, industry professionals, and
policymakers toward informed decisions on integrating
Al into pharmaceutical research and development.2?
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2. Methods:
2.1 Literature Search Strategy

To construct a rigorous and comprehensive dataset of
relevant studies, a systematic search was conducted
across multiple academic databases including PubMed,
Scopus, Web of Science, and Google Scholar. The search
timeframe spanned January 2019 to December 2024,
reflecting the most recent advances in the rapidly
evolving field of Al-driven drug discovery. Search terms

2.2 Inclusion and Exclusion Criteria

Table 1: Inclusion and Exclusion Criteria
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were designed using the PICO framework
(Population/Problem, Intervention, Comparison,
Outcome), emphasizing keywords such as “artificial
intelligence,” “machine learning,” “deep learning,” “graph
neural networks,” “transformers,” “drug discovery,’
“target identification,” “lead optimization,” “virtual
screening,” “drug repurposing,” “ADME,” “toxicology,” and
“clinical trial design.”?8 Boolean operators and nested
phrases were employed to maximise the sensitivity and
specificity of results.2?

» o«

Criteria Type Details

Inclusion Criteria e Peer-reviewed research articles

¢ High-impact reviews and meta-analyses

« Studies explicitly focused on AI/ML methodologies in small-molecule drug discovery

* Preprints from credible repositories (e.g., arXiv, bioRxiv) if presenting novel and validated
insights not yet available in peer-reviewed literature

Exclusion Criteria
* Non-English articles

« Studies centred on automation, robotics, or formulation science without direct Al integration

« Publications lacking empirical data (e.g., editorials, opinion pieces)
 Preprints without novel or validated contributions3?

2.3 Study Selection and Quality Assessment

All search results were managed using EndNote X20.
Duplicate entries were removed, and each article
underwent title and abstract screening by the lead
reviewer, followed by full-text assessment for eligibility.
Quality was evaluated based on transparency of
methodology, availability of datasets or code, robustness
of validation protocols, and acknowledgement of
limitations or biases. The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020
framework guided documentation of the selection
process.31

3. Case Studies of Al used to reduce animal
testing for new drug discovery:

1. Recursion Pharmaceuticals — InVivoPrint (Al for in-
vivo phenotyping and early toxicity detection)

Overview: Recursion built one of the broadest industrial
platforms combining high-content cellular imaging,
“smart cage” in-vivomics, and deep learning to detect
early phenotypic signatures of efficacy and toxicity. Their
InVivoPrint V1 model integrates time-series behavioural
and physiologic readouts from instrumented animal
housing with traditional assay endpoints to flag liabilities
earlier in preclinical pipelines.

Methods / Al approach: The company collects
continuous video and sensor streams (activity,
temperature, respiration), clinical chemistry,
haematology, and other metadata across thousands of
animals and assays. A multitask discriminative deep-
learning model ingests ~19 heterogeneous inputs and
produces compound “fingerprints” of known toxicity
signatures; new compounds are compared against these
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fingerprints to predict organ-level liabilities and adverse
outcomes earlier than traditional endpoints.

Effect on animal testing: By recognizing toxicity signals
earlier, the platform allows teams to deprioritize
hazardous candidates before committing to long, large-
cohort studies. This “triage upstream” reduces the
number and duration of follow-on in-vivo experiments,
reduces repeat studies, and focuses animal use on
targeted confirmatory work. Public reporting indicates
program timelines shortened substantially (Recursion
cites examples of moving a candidate to clinical testing in
~18 months versus multi-year industry norms).

Outcomes & evidence: Recursion’s published
descriptions and press coverage report earlier detection
of organ toxicities and faster candidate progression.
However, company-level animal-count reductions are
program-specific and often proprietary; academic
validation is emerging but not yet universal.

Limitations: Models depend on rich, standardised data;
generalizability across labs and species requires
validation. Regulatory acceptance for complete
replacement remains limited — the approach is currently
hybrid (computational + reduced targeted in vivo).32

2. Insilico Medicine — Al-designed candidates and
accelerated preclinical pipelines

Overview: Insilico Medicine has demonstrated rapid
target identification, design and nomination of
preclinical  candidates using generative  and
reinforcement learning approaches; one high-profile
program advanced an anti-fibrotic candidate to Phase I in
~30 months from project start. Their workflows
prioritise  human-relevant in-silico and in-vitro
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predictions that reduce the need for broad exploratory
animal screening.33

Methods / Al approach: Insilico uses generative
chemistry models (GANs/transformers/reinforcement
learning), integrated with in-silico ADMET predictors
and in-vitro human cell assays, to design and triage
molecules before any animal work. Candidate selection
emphasizes predicted human biology relevance and
safety profiles, decreasing the number of molecules
requiring animal toxicology screening.

Effect on animal testing: Faster, higher-confidence
candidate selection reduces initial animal screening
breadth and the iterative animal cycles common to
empirical medicinal chemistry. In reported programs
Insilico progressed leads with more focused,
confirmatory in-vivo testing rather than broad discovery-
era animal screens.

Outcomes & evidence: Public timelines (e.g., Phase I
entry within ~30 months) and peer-reviewed
publications show accelerated programs. Quantified
reductions in animal counts are rarely disclosed publicly
but process changes imply meaningful reductions in
exploratory animal experiments.

Limitations: As with other Al workflows, translational
uncertainty remains: in-silico models simplify biology
and can miss emergent in-vivo phenomena; regulatory
packages still require targeted in-vivo safety data.3334

3. Exscientia (and DSP-1181) — Al-driven design to
shrink discovery timelines and de-risk animal testing

Overview: Exscientia collaborated with Sumitomo
Dainippon Pharma to create DSP-1181 (for OCD), one of
the first Al-designed small molecules to reach clinical
trials. The project illustrated compressed lead
optimization cycles and fewer candidate syntheses and
screens in early discovery.

Methods / Al approach: Exscientia applies knowledge-
driven Al and active learning across target-binding
models, multi-parameter optimization (MPOS) and
automated synthesis/assay loops. These tools seek to
generate molecules that balance potency, selectivity and
predicted ADMET properties up front — reducing the
need to test many analogue series in animals.35

Effect on animal testing: By narrowing candidate sets
before preclinical selection, Exscientia’s approach lowers
the number of compounds entering animal tolerability
and pharmacology studies. Their reported discovery
timelines (e.g., single-year discovery phases) suggest
fewer iterations requiring animal work.

Outcomes & evidence: DSP-1181’s progression to
Phase I was widely reported as evidence that Al methods
can reach clinical-stage candidates faster than typical
routes; yet detailed animal-use numbers remain
corporate and program-specific.

Limitations: Al design reduces but doesn’t eliminate
animal testing requirements. Confirmatory
pharmacology, safety pharmacokinetics, and regulatory-
mandated toxicology studies still use animals. External
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validation of Al predictions across diverse chemotypes is
ongoing.3¢

4. Atomwise — structure-based virtual screening to cut
experimental and animal screening burden

Overview: Atomwise’s Atom Net and related deep
convolutional models perform large-scale virtual
screening and de-prioritization of compounds before
synthesis and biological assays. Virtual triage reduces the
scale of wet-lab high-throughput screening (HTS) and
downstream animal pharmacology tests.

Methods / Al approach: Atomwise uses 3D
convolutional neural networks trained on protein-ligand
complexes to predict binding and prioritise chemical
matter. This enables in-silico filtering of millions of
compounds and selection of a much smaller, higher-
quality set for biochemical and cellular assays.

Effect on animal testing: By reducing false positives
and focusing bench testing on likely actives, Atomwise’s
platform reduces the downstream animal experiments
used to triage initial hits in traditional workflows. Fewer
false leads entering in vivo pharmacology reduces animal
usage and cost.

Outcomes & evidence: Case examples and company
reports highlight improved hit rates and fewer
compounds needing follow-up in experimental pipelines;
independent peer literature corroborates that effective
in-silico triage can shrink follow-on animal testing.
However, company-wide animal-use numbers are not
publicly quantified.

Limitations:  Predictive performance depends on
accurate structural models and high-quality training
data; off-target and ADMET liabilities still require
empirical assessment. Virtual hits must be validated in
vitro and often in vivo.37.38

5. DeepMind / AlphaFold — high-accuracy structure
prediction enabling hypothesis-driven work and fewer
animal experiments

Overview: AlphaFold (and its successors) transformed
access to high-quality protein structures for nearly all
known proteins. Structure knowledge accelerates
rational ligand design, antigen engineering and
mechanistic hypotheses that reduce exploratory animal
studies.

Methods / Al approach: AlphaFold predicts 3D protein
structures from sequence with high accuracy, enabling
computational docking, interaction mapping, and protein
engineering without the need for resource-intensive
structural biology pipelines. These predictions inform
targeted experiments and reduce blind empirical screens
that would have required broader animal follow-up.

Effect on animal testing: Improved mechanistic
understanding enables better in-vitro model selection,
targeted mutational studies and focused candidate
design — collectively reducing the scale of exploratory
animal studies. For example, structure-guided antigen
design can reduce iterative animal immunization or
challenge studies by improving first-pass candidates.
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Outcomes & evidence: Thousands of studies now cite
AlphaFold structures to prioritise experiments. While
AlphaFold itself is not a wet-lab replacement, its use
shortens cycles and reduces the quantity of empirical
screening that would cascade into animal experiments.
The Nobel/major press recognition highlights the
paradigm shift.

Limitations: Structure prediction doesn’'t capture
dynamics, post-translational modifications, or complex
in-cell contexts comprehensively; in vivo validation
remains essential for many endpoints.3°

6. Benevolent Al — knowledge-graph driven hypothesis
generation to de-risk in vivo programs

Overview: Benevolent Al uses a large knowledge graph
combining literature, chemistry, genomics, clinical data
and ontologies to generate mechanistic hypotheses,
prioritise targets and select repurposing candidates.
Focused, evidence-backed hypotheses reduce
exploratory in-vivo studies and accelerate translational
choices.40

Methods / Al approach: Semantic networks and graph
learning identify non-obvious target-disease links and
suggest existing molecules with higher translational
potential. The platform layers predicted mechanism-of-
action evidence and safety signals to deprioritise risky
paths early.

Effect on animal testing: By redirecting resources
toward candidates with mechanistic plausibility and pre-
existing safety data (repurposing), BenevolentAl reduces
the amount of first-pass animal pharmacology often
needed for novel targets and broad screening campaigns.

Outcomes & evidence: BenevolentAl has produced
testable hypotheses and candidate programs adopted by
pharma partners; these programs claim faster
progression and fewer exploratory animal studies, but
granular animal-use metrics are typically proprietary.

Limitations: Knowledge-graph inferences depend on
literature completeness and may inherit biases in
published data; experimental confirmation (often
including targeted animal tests) remains necessary.4!

7. Deep Genomics — Al for sequence-to-phenotype
prediction and reduced animal screening in genetic
therapeutics

Overview. Deep Genomics applies deep learning to
predict the effects of genetic variants and to design
oligonucleotide therapeutics (e.g., splice-modulating
antisense oligos). Their platform enables precise, model-
informed candidate design and in-vitro prioritisation,
reducing broad animal screening for genetic targets.*2
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Methods / Al approach: The company’s platform
integrates transcriptomic, genomic and biochemical data
to predict variant consequences and to design corrective
sequences. Predictions guide which constructs are
advanced to cellular and animal testing, concentrating
resources on the most promising constructs.

Effect on animal testing: By improving the success rate
of in-vitro to in-vivo translation, Deep Genomics reduces
the number of oligonucleotide variants that must be
tested in animals and shortens iterative design cycles that
previously drove repeated animal use.

Outcomes & evidence. Company pipelines and
partnerships show more targeted preclinical programs
with fewer exploratory in vivo experiments. Peer
literature supports that accurate in-silico guide design
reduces off-target risks and animal attrition.

Limitations: Predictive models require broad, high-
quality genomic datasets; organismal context may still
reveal unpredicted biology necessitating animal studies.
Regulatory safety assessment for oligonucleotides still
involves in vivo components in many jurisdictions.*3

3.1 Historical Evolution:

The integration of computational methods into drug
discovery dates back to the 1960s with the introduction
of computer-aided drug design (CADD). Quantitative
structure-activity relationship (QSAR) models in the
1970s marked the first attempts to correlate molecular
features with biological activity using statistical methods.
The 1980s and 1990s saw the rise of molecular docking
and virtual screening, supported by increasing
computational power.44

Machine learning gained prominence in the late 1990s, as
algorithms like Random Forests and Support Vector
Machines began to outperform linear models in QSAR
predictions. The 2000s ushered in the deep learning (DL)
era, where artificial neural networks could capture
complex, non-linear relationships across vast datasets.
By the mid-2010s, convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) demonstrated
unprecedented accuracy in image and sequence analysis,
respectively, inspiring their adoption in molecular
modelling.

The current wave (2019-2024) is characterised by graph
neural networks (GNNs), transformer architectures, and
generative models.#> These methods excel at
representing molecular graphs, capturing contextual
dependencies, and generating novel structures. Together,
they constitute the backbone of Al's transformative
impact on pharmaceutical research.46
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Table 2: Evolution of models in drug discovery- from traditional approaches to Al substitutes:

Sr.no. | Stages of Drug | Traditional/ pre-Al Al- ML Substitutes Advantages of Al
Discovery models Models
1. Target Literature-based manual Natural language processing for | Faster identification
Identification curation experimental text mining- omics integration novel targets;
genomics screens- QSAR using Deep learning- graph integrating multi-omics
linear regression models neural network (GNNs) for and tell data; detects
protein- protein networks. hidden biological
patterns
2. Hit Discovery High-throughput screening | Al- enhanced HTS using Higher accuracy,
and Screening with millions of CNN/RNN- virtual screening reduces false possible
composures molecular with GNNs and transformers- explores larger
docking with static scoring | DiffDock. chemical space;
function captures binding
uncertainly.
3. Lead Medicinal chemistry Reinforcement learning (RL) for | Produces novel
Optimization intuition- rule-based QSAR | de-novo design- generative scaffolds, balances
refinement- SAR by adversarial networks (GANs) potency, selectivity
manual iteration. for molecular creation- multi- ADMET simultaneously.
objective optimization with ML
4. ADME and In-vitro cell-based assays- | Transformer embeddings Early, cost effective
Toxicology in-vivo animal studies- (ChemBERTa3, ProBert for prediction; reduces
predication rule-based QSAR toxicity ADMET- GNNs for Physiological | animal use; higher
prediction based pharmacokinetics accuracy with larger
(PBPK)- ensemble ML models datasets.
for toxicity
5. Clinical Trail Manual protocol design- Al- driven patient stratification | Faster recruitment
designs Broad inclusion criteria- (trail pathfinder)- ML based smaller sample size,
Traditional statistical dose optimization predictive more personalized
models models for dropout/ enrolment | designs, improved
statistical power
6. Drug Serendipitous discovery- Meta- learning frameworks Systematic exploration
Repurposing manual literature mining (meta-GAT)- LLM- based of old drugs; reduce
off-label clinical frameworks (DrugReAlign) cost, time identified
observation Knowledge graph mining hidden therapeutic
opportunities. 47

3.2 Core Paradigms

1. Classical Machine Learning: Encompasses decision
trees, Random Forests, Support Vector Machines, and k-
nearest neighbors, which continue to play a significant
role in drug discovery and predictive modeling. These
algorithms are particularly advantageous when working
with limited datasets, where the complexity of deep
learning models may not be justified. Their ability to
provide clear decision boundaries and interpretable
outputs makes them valuable in regulatory settings and
hypothesis generation. Moreover, classical methods often
require lower computational resources, making them
accessible for resource-limited research environments,
while still delivering robust performance across
classification, regression, and clustering tasks.*8

2. Deep Learning: Utilises multilayer neural networks
capable of extracting hierarchical features from complex,
high-dimensional datasets, enabling superior
performance compared to classical approaches. This
ISSN: 2250-1177
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paradigm has shown remarkable success in quantitative
structure-activity relationship (QSAR) modeling, where
it captures subtle molecular descriptors beyond human
interpretation. Deep learning is also transformative in
image-based screening, allowing automated recognition
of phenotypic changes in cells or tissues. Additionally, it
plays a critical role in predicting ADMET properties by
integrating  genomics, chemical features, and
pharmacokinetic data. While requiring large datasets and
computational power, its predictive accuracy and
scalability make it indispensable for modern drug
discovery pipelines.*?

3. Graph Neural Networks (GNNs): Represent
molecules as graphs where atoms are treated as nodes
and bonds as edges, allowing direct learning from
molecular structures without handcrafted features. By
propagating and aggregating information through these
graph representations, GNNs can capture both local
chemical environments and global relational properties.
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Variants such as Graph Convolutional Networks (GCNs)
emphasise neighbourhood feature aggregation, while
Graph Attention Networks (GATSs) introduce attention
mechanisms to weigh important atomic interactions.
These models have achieved state-of-the-art results in
molecular property prediction, toxicity assessment, and
drug-target interaction studies, making them powerful
tools for structure-based drug discovery and design.50

4. Transformer Models: Originally designed for natural
language processing, transformers utilise self-attention
mechanisms to capture long-range dependencies and
contextual relationships within sequences. When
adapted to molecular science, compounds are treated
analogously to sentences, with atoms or substructures
serving as tokens. Models like Mol-BERT and ChemBERTa
generate rich contextual embeddings of chemical
structures, enabling precise prediction of molecular
properties, bioactivity, and drug-target interactions.
Unlike traditional descriptors, these embeddings are
learned directly from large-scale chemical databases,
improving generalizability across tasks. Transformers
thus provide a scalable and data-driven framework for
molecular representation learning, establishing
themselves as powerful tools in modern Al-driven drug
discovery.

5. Reinforcement Learning (RL): A branch of machine
learning designed for sequential decision-making; RL has
emerged as a powerful paradigm in generative molecular
design and optimisation processes. In RL, an agent
interacts with an environment by taking actions and
receiving feedback in the form of rewards, gradually
learning strategies that maximise long-term objectives.
Applied to drug discovery, RL facilitates the generation of
novel molecules by optimising for multiple properties
simultaneously, such as potency, selectivity, solubility,
and toxicity. Unlike static predictive models, RL enables

3.3 Ethical and Regulatory Considerations:
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iterative refinement, mimicking the decision-making
process of a medicinal chemist but at scale. Importantly,
RL can balance multi-objective optimisation, a frequent
challenge in drug design, where improving one property
often compromises another. Coupled with deep learning
architectures and molecular representations like graphs
or SMILES strings, RL has demonstrated success in de
novo drug design, scaffold hopping, and lead
optimisation, significantly accelerating discovery while
reducing  reliance  on costly  trial-and-error
experimentation.>!

6. Large Language Models (LLMs): Large Language
Models, originally developed for natural language
processing, are now being adapted to biomedical and
chemical sciences, offering transformative opportunities
in drug discovery. By training on massive text corpora
that include chemical literature, patents, clinical trial
data, and curated knowledge bases, LLMs acquire
contextual understanding of biomedical terminology,
molecular structures (via SMILES or InChlI strings), and
disease associations. This enables applications ranging
from automated literature mining and extraction of
drug-target relationships, to hypothesis generation for
novel therapeutic strategies. Importantly, LLMs can
facilitate drug repurposing by uncovering hidden
associations between existing compounds and new
disease indications.52 With few-shot and zero-shot
learning capabilities, these models can generalise to new
tasks with minimal additional training, accelerating
knowledge discovery. Moreover, when integrated with
structured chemical and biological datasets, LLMs
provide interdisciplinary insights, bridging clinical,
genomic, and chemical information—thereby becoming
invaluable tools for knowledge-driven, human-centric
innovation in pharmaceutical research.53

Table 3: Ethical and Regulatory Considerations in Al-driven Drug Discovery

Dimension Challenge Implication for Drug Regulatory/Ethical Focus
Discovery
Data Bias Overrepresentation of certain Skewed predictions, poor Promote diverse,
populations or diseases in generalizability, inequities in representative datasets;
training datasets healthcare outcomes fairness audits
Interpretability | Complexity of deep models Regulators and clinicians Develop explainable Al,
(black-box problem) cannot easily verify predictions | mandate interpretable
outputs
Validation Lack of consensus on model Inconsistent regulatory FDA, EMA working on Al
Standards benchmarking and acceptance, risk of unsafe validation guidelines
reproducibility decisions
Transparency Limited insight into algorithm | Erodes trust among Documentation, algorithm
decision-making processes stakeholders, complicates disclosure, transparent
adoption reporting
Accountability | Ambiguity in assigning Potential medicolegal disputes, | Clear liability frameworks and
responsibility for Al-generated | ethical risks developer accountability
errors
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Fairness and Bias against minority or

Risk of exacerbating disparities | Design equity-focused

Equity underserved groups in clinical trials and drug access | protocols, diverse clinical
datasets
Privacy and Use of sensitive patient data in | Data misuse or leakage Compliance with GDPR,

Security training models undermines patient trust HIPAA, robust encryption
Ethical Balancing rapid innovation Al-driven drug decisions could | Uphold 3Rs, transparency,
Principles with patient safety prioritise speed over welfare patient-centric approaches 56

4. Applications Across the Drug Discovery
Pipeline

4.1 Target Identification:
4.1.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) plays a pivotal role in
drug discovery by systematically mining the immense
volume of biomedical literature, which contains valuable
yet often untapped knowledge. Through tasks like named
entity recognition (NER) and relationship extraction,
NLP tools can identify connections among diseases,
proteins, pathways, and compounds from millions of
research articles and abstracts 57. This capability
accelerates hypothesis generation, helping researchers
uncover novel targets, biomarkers, or repurposing
opportunities that could otherwise remain hidden. In
recent years, transformer-based architectures such as
BioBERT and SciBERT have significantly improved the
accuracy of biomedical text understanding,
outperforming earlier statistical or rule-based methods.
These models leverage contextual embeddings to capture
subtle semantic relationships, advancing automated
literature mining. However, limitations remain. NLP
models can inherit biases from their training corpora,
leading to skewed outputs, and they often lack sufficient
integration of real-world clinical data to contextualize
findings for translational research, necessitating further
refinement and validation.>8

4.1.2 Omics Data Integration

The rapid expansion of high-throughput technologies has
generated vast amounts of data across genomics,
transcriptomics, proteomics, metabolomics, and
epigenomics. Analysing this high-dimensional and
heterogeneous information requires advanced Al
techniques capable of uncovering meaningful biological
insights. Supervised learning methods are widely
employed for biomarker identification, enabling precise
prediction of disease states, drug responses, and patient
stratification. Meanwhile, unsupervised approaches such
as clustering reveal hidden disease subtypes and
molecular signatures that may inform personalised
therapeutic strategies. Importantly, cross-validation
against established biological pathways and curated
knowledge bases enhances both interpretability and
confidence in Al-derived findings. These integrative
approaches facilitate a systems-level understanding of
disease mechanisms, ultimately improving target
discovery and translational outcomes. Despite these
advantages, significant challenges remain. Variability in
sample preparation, sequencing platforms, and data
processing pipelines across laboratories introduces
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inconsistency. The lack of standardised
protocols impedes reproducibility and comparability,
underscoring the urgent need for harmonised guidelines
in omics-driven Al research.>?

4.1.3 Molecular Similarity Analysis

Molecular similarity analysis leverages chemical
fingerprints and descriptors to detect compounds
structurally related to known bioactive molecules. Al
models enhance this process by enabling rapid screening
and prioritisation of candidates, often guiding lead
identification. Advanced approaches like Graph Neural
Networks (GNNs) capture complex, non-linear
relationships  between  molecular  substructures,
improving accuracy. However, these methods remain
limited by the breadth and diversity of existing chemical
databases such as ChEMBL and ZINC.60

4.1.4 Network Pharmacology

Al-enhanced network pharmacology integrates protein-
protein interaction maps, pathway databases, and omics
data into graph models. GNNs facilitate identification of
key regulatory nodes. This systemic approach highlights
multitarget strategies for complex diseases but risks bias
if underrepresented pathways are excluded from
datasets.6!

4.2 Lead Discovery and Optimization:
4.2.1 Al-Enhanced High-Throughput Screening

High-throughput screening (HTS) enables rapid testing
of large chemical libraries but is often costly, time-
consuming, and prone to false positives. Al enhances this
process by prioritising compounds with predicted
activity before experimental validation, thereby reducing
the volume of unnecessary assays. Through approaches
such as transfer learning, models trained on multi-
fidelity HTS datasets can integrate noisy, large-scale
primary screening data with smaller, higher-quality
confirmatory assays. This fusion improves predictive
accuracy, enabling more efficient selection of promising
hits. By guiding experimental efforts, Al-driven HTS
accelerates early-stage discovery, lowers costs, and
enhances reliability compared to conventional, purely
empirical pipelines.t2

4.2.2 Virtual Screening and Structure-Based Design

Virtual screening and structure-based design have been
revolutionised by Al, particularly deep learning, which
enables accurate prediction ofligand-target binding
affinities and efficient filtering of vast compound
libraries. Graph Neural Networks (GNNs) and
transformer architectures capture intricate molecular

CODEN (USA): JDDTAO



Nagpure et al.

interactions, including atom-level dependencies and
spatial features critical for drug-target recognition.
Beyond predictive tasks, generative models like DiffDock
apply diffusion-based approaches to forecast ligand
binding poses, incorporating conformational flexibility
and uncertainty estimates. This holistic representation
allows better identification of stable binding modes,
improving hit rates in virtual screening. By integrating
accuracy with scalability, Al-driven methods streamline
lead discovery and optimisation.

Virtual screening and structure-based design are
increasingly empowered by Al, offering a faster and more
precise route to identifying promising drug candidates.
Deep learning models can estimate drug-target binding
affinities, effectively narrowing down vast chemical
libraries to compounds with higher therapeutic
potential. Graph Neural Networks (GNNs) and
transformer models capture complex structural and
relational features, enabling accurate representation of
molecular interactions beyond traditional docking
techniques. Additionally, generative approaches such as
DiffDock leverage diffusion models to predict ligand
binding poses, explicitly considering molecular flexibility
and structural uncertainty. This combination of
predictive power and generative modelling enhances
screening efficiency, improving success rates in lead
identification and rational drug design.®3

4.2.4 Drug Repurposing

Drug repurposing leverages existing compounds for new
therapeutic indications, and Al has greatly expanded this
field by integrating and analysing diverse biomedical
datasets. Advanced methods such as meta-learning
frameworks and large language model (LLM)-based
systems like DrugReAlign enable knowledge transfer
across domains, predicting novel repurposing
opportunities with higher accuracy. The key advantages
include substantially reduced development costs, shorter
timelines, and the benefit of established safety
profiles from prior use. However, significant challenges
persist, particularly in validating Al-generated
predictions across heterogeneous patient populations,
where genetic, demographic, and clinical variability may
influence drug response, necessitating rigorous
experimental and clinical validation.%4

4.3 ADMET, Toxicology, and Clinical Development:
4.3.1 Predictive Toxicology

Predictive toxicology has become one of the most
impactful areas where Al contributes to reducing reliance
on traditional animal testing. By leveraging chemical
structure descriptors, bioassay data, and multi-omics
inputs, Al models can forecast a wide range of toxicity
endpoints  including mutagenicity, cardiotoxicity,
hepatotoxicity, nephrotoxicity, and immunotoxicity.
Emerging transformer-based embeddings, such
as ChemBERTa for molecular data and ProBert for
protein-related features, capture richer contextual and
structural information than conventional fingerprints or
rule-based toxicophores. These models facilitate more
accurate predictions of off-target effects, dose-dependent
toxicities, and organ-specific liabilities at earlier stages of
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the pipeline. Moreover, integration of natural language
processing with toxicology databases enables knowledge
mining from vast literature and safety reports, improving
signal detection for rare adverse events. Despite these
advancements, reproducibility and cross-species
generalisation remain challenging, emphasising the need
for robust benchmarks, curated datasets, and regulatory
frameworks to establish Al-driven toxicology as a reliable
alternative to animal-based safety testing.65

4.3.2 Pharmacokinetic Modelling

Pharmacokinetic (PK) modelling is essential for
understanding how drugs are absorbed, distributed,
metabolised, and excreted in the human body. Traditional
physiologically based pharmacokinetic (PBPK) models
rely heavily on parameter estimation from animal
studies, which often introduces translational
inaccuracies. The integration of Al, particularly Graph
Neural Networks (GNNs), has advanced PBPK
approaches by  simulating tissue-specific drug
distribution based on chemical structure, molecular
interactions, and physiological context. GNNs can capture
the nonlinear relationships governing drug transport
across biological compartments, providing more reliable
predictions of critical PK parameters such as clearance,
half-life, and volume of distribution. Additionally, deep
learning models enhance the prediction of enzyme-
substrate interactions and transporter effects, further
refining drug metabolism forecasts. By integrating real-
world clinical and omics data, Al-enhanced PBPK models
promise to significantly reduce dependence on animal-
derived inputs, while offering personalised simulations
tailored to patient demographics, genetics, or
comorbidities—supporting safer and more effective dose
optimisation in precision medicine.%¢

4.3.3 Clinical Trial Optimisation

Artificial intelligence is increasingly shaping the design
and execution of clinical trials, addressing inefficiencies
that often delay drug development. By analysing
electronic health records, genomic data, and patient
demographics, Al helps refine inclusion and exclusion
criteria, ensuring that trials enrol more representative
cohorts. Predictive models estimate dropout risks and
adherence patterns, allowing proactive mitigation
strategies. Tools like Trial Pathfinder have shown that Al-
based simulations can reduce trial sample sizes while
maintaining  statistical power, improving cost-
effectiveness. In oncology, Al-driven patient-trial
matching has accelerated recruitment by aligning
molecular profiles with trial eligibility, ultimately
enhancing trial outcomes and supporting patient-centric
research.6?

5. Comparative Analysis of Al Methodologies:

Classical ML methods (Random Forests, SVMs) remain
competitive in small datasets and provide transparency.
GNNs excel at modelling molecular graphs, capturing
structural complexity. Transformers, with their attention
mechanisms, achieve state-of-the-art results in
sequence- and context-based tasks.
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However, complexity does not always guarantee superior
performance. In some ADMET tasks, simpler algorithms
match or exceed deep models when hyperparameters are
optimised. Interpretability remains a strength of classical
methods, whereas modern architectures are often
criticised as opaque. A hybrid approach that combines
interpretability with predictive power may be the
optimal path forward.c8

6. Challenges, Limitations, and Controversies:

1. Data Quality and Accessibility: Al models are only as
strong as their training data. Public datasets often reflect
demographic or experimental Dbiases, limiting
generalizability. Initiatives like LIT-PCBA and MF-PCBA
aim to provide unbiased, standardised benchmarks.

2. Interpretability and the “Black Box” Problem:
Complex architectures hinder understanding of model
outputs, complicating regulatory approval and scientific
trust. Explainable Al techniques are urgently needed.

3. Ethical Concerns: Data ownership, algorithmic bias,
and unequal access to computational infrastructure risk
exacerbating health inequities.

4. Regulatory Hurdles: Agencies are still developing
frameworks for validation of Al models in drug
development, slowing adoption in clinical practice.

5. Skill Gap: Successful implementation requires
interdisciplinary expertise in Al, chemistry, and
pharmacology. Workforce training remains a bottleneck.

7. Estimated Reduction in Animal Testing:
1. Al Impact in Neurology and Drug Discovery:

Up to 70% fewer animal experiments are required in
early drug development—especially in neurology—
when Al predicts efficacy and toxicity in silico.

For example, prediction models can replace a significant
portion of animal tests, leading to major time and cost
savings.

2. Al Bio Simulation Platforms:

Platforms like VeriSIM Life’s BIOiSIM have helped reduce
animal testing by more than 50% in practical drug
development scenarios.

The company also reports that Roche has reduced its use
of animals in experimental testing by almost 40% over
the past eight years, thanks in part to Al and simulation
tools.
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3. Regulatory and Broader Trends:

FDA and NAM (New Approach Methodologies): The FDA
is actively encouraging a shift away from animal testing,
promoting Al, organ-on-a-chip, and human cell-based
models. These methods are broadly intended to reduce
and potentially replace animal testing in regulatory
pathways.

Historical Trend in Animal Use: In a broader context (not
Al-specific), animal use in drug-related research has
fallen—from about 30% of all animal use in 2005 to
approximately 20% today (in Europe). This reflects
broader methodological shifts and ethical pressures.?

7. Future Directions and Research Gaps:

1. Explainable Al (XAI): Essential for regulatory
acceptance and clinical trust.

2. Multimodal Integration: Combining chemical,
biological, imaging, and clinical data to create holistic
models.

3. Federated Learning: Enables training across
institutions without sharing raw data, preserving privacy
while enhancing dataset diversity.

4. Generative Al: Continued development of diffusion
models, GANs, and reinforcement learning for de novo
design.

5. Democratisation of Tools: Open-source platforms and
cloud-based services are needed to ensure equitable
access.

6. Clinical Translation: More emphasis on prospective
clinical  validation rather than retrospective
benchmarking.”0

8. Conclusion:

Artificial intelligence is emerging as a transformative
force in drug discovery, offering innovative, data-driven
solutions to address the fundamental challenges of high
costs, extended development timelines, and low clinical
success rates that have long hindered the pharmaceutical
pipeline. By harnessing advanced architectures such as
graph  neural networks, transformer models,
reinforcement learning frameworks, and large language
models, Al has demonstrated a measurable impact across
the entire spectrum of drug discovery—from target
identification and lead optimisation to toxicity prediction
and clinical trial design. Importantly, these innovations
align closely with ethical imperatives by reducing
reliance on traditional animal studies, thereby advancing
the principles of Replacement, Reduction, and
Refinement (3Rs).
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Figure 2: Al in Drug Discovery Conclusion Flowchart

The case studies presented, including platforms from
Exscientia, Insilico Medicine, Recursion, Atomwise, and
AlphaFold, highlight how AI has already shortened
discovery timelines, improved predictive accuracy, and
streamlined decision-making. Applications in predictive
toxicology, pharmacokinetic modelling, and trial
optimisation further illustrate Al's capacity to minimise
unnecessary in vivo experimentation while enhancing
translational efficiency. At the same time, regulatory
bodies such as the FDA and EMA continue to explore
frameworks for validation, transparency, and
accountability, underscoring the need for explainable and
equitable Al systems.

Al-driven drug discovery should not be viewed merely as
a computational tool but as a paradigm shift that requires
cultural, regulatory, and ethical adaptation. If responsibly
integrated, Al can enable the development of safer, more
effective, and globally accessible medicines, ultimately
redefining the future of healthcare.
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