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Abstract 
_______________________________________________________________________________________________________________ 

Drug discovery has historically been hindered by extended timelines, high costs, and low clinical 
success rates. Conventional methods such as high-throughput screening, structure-based design, 
and medicinal chemistry optimization, while scientifically valuable, often fail to deliver efficient 
translation into safe and effective therapeutics. Artificial intelligence (AI) and machine learning 
(ML) now provide unprecedented opportunities to accelerate every stage of drug discovery by 
leveraging large, heterogeneous datasets and powerful predictive algorithms. This manuscript 
presents a comprehensive review of AI-driven drug discovery, highlighting advances made 
between 2019 and 2024. Applications are critically examined across the pipeline: target 
identification, hit discovery, lead optimization, ADME-toxicity prediction, and clinical trial design. 
Special emphasis is given to transformative model architectures such as graph neural networks 
(GNNs), transformer models, and generative frameworks, as well as classical machine learning 
methods that remain relevant for specific tasks. Challenges including data quality, interpretability, 
regulatory acceptance, and ethical considerations are evaluated alongside strategies to mitigate 
bias and improve transparency. Case studies such as DiffDock for generative molecular docking, 
Trial Pathfinder for AI-based patient stratification, and Mol-BERT for chemical representation 
learning illustrate the tangible impact of these innovations. The manuscript concludes by 
identifying research gaps and future directions, including explainable AI (XAI), multimodal data 
integration, federated learning, and democratization of AI tools for global accessibility. Overall, AI 
is not simply a set of computational tools but a paradigm shift, offering a faster, more precise, and 
ethically responsible framework for pharmaceutical research and development. 

Keywords: Artificial intelligence (AI); Machine learning (ML); Drug discovery; Target 
identification; Lead optimization; Graph neural networks (GNNs); Transformer models; 
Generative AI; ADMET prediction; Clinical trial design; Drug repurposing; Ethical considerations; 
Explainable AI (XAI). 

 

1. Introduction: 

The discovery and development of novel therapeutics is 
a cornerstone of modern medicine, yet the traditional 
pipeline remains fraught with inefficiencies. A new drug 
typically requires over a decade of research and 
development, with costs frequently surpassing two 
billion U.S. dollars.1,2 Even with such investments, 
attrition rates are alarming—only about 10% of 
candidates that reach clinical trials ultimately gain 
regulatory approval. The reasons are multifaceted: lack of 
efficacy in humans despite promising preclinical results, 
unforeseen toxicities, suboptimal pharmacokinetic 
properties, and challenges in identifying appropriate 
patient subgroups.3 High-throughput screening (HTS), 
one of the most widely employed methods, often yields 
hit rates as low as 2–3%, resulting in vast amounts of 
wasted resources.4 Here is a detailed academic-style 

introduction that expands specifically on the theme of AI-
driven drug discovery as a strategy to reduce reliance on 
animal studies, building upon but distinct from the text 
you provided.5,6 

For decades, animal models have been regarded as the 
“gold standard” for evaluating pharmacokinetics, 
pharmacodynamics, safety, and toxicity before advancing 
compounds into human trials. Yet, despite their 
widespread use, animal studies are increasingly 
criticized on scientific, ethical, and regulatory grounds. 
From a scientific standpoint, interspecies differences 
often limit the predictive validity of animal models. Drugs 
that demonstrate safety and efficacy in rodents, non-
human primates, or other model organisms may still fail 
in human clinical trials.7 This translational gap 
contributes to the staggering attrition rates observed in 
pharmaceutical pipelines, where the majority of 
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candidates identified as promising in animal models 
ultimately do not succeed in human testing. From an 
ethical perspective, the use of animals raises concerns 
that resonate strongly with the principles of the 3Rs—
Replacement, Reduction, and Refinement—which aim to 
minimize harm and promote alternatives.8,9,10 

Simultaneously, the regulatory environment is gradually 
shifting. Several jurisdictions, including the European 
Union, India, and the United States, have strengthened 
guidelines encouraging non-animal-based approaches in 
early drug development. The U.S. Food and Drug 
Administration Modernization Act 2.0 (2022) marked a 
significant milestone, formally recognizing non-animal 
methodologies such as computational models, organ-on-
chip platforms, and other in silico tools as valid 
alternatives to animal testing for preclinical evaluation. 
These shifts reflect a growing consensus that to enhance 
both predictive accuracy and ethical responsibility, the 
pharmaceutical industry requires transformative 
innovations beyond traditional models. Among the 
emerging technologies, artificial intelligence (AI) and 
machine learning (ML) represent a particularly powerful 
set of tools poised to accelerate this transition.11 

In this context, artificial intelligence (AI) and machine 
learning (ML) have emerged as disruptive forces. These 
technologies promise to transform the discovery pipeline 
by reducing reliance on trial-and-error approaches, 
improving predictive accuracy, and uncovering patterns 
hidden within massive datasets that surpass human 
analytical capacity. The pharmaceutical industry has 
invested heavily in AI initiatives, with both start-ups and 
established companies reporting breakthroughs in target 
discovery, structure-based design, and drug repurposing. 
Academic research has paralleled this momentum, 
producing innovative model architectures and 
benchmarks.12 

The Role of AI in Rethinking Preclinical Research 

Artificial intelligence, encompassing subfields such as 
machine learning, deep learning, and natural language 
processing, has already demonstrated transformative 
potential in optimizing nearly every stage of drug 
discovery. What is particularly noteworthy is its capacity 
to provide computationally driven predictions of drug 
behaviour in ways previously only approximated through 
animal studies. For example, predictive models of drug 
toxicity, metabolism, and target engagement are 
becoming increasingly sophisticated.13 AI can now 
simulate complex biological responses by leveraging 
vast, multimodal datasets from genomics, 
transcriptomics, proteomics, metabolomics, and clinical 
data repositories. These predictive insights enable 
researchers to flag liabilities, forecast pharmacokinetic 
outcomes, and even model adverse reactions in silico 
before moving compounds into costly and ethically 
burdensome in vivo studies. 

Unlike animal models, which are constrained by species-
specific biology, AI systems learn directly from human-
relevant data sources, including real-world evidence and 
patient-derived datasets.14,15 Such approaches 
potentially mitigate interspecies translation failures, 

offering higher external validity when anticipating 
clinical success. For instance, deep learning algorithms 
trained on human toxicogenomic datasets can predict 
organ-specific drug toxicity with a precision rivalling 
traditional animal-based toxicology study. Similarly, 
graph neural networks (GNNs) and transformer 
architectures, adapted to chemical informatics, allow 
unprecedented accuracy in molecular property 
predictions, further reducing the reliance on in 
vivo validation.16,17 

Emergence of In Silico Models as Animal Alternatives 

Advances in AI have also accelerated the convergence 
between computational modelling and experimental 
innovations such as organoids, organ-on-a-chip 
platforms, and multi-omics integration. These hybrid 
models reduce the need for animal experimentation by 
supplying datasets that can be fed into machine-learning 
pipelines to refine their predictive performance. For 
example, microfluidic liver-on-chip devices combined 
with AI-enabled image analysis create a high-throughput 
framework for detecting hepatotoxicity earlier than 
conventional rodent assays. Similar systems are being 
developed for cardiotoxicity, neurotoxicity, and renal 
safety. By enhancing the fidelity of human-relevant 
models, AI not only reduces but, in some cases, may 
entirely replace specific categories of animal study.18 

Furthermore, in silico clinical trials, powered by AI and 
computational biology, are gaining attention as 
legitimate frameworks to approximate population-level 
drug responses without involving animal surrogates. 
Virtual patient cohorts can be modelled using machine 
learning to capture variability in age, sex, genetics, 
comorbidities, and polypharmacy. These simulations can 
forecast heterogeneous treatment responses, guide dose 
selection, and optimize trial design—all functions that 
previously required extensive preclinical animal 
experimentation.19 

Ethical and Societal Drivers of Change 

Reducing the reliance on animal testing is not merely a 
technological ambition but also a response to shifting 
ethical and societal priorities. Public opposition to 
animal experimentation is rising, and consumer-driven 
industries such as cosmetics have already witnessed 
large-scale bans on animal testing worldwide. The 
pharmaceutical sector, though long reliant on animal 
studies due to regulatory mandates, is now being 
compelled to align with these ethical imperatives. AI-
driven alternatives meet this demand by delivering data-
rich, human-centric models that promise not only 
compliance with the 3Rs but also improved translational 
accuracy. This ethical-technological synergy underpins 
much of the current momentum toward reformulation of 
drug discovery pipelines.20 

Challenges in Implementation 

Despite enormous promise, the integration of AI into 
drug discovery as a direct alternative to animal testing 
faces several challenges. First, issues of data availability 
and quality remain paramount. High-performing AI 
models require large, curated datasets that are often 
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fragmented, proprietary, or noisily labelled. Toxicology 
data, in particular, are still heavily reliant on animal-
derived datasets, creating potential biases in algorithm 
training. Second, the interpretability and transparency of 
AI models pose hurdles for regulatory acceptance. Black-
box predictions—even when accurate—struggle to gain 
regulatory confidence compared to empirically validated 
animal studies. Third, equity and access concerns persist, 
as the most advanced AI infrastructures are concentrated 
in high-resource settings, leaving underfunded labs and 
low-income regions at risk of exclusion from these 
scientific advances.21 

Finally, while AI offers powerful simulation capabilities, 
rigorous validation protocols will be required before 
computational models can fully displace animal studies 
in regulatory toxicology. Ongoing initiatives, such as the 
OECD’s efforts to standardise AI-enabled in 
silico methods, are critical in advancing acceptance 
within policymaking bodies. Collaboration among 
academia, industry, and regulators will therefore 
determine the speed and scope of this transition.21,22 

Toward a Hybrid and Responsible Future 

It is unlikely that animal testing will be fully abolished in 
the near term. Instead, AI should be conceived as a driver 
of progressive reduction, wherein computational and 
predictive methods incrementally displace animal 
studies across specific stages of drug discovery. Already, 
compound screening, ADMET (absorption, distribution, 
metabolism, excretion, and toxicity) profiling, and early 
safety assessments are areas in which machine learning 
has shown enough promise to significantly reduce in 
vivo workload. As virtual models become increasingly 
precise, researchers can prioritize only the most 
promising compounds for limited animal validation, 
thereby complying with ethical imperatives while also 
improving pipeline efficiency.23 

The vision for the coming decade is an AI-augmented 
drug discovery paradigm where human-relevant data, 
advanced computing, and predictive analytics form the 
backbone of preclinical research. In such a system, 
animals may serve only as confirmatory tools rather than 
default platforms, marking a profound paradigm shift.24 
Ultimately, this trajectory aligns advances in artificial 
intelligence with the dual imperatives of scientific 
innovation and compassionate ethics, offering a future 
where new medicines reach patients faster, cheaper, and 
with minimised animal suffering.24,25   

The central aim of this manuscript is to critically review 
advances in AI-driven drug discovery between 2019 and 
2024, while situating them within broader scientific and 
ethical frameworks. Specifically, the objectives are: 

1. To provide an overview of the evolution of AI 
applications in drug discovery. 

2. To examine methodological frameworks employed in 
systematic reviews of the field. 

3. To analyse specific applications of AI/ML across 
different stages of the pipeline. 

4. To evaluate strengths, weaknesses, and translational 
challenges of these approaches. 

5. To identify research gaps and propose future directions 
for responsible implementation.26 

This review distinguishes itself by offering a comparative 
perspective that juxtaposes modern architectures such 
as GNNs and transformers against classical ML 
approaches, while also interrogating persistent issues of 
data quality, interpretability, and equitable access. By 
synthesising findings across multiple domains, it aims to 
guide researchers, industry professionals, and 
policymakers toward informed decisions on integrating 
AI into pharmaceutical research and development.27

 

 

Figure 1: AI in Drug Discovery Flowchart 
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2. Methods:  

2.1 Literature Search Strategy 

To construct a rigorous and comprehensive dataset of 
relevant studies, a systematic search was conducted 
across multiple academic databases including PubMed, 
Scopus, Web of Science, and Google Scholar. The search 
timeframe spanned January 2019 to December 2024, 
reflecting the most recent advances in the rapidly 
evolving field of AI-driven drug discovery. Search terms 

were designed using the PICO framework 
(Population/Problem, Intervention, Comparison, 
Outcome), emphasizing keywords such as “artificial 
intelligence,” “machine learning,” “deep learning,” “graph 
neural networks,” “transformers,” “drug discovery,” 
“target identification,” “lead optimization,” “virtual 
screening,” “drug repurposing,” “ADME,” “toxicology,” and 
“clinical trial design.”28 Boolean operators and nested 
phrases were employed to maximise the sensitivity and 
specificity of results.29

 

2.2 Inclusion and Exclusion Criteria 

Table 1: Inclusion and Exclusion Criteria 

Criteria Type Details 

Inclusion Criteria • Peer-reviewed research articles 
• High-impact reviews and meta-analyses 
• Studies explicitly focused on AI/ML methodologies in small-molecule drug discovery 
• Preprints from credible repositories (e.g., arXiv, bioRxiv) if presenting novel and validated 
insights not yet available in peer-reviewed literature 

Exclusion Criteria • Studies centred on automation, robotics, or formulation science without direct AI integration 
• Non-English articles 
• Publications lacking empirical data (e.g., editorials, opinion pieces) 
• Preprints without novel or validated contributions30 

 

2.3 Study Selection and Quality Assessment 

All search results were managed using EndNote X20. 
Duplicate entries were removed, and each article 
underwent title and abstract screening by the lead 
reviewer, followed by full-text assessment for eligibility. 
Quality was evaluated based on transparency of 
methodology, availability of datasets or code, robustness 
of validation protocols, and acknowledgement of 
limitations or biases. The Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 2020 
framework guided documentation of the selection 
process.31 

3. Case Studies of AI used to reduce animal 
testing for new drug discovery: 

1. Recursion Pharmaceuticals — InVivoPrint (AI for in-
vivo phenotyping and early toxicity detection) 

Overview: Recursion built one of the broadest industrial 
platforms combining high-content cellular imaging, 
“smart cage” in-vivomics, and deep learning to detect 
early phenotypic signatures of efficacy and toxicity. Their 
InVivoPrint V1 model integrates time-series behavioural 
and physiologic readouts from instrumented animal 
housing with traditional assay endpoints to flag liabilities 
earlier in preclinical pipelines.  

Methods / AI approach: The company collects 
continuous video and sensor streams (activity, 
temperature, respiration), clinical chemistry, 
haematology, and other metadata across thousands of 
animals and assays. A multitask discriminative deep-
learning model ingests ~19 heterogeneous inputs and 
produces compound “fingerprints” of known toxicity 
signatures; new compounds are compared against these 

fingerprints to predict organ-level liabilities and adverse 
outcomes earlier than traditional endpoints.  

Effect on animal testing: By recognizing toxicity signals 
earlier, the platform allows teams to deprioritize 
hazardous candidates before committing to long, large-
cohort studies. This “triage upstream” reduces the 
number and duration of follow-on in-vivo experiments, 
reduces repeat studies, and focuses animal use on 
targeted confirmatory work. Public reporting indicates 
program timelines shortened substantially (Recursion 
cites examples of moving a candidate to clinical testing in 
~18 months versus multi-year industry norms).  

Outcomes & evidence: Recursion’s published 
descriptions and press coverage report earlier detection 
of organ toxicities and faster candidate progression. 
However, company-level animal-count reductions are 
program-specific and often proprietary; academic 
validation is emerging but not yet universal.  

Limitations: Models depend on rich, standardised data; 
generalizability across labs and species requires 
validation. Regulatory acceptance for complete 
replacement remains limited — the approach is currently 
hybrid (computational + reduced targeted in vivo).32 

2. Insilico Medicine — AI-designed candidates and 
accelerated preclinical pipelines 

Overview: Insilico Medicine has demonstrated rapid 
target identification, design and nomination of 
preclinical candidates using generative and 
reinforcement learning approaches; one high-profile 
program advanced an anti-fibrotic candidate to Phase I in 
~30 months from project start. Their workflows 
prioritise human-relevant in-silico and in-vitro 
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predictions that reduce the need for broad exploratory 
animal screening.33 

Methods / AI approach: Insilico uses generative 
chemistry models (GANs/transformers/reinforcement 
learning), integrated with in-silico ADMET predictors 
and in-vitro human cell assays, to design and triage 
molecules before any animal work. Candidate selection 
emphasizes predicted human biology relevance and 
safety profiles, decreasing the number of molecules 
requiring animal toxicology screening.  

Effect on animal testing:  Faster, higher-confidence 
candidate selection reduces initial animal screening 
breadth and the iterative animal cycles common to 
empirical medicinal chemistry. In reported programs 
Insilico progressed leads with more focused, 
confirmatory in-vivo testing rather than broad discovery-
era animal screens.  

Outcomes & evidence:  Public timelines (e.g., Phase I 
entry within ~30 months) and peer-reviewed 
publications show accelerated programs. Quantified 
reductions in animal counts are rarely disclosed publicly 
but process changes imply meaningful reductions in 
exploratory animal experiments.  

Limitations:  As with other AI workflows, translational 
uncertainty remains: in-silico models simplify biology 
and can miss emergent in-vivo phenomena; regulatory 
packages still require targeted in-vivo safety data.33,34 

3. Exscientia (and DSP-1181) — AI-driven design to 
shrink discovery timelines and de-risk animal testing 

Overview: Exscientia collaborated with Sumitomo 
Dainippon Pharma to create DSP-1181 (for OCD), one of 
the first AI-designed small molecules to reach clinical 
trials. The project illustrated compressed lead 
optimization cycles and fewer candidate syntheses and 
screens in early discovery.  

Methods / AI approach:  Exscientia applies knowledge-
driven AI and active learning across target-binding 
models, multi-parameter optimization (MPOS) and 
automated synthesis/assay loops. These tools seek to 
generate molecules that balance potency, selectivity and 
predicted ADMET properties up front — reducing the 
need to test many analogue series in animals.35 

Effect on animal testing:  By narrowing candidate sets 
before preclinical selection, Exscientia’s approach lowers 
the number of compounds entering animal tolerability 
and pharmacology studies. Their reported discovery 
timelines (e.g., single-year discovery phases) suggest 
fewer iterations requiring animal work.  

Outcomes & evidence:  DSP-1181’s progression to 
Phase I was widely reported as evidence that AI methods 
can reach clinical-stage candidates faster than typical 
routes; yet detailed animal-use numbers remain 
corporate and program-specific.  

Limitations:  AI design reduces but doesn’t eliminate 
animal testing requirements. Confirmatory 
pharmacology, safety pharmacokinetics, and regulatory-
mandated toxicology studies still use animals. External 

validation of AI predictions across diverse chemotypes is 
ongoing.36 

4. Atomwise — structure-based virtual screening to cut 
experimental and animal screening burden 

Overview:  Atomwise’s Atom Net and related deep 
convolutional models perform large-scale virtual 
screening and de-prioritization of compounds before 
synthesis and biological assays. Virtual triage reduces the 
scale of wet-lab high-throughput screening (HTS) and 
downstream animal pharmacology tests.  

Methods / AI approach:  Atomwise uses 3D 
convolutional neural networks trained on protein–ligand 
complexes to predict binding and prioritise chemical 
matter. This enables in-silico filtering of millions of 
compounds and selection of a much smaller, higher-
quality set for biochemical and cellular assays.  

Effect on animal testing:  By reducing false positives 
and focusing bench testing on likely actives, Atomwise’s 
platform reduces the downstream animal experiments 
used to triage initial hits in traditional workflows. Fewer 
false leads entering in vivo pharmacology reduces animal 
usage and cost.  

Outcomes & evidence:  Case examples and company 
reports highlight improved hit rates and fewer 
compounds needing follow-up in experimental pipelines; 
independent peer literature corroborates that effective 
in-silico triage can shrink follow-on animal testing. 
However, company-wide animal-use numbers are not 
publicly quantified.  

Limitations:  Predictive performance depends on 
accurate structural models and high-quality training 
data; off-target and ADMET liabilities still require 
empirical assessment. Virtual hits must be validated in 
vitro and often in vivo.37,38 

5. DeepMind / AlphaFold — high-accuracy structure 
prediction enabling hypothesis-driven work and fewer 
animal experiments 

Overview: AlphaFold (and its successors) transformed 
access to high-quality protein structures for nearly all 
known proteins. Structure knowledge accelerates 
rational ligand design, antigen engineering and 
mechanistic hypotheses that reduce exploratory animal 
studies.  

Methods / AI approach: AlphaFold predicts 3D protein 
structures from sequence with high accuracy, enabling 
computational docking, interaction mapping, and protein 
engineering without the need for resource-intensive 
structural biology pipelines. These predictions inform 
targeted experiments and reduce blind empirical screens 
that would have required broader animal follow-up.  

Effect on animal testing: Improved mechanistic 
understanding enables better in-vitro model selection, 
targeted mutational studies and focused candidate 
design — collectively reducing the scale of exploratory 
animal studies. For example, structure-guided antigen 
design can reduce iterative animal immunization or 
challenge studies by improving first-pass candidates.  
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Outcomes & evidence: Thousands of studies now cite 
AlphaFold structures to prioritise experiments. While 
AlphaFold itself is not a wet-lab replacement, its use 
shortens cycles and reduces the quantity of empirical 
screening that would cascade into animal experiments. 
The Nobel/major press recognition highlights the 
paradigm shift.  

Limitations: Structure prediction doesn’t capture 
dynamics, post-translational modifications, or complex 
in-cell contexts comprehensively; in vivo validation 
remains essential for many endpoints.39 

6. Benevolent AI — knowledge-graph driven hypothesis 
generation to de-risk in vivo programs 

Overview:  Benevolent AI uses a large knowledge graph 
combining literature, chemistry, genomics, clinical data 
and ontologies to generate mechanistic hypotheses, 
prioritise targets and select repurposing candidates. 
Focused, evidence-backed hypotheses reduce 
exploratory in-vivo studies and accelerate translational 
choices.40 

Methods / AI approach: Semantic networks and graph 
learning identify non-obvious target–disease links and 
suggest existing molecules with higher translational 
potential. The platform layers predicted mechanism-of-
action evidence and safety signals to deprioritise risky 
paths early.  

Effect on animal testing: By redirecting resources 
toward candidates with mechanistic plausibility and pre-
existing safety data (repurposing), BenevolentAI reduces 
the amount of first-pass animal pharmacology often 
needed for novel targets and broad screening campaigns.  

Outcomes & evidence: BenevolentAI has produced 
testable hypotheses and candidate programs adopted by 
pharma partners; these programs claim faster 
progression and fewer exploratory animal studies, but 
granular animal-use metrics are typically proprietary.  

Limitations: Knowledge-graph inferences depend on 
literature completeness and may inherit biases in 
published data; experimental confirmation (often 
including targeted animal tests) remains necessary.41 

7. Deep Genomics — AI for sequence-to-phenotype 
prediction and reduced animal screening in genetic 
therapeutics 

Overview. Deep Genomics applies deep learning to 
predict the effects of genetic variants and to design 
oligonucleotide therapeutics (e.g., splice-modulating 
antisense oligos). Their platform enables precise, model-
informed candidate design and in-vitro prioritisation, 
reducing broad animal screening for genetic targets.42 

Methods / AI approach: The company’s platform 
integrates transcriptomic, genomic and biochemical data 
to predict variant consequences and to design corrective 
sequences. Predictions guide which constructs are 
advanced to cellular and animal testing, concentrating 
resources on the most promising constructs.  

Effect on animal testing: By improving the success rate 
of in-vitro to in-vivo translation, Deep Genomics reduces 
the number of oligonucleotide variants that must be 
tested in animals and shortens iterative design cycles that 
previously drove repeated animal use.  

Outcomes & evidence. Company pipelines and 
partnerships show more targeted preclinical programs 
with fewer exploratory in vivo experiments. Peer 
literature supports that accurate in-silico guide design 
reduces off-target risks and animal attrition.  

Limitations: Predictive models require broad, high-
quality genomic datasets; organismal context may still 
reveal unpredicted biology necessitating animal studies. 
Regulatory safety assessment for oligonucleotides still 
involves in vivo components in many jurisdictions.43 

3.1 Historical Evolution: 

The integration of computational methods into drug 
discovery dates back to the 1960s with the introduction 
of computer-aided drug design (CADD). Quantitative 
structure–activity relationship (QSAR) models in the 
1970s marked the first attempts to correlate molecular 
features with biological activity using statistical methods. 
The 1980s and 1990s saw the rise of molecular docking 
and virtual screening, supported by increasing 
computational power.44 

Machine learning gained prominence in the late 1990s, as 
algorithms like Random Forests and Support Vector 
Machines began to outperform linear models in QSAR 
predictions. The 2000s ushered in the deep learning (DL) 
era, where artificial neural networks could capture 
complex, non-linear relationships across vast datasets. 
By the mid-2010s, convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) demonstrated 
unprecedented accuracy in image and sequence analysis, 
respectively, inspiring their adoption in molecular 
modelling. 

The current wave (2019–2024) is characterised by graph 
neural networks (GNNs), transformer architectures, and 
generative models.45 These methods excel at 
representing molecular graphs, capturing contextual 
dependencies, and generating novel structures. Together, 
they constitute the backbone of AI’s transformative 
impact on pharmaceutical research.46
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Table 2: Evolution of models in drug discovery- from traditional approaches to AI substitutes: 

Sr. no.  Stages of Drug 
Discovery  

Traditional/ pre-AI 
models 

AI- ML Substitutes  Advantages of AI 
Models 

1. Target 
Identification 

Literature-based manual 
curation experimental 
genomics screens- QSAR 
linear regression models 

Natural language processing for 
text mining- omics integration 
using Deep learning- graph 
neural network (GNNs) for 
protein- protein networks. 

Faster identification 
novel targets; 
integrating multi-omics 
and tell data; detects 
hidden biological 
patterns 

2.  Hit Discovery 
and Screening 

High-throughput screening 
with millions of 
composures molecular 
docking with static scoring 
function 

AI- enhanced HTS using 
CNN/RNN- virtual screening 
with GNNs and transformers- 
DiffDock. 

Higher accuracy, 
reduces false possible 
explores larger 
chemical space; 
captures binding 
uncertainly. 

3. Lead 
Optimization 

Medicinal chemistry 
intuition- rule-based QSAR 
refinement- SAR by 
manual iteration. 

Reinforcement learning (RL) for 
de-novo design- generative 
adversarial networks (GANs) 
for molecular creation- multi-
objective optimization with ML  

Produces novel 
scaffolds, balances 
potency, selectivity 
ADMET simultaneously. 

4.  ADME and 
Toxicology 
predication  

In-vitro cell-based assays- 
in-vivo animal studies- 
rule-based QSAR toxicity 
prediction 

Transformer embeddings 
(ChemBERTa, ProBert for 
ADMET- GNNs for Physiological 
based pharmacokinetics 
(PBPK)- ensemble ML models 
for toxicity 

Early, cost effective 
prediction; reduces 
animal use; higher 
accuracy with larger 
datasets. 

5.  Clinical Trail 
designs 

Manual protocol design- 
Broad inclusion criteria- 
Traditional statistical 
models 

AI- driven patient stratification 
(trail pathfinder)- ML based 
dose optimization predictive 
models for dropout/ enrolment 

Faster recruitment 
smaller sample size, 
more personalized 
designs, improved 
statistical power 

6.  Drug 
Repurposing  

Serendipitous discovery- 
manual literature mining 
off-label clinical 
observation 

Meta- learning frameworks 
(meta-GAT)- LLM- based 
frameworks (DrugReAlign) 
Knowledge graph mining 

Systematic exploration 
of old drugs; reduce 
cost, time identified 
hidden therapeutic 
opportunities. 47 

 

 

3.2 Core Paradigms 

1. Classical Machine Learning: Encompasses decision 
trees, Random Forests, Support Vector Machines, and k-
nearest neighbors, which continue to play a significant 
role in drug discovery and predictive modeling. These 
algorithms are particularly advantageous when working 
with limited datasets, where the complexity of deep 
learning models may not be justified. Their ability to 
provide clear decision boundaries and interpretable 
outputs makes them valuable in regulatory settings and 
hypothesis generation. Moreover, classical methods often 
require lower computational resources, making them 
accessible for resource-limited research environments, 
while still delivering robust performance across 
classification, regression, and clustering tasks.48 

2. Deep Learning: Utilises multilayer neural networks 
capable of extracting hierarchical features from complex, 
high-dimensional datasets, enabling superior 
performance compared to classical approaches. This 

paradigm has shown remarkable success in quantitative 
structure–activity relationship (QSAR) modeling, where 
it captures subtle molecular descriptors beyond human 
interpretation. Deep learning is also transformative in 
image-based screening, allowing automated recognition 
of phenotypic changes in cells or tissues. Additionally, it 
plays a critical role in predicting ADMET properties by 
integrating genomics, chemical features, and 
pharmacokinetic data. While requiring large datasets and 
computational power, its predictive accuracy and 
scalability make it indispensable for modern drug 
discovery pipelines.49 

3. Graph Neural Networks (GNNs): Represent 
molecules as graphs where atoms are treated as nodes 
and bonds as edges, allowing direct learning from 
molecular structures without handcrafted features. By 
propagating and aggregating information through these 
graph representations, GNNs can capture both local 
chemical environments and global relational properties. 
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Variants such as Graph Convolutional Networks (GCNs) 
emphasise neighbourhood feature aggregation, while 
Graph Attention Networks (GATs) introduce attention 
mechanisms to weigh important atomic interactions. 
These models have achieved state-of-the-art results in 
molecular property prediction, toxicity assessment, and 
drug–target interaction studies, making them powerful 
tools for structure-based drug discovery and design.50 

4. Transformer Models: Originally designed for natural 
language processing, transformers utilise self-attention 
mechanisms to capture long-range dependencies and 
contextual relationships within sequences. When 
adapted to molecular science, compounds are treated 
analogously to sentences, with atoms or substructures 
serving as tokens. Models like Mol-BERT and ChemBERTa 
generate rich contextual embeddings of chemical 
structures, enabling precise prediction of molecular 
properties, bioactivity, and drug–target interactions. 
Unlike traditional descriptors, these embeddings are 
learned directly from large-scale chemical databases, 
improving generalizability across tasks. Transformers 
thus provide a scalable and data-driven framework for 
molecular representation learning, establishing 
themselves as powerful tools in modern AI-driven drug 
discovery. 

5. Reinforcement Learning (RL): A branch of machine 
learning designed for sequential decision-making; RL has 
emerged as a powerful paradigm in generative molecular 
design and optimisation processes. In RL, an agent 
interacts with an environment by taking actions and 
receiving feedback in the form of rewards, gradually 
learning strategies that maximise long-term objectives. 
Applied to drug discovery, RL facilitates the generation of 
novel molecules by optimising for multiple properties 
simultaneously, such as potency, selectivity, solubility, 
and toxicity. Unlike static predictive models, RL enables 

iterative refinement, mimicking the decision-making 
process of a medicinal chemist but at scale. Importantly, 
RL can balance multi-objective optimisation, a frequent 
challenge in drug design, where improving one property 
often compromises another. Coupled with deep learning 
architectures and molecular representations like graphs 
or SMILES strings, RL has demonstrated success in de 
novo drug design, scaffold hopping, and lead 
optimisation, significantly accelerating discovery while 
reducing reliance on costly trial-and-error 
experimentation.51 

6. Large Language Models (LLMs): Large Language 
Models, originally developed for natural language 
processing, are now being adapted to biomedical and 
chemical sciences, offering transformative opportunities 
in drug discovery. By training on massive text corpora 
that include chemical literature, patents, clinical trial 
data, and curated knowledge bases, LLMs acquire 
contextual understanding of biomedical terminology, 
molecular structures (via SMILES or InChI strings), and 
disease associations. This enables applications ranging 
from automated literature mining and extraction of 
drug–target relationships, to hypothesis generation for 
novel therapeutic strategies. Importantly, LLMs can 
facilitate drug repurposing by uncovering hidden 
associations between existing compounds and new 
disease indications.52 With few-shot and zero-shot 
learning capabilities, these models can generalise to new 
tasks with minimal additional training, accelerating 
knowledge discovery. Moreover, when integrated with 
structured chemical and biological datasets, LLMs 
provide interdisciplinary insights, bridging clinical, 
genomic, and chemical information—thereby becoming 
invaluable tools for knowledge-driven, human-centric 
innovation in pharmaceutical research.53

 

3.3 Ethical and Regulatory Considerations: 

Table 3: Ethical and Regulatory Considerations in AI-driven Drug Discovery 

Dimension Challenge Implication for Drug 
Discovery 

Regulatory/Ethical Focus 

Data Bias Overrepresentation of certain 
populations or diseases in 
training datasets 

Skewed predictions, poor 
generalizability, inequities in 
healthcare outcomes 

Promote diverse, 
representative datasets; 
fairness audits 

Interpretability Complexity of deep models 
(black-box problem) 

Regulators and clinicians 
cannot easily verify predictions 

Develop explainable AI, 
mandate interpretable 
outputs 

Validation 
Standards 

Lack of consensus on model 
benchmarking and 
reproducibility 

Inconsistent regulatory 
acceptance, risk of unsafe 
decisions 

FDA, EMA working on AI 
validation guidelines 

Transparency Limited insight into algorithm 
decision-making processes 

Erodes trust among 
stakeholders, complicates 
adoption 

Documentation, algorithm 
disclosure, transparent 
reporting 

Accountability Ambiguity in assigning 
responsibility for AI-generated 
errors 

Potential medicolegal disputes, 
ethical risks 

Clear liability frameworks and 
developer accountability 
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Fairness and 
Equity 

Bias against minority or 
underserved groups 

Risk of exacerbating disparities 
in clinical trials and drug access 

Design equity-focused 
protocols, diverse clinical 
datasets 

Privacy and 
Security 

Use of sensitive patient data in 
training models 

Data misuse or leakage 
undermines patient trust 

Compliance with GDPR, 
HIPAA, robust encryption 

Ethical 
Principles 

Balancing rapid innovation 
with patient safety 

AI-driven drug decisions could 
prioritise speed over welfare 

Uphold 3Rs, transparency, 
patient-centric approaches 56 

 

4. Applications Across the Drug Discovery 
Pipeline 

4.1 Target Identification:  

4.1.1 Natural Language Processing (NLP) 

Natural Language Processing (NLP) plays a pivotal role in 
drug discovery by systematically mining the immense 
volume of biomedical literature, which contains valuable 
yet often untapped knowledge. Through tasks like named 
entity recognition (NER) and relationship extraction, 
NLP tools can identify connections among diseases, 
proteins, pathways, and compounds from millions of 
research articles and abstracts 57. This capability 
accelerates hypothesis generation, helping researchers 
uncover novel targets, biomarkers, or repurposing 
opportunities that could otherwise remain hidden. In 
recent years, transformer-based architectures such as 
BioBERT and SciBERT have significantly improved the 
accuracy of biomedical text understanding, 
outperforming earlier statistical or rule-based methods. 
These models leverage contextual embeddings to capture 
subtle semantic relationships, advancing automated 
literature mining. However, limitations remain. NLP 
models can inherit biases from their training corpora, 
leading to skewed outputs, and they often lack sufficient 
integration of real-world clinical data to contextualize 
findings for translational research, necessitating further 
refinement and validation.58 

4.1.2 Omics Data Integration 

The rapid expansion of high-throughput technologies has 
generated vast amounts of data across genomics, 
transcriptomics, proteomics, metabolomics, and 
epigenomics. Analysing this high-dimensional and 
heterogeneous information requires advanced AI 
techniques capable of uncovering meaningful biological 
insights. Supervised learning methods are widely 
employed for biomarker identification, enabling precise 
prediction of disease states, drug responses, and patient 
stratification. Meanwhile, unsupervised approaches such 
as clustering reveal hidden disease subtypes and 
molecular signatures that may inform personalised 
therapeutic strategies. Importantly, cross-validation 
against established biological pathways and curated 
knowledge bases enhances both interpretability and 
confidence in AI-derived findings. These integrative 
approaches facilitate a systems-level understanding of 
disease mechanisms, ultimately improving target 
discovery and translational outcomes. Despite these 
advantages, significant challenges remain. Variability in 
sample preparation, sequencing platforms, and data 
processing pipelines across laboratories introduces 

inconsistency. The lack of standardised 
protocols impedes reproducibility and comparability, 
underscoring the urgent need for harmonised guidelines 
in omics-driven AI research.59 

4.1.3 Molecular Similarity Analysis 

Molecular similarity analysis leverages chemical 
fingerprints and descriptors to detect compounds 
structurally related to known bioactive molecules. AI 
models enhance this process by enabling rapid screening 
and prioritisation of candidates, often guiding lead 
identification. Advanced approaches like Graph Neural 
Networks (GNNs) capture complex, non-linear 
relationships between molecular substructures, 
improving accuracy. However, these methods remain 
limited by the breadth and diversity of existing chemical 
databases such as ChEMBL and ZINC.60 

4.1.4 Network Pharmacology 

AI-enhanced network pharmacology integrates protein–
protein interaction maps, pathway databases, and omics 
data into graph models. GNNs facilitate identification of 
key regulatory nodes. This systemic approach highlights 
multitarget strategies for complex diseases but risks bias 
if underrepresented pathways are excluded from 
datasets.61 

4.2 Lead Discovery and Optimization: 

4.2.1 AI-Enhanced High-Throughput Screening 

High-throughput screening (HTS) enables rapid testing 
of large chemical libraries but is often costly, time-
consuming, and prone to false positives. AI enhances this 
process by prioritising compounds with predicted 
activity before experimental validation, thereby reducing 
the volume of unnecessary assays. Through approaches 
such as transfer learning, models trained on multi-
fidelity HTS datasets can integrate noisy, large-scale 
primary screening data with smaller, higher-quality 
confirmatory assays. This fusion improves predictive 
accuracy, enabling more efficient selection of promising 
hits. By guiding experimental efforts, AI-driven HTS 
accelerates early-stage discovery, lowers costs, and 
enhances reliability compared to conventional, purely 
empirical pipelines.62 

4.2.2 Virtual Screening and Structure-Based Design 

Virtual screening and structure-based design have been 
revolutionised by AI, particularly deep learning, which 
enables accurate prediction of ligand–target binding 
affinities and efficient filtering of vast compound 
libraries. Graph Neural Networks (GNNs) and 
transformer architectures capture intricate molecular 
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interactions, including atom-level dependencies and 
spatial features critical for drug–target recognition. 
Beyond predictive tasks, generative models like DiffDock 
apply diffusion-based approaches to forecast ligand 
binding poses, incorporating conformational flexibility 
and uncertainty estimates. This holistic representation 
allows better identification of stable binding modes, 
improving hit rates in virtual screening. By integrating 
accuracy with scalability, AI-driven methods streamline 
lead discovery and optimisation.  

Virtual screening and structure-based design are 
increasingly empowered by AI, offering a faster and more 
precise route to identifying promising drug candidates. 
Deep learning models can estimate drug–target binding 
affinities, effectively narrowing down vast chemical 
libraries to compounds with higher therapeutic 
potential. Graph Neural Networks (GNNs) and 
transformer models capture complex structural and 
relational features, enabling accurate representation of 
molecular interactions beyond traditional docking 
techniques. Additionally, generative approaches such as 
DiffDock leverage diffusion models to predict ligand 
binding poses, explicitly considering molecular flexibility 
and structural uncertainty. This combination of 
predictive power and generative modelling enhances 
screening efficiency, improving success rates in lead 
identification and rational drug design.63 

4.2.4 Drug Repurposing 

Drug repurposing leverages existing compounds for new 
therapeutic indications, and AI has greatly expanded this 
field by integrating and analysing diverse biomedical 
datasets. Advanced methods such as meta-learning 
frameworks and large language model (LLM)-based 
systems like DrugReAlign enable knowledge transfer 
across domains, predicting novel repurposing 
opportunities with higher accuracy. The key advantages 
include substantially reduced development costs, shorter 
timelines, and the benefit of established safety 
profiles from prior use. However, significant challenges 
persist, particularly in validating AI-generated 
predictions across heterogeneous patient populations, 
where genetic, demographic, and clinical variability may 
influence drug response, necessitating rigorous 
experimental and clinical validation.64 

4.3 ADMET, Toxicology, and Clinical Development:  

4.3.1 Predictive Toxicology 

Predictive toxicology has become one of the most 
impactful areas where AI contributes to reducing reliance 
on traditional animal testing. By leveraging chemical 
structure descriptors, bioassay data, and multi-omics 
inputs, AI models can forecast a wide range of toxicity 
endpoints including mutagenicity, cardiotoxicity, 
hepatotoxicity, nephrotoxicity, and immunotoxicity. 
Emerging transformer-based embeddings, such 
as ChemBERTa for molecular data and ProBert for 
protein-related features, capture richer contextual and 
structural information than conventional fingerprints or 
rule-based toxicophores. These models facilitate more 
accurate predictions of off-target effects, dose-dependent 
toxicities, and organ-specific liabilities at earlier stages of 

the pipeline. Moreover, integration of natural language 
processing with toxicology databases enables knowledge 
mining from vast literature and safety reports, improving 
signal detection for rare adverse events. Despite these 
advancements, reproducibility and cross-species 
generalisation remain challenging, emphasising the need 
for robust benchmarks, curated datasets, and regulatory 
frameworks to establish AI-driven toxicology as a reliable 
alternative to animal-based safety testing.65 

4.3.2 Pharmacokinetic Modelling 

Pharmacokinetic (PK) modelling is essential for 
understanding how drugs are absorbed, distributed, 
metabolised, and excreted in the human body. Traditional 
physiologically based pharmacokinetic (PBPK) models 
rely heavily on parameter estimation from animal 
studies, which often introduces translational 
inaccuracies. The integration of AI, particularly Graph 
Neural Networks (GNNs), has advanced PBPK 
approaches by simulating tissue-specific drug 
distribution based on chemical structure, molecular 
interactions, and physiological context. GNNs can capture 
the nonlinear relationships governing drug transport 
across biological compartments, providing more reliable 
predictions of critical PK parameters such as clearance, 
half-life, and volume of distribution. Additionally, deep 
learning models enhance the prediction of enzyme–
substrate interactions and transporter effects, further 
refining drug metabolism forecasts. By integrating real-
world clinical and omics data, AI-enhanced PBPK models 
promise to significantly reduce dependence on animal-
derived inputs, while offering personalised simulations 
tailored to patient demographics, genetics, or 
comorbidities—supporting safer and more effective dose 
optimisation in precision medicine.66 

4.3.3 Clinical Trial Optimisation 

Artificial intelligence is increasingly shaping the design 
and execution of clinical trials, addressing inefficiencies 
that often delay drug development. By analysing 
electronic health records, genomic data, and patient 
demographics, AI helps refine inclusion and exclusion 
criteria, ensuring that trials enrol more representative 
cohorts. Predictive models estimate dropout risks and 
adherence patterns, allowing proactive mitigation 
strategies. Tools like Trial Pathfinder have shown that AI-
based simulations can reduce trial sample sizes while 
maintaining statistical power, improving cost-
effectiveness. In oncology, AI-driven patient–trial 
matching has accelerated recruitment by aligning 
molecular profiles with trial eligibility, ultimately 
enhancing trial outcomes and supporting patient-centric 
research.67 

5. Comparative Analysis of AI Methodologies: 

Classical ML methods (Random Forests, SVMs) remain 
competitive in small datasets and provide transparency. 
GNNs excel at modelling molecular graphs, capturing 
structural complexity. Transformers, with their attention 
mechanisms, achieve state-of-the-art results in 
sequence- and context-based tasks. 
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However, complexity does not always guarantee superior 
performance. In some ADMET tasks, simpler algorithms 
match or exceed deep models when hyperparameters are 
optimised. Interpretability remains a strength of classical 
methods, whereas modern architectures are often 
criticised as opaque. A hybrid approach that combines 
interpretability with predictive power may be the 
optimal path forward.68  

6. Challenges, Limitations, and Controversies: 

1. Data Quality and Accessibility: AI models are only as 
strong as their training data. Public datasets often reflect 
demographic or experimental biases, limiting 
generalizability. Initiatives like LIT-PCBA and MF-PCBA 
aim to provide unbiased, standardised benchmarks. 

2. Interpretability and the “Black Box” Problem: 
Complex architectures hinder understanding of model 
outputs, complicating regulatory approval and scientific 
trust. Explainable AI techniques are urgently needed. 

3. Ethical Concerns: Data ownership, algorithmic bias, 
and unequal access to computational infrastructure risk 
exacerbating health inequities. 

4. Regulatory Hurdles: Agencies are still developing 
frameworks for validation of AI models in drug 
development, slowing adoption in clinical practice. 

5. Skill Gap: Successful implementation requires 
interdisciplinary expertise in AI, chemistry, and 
pharmacology. Workforce training remains a bottleneck. 

7. Estimated Reduction in Animal Testing: 

1. AI Impact in Neurology and Drug Discovery:  

Up to 70% fewer animal experiments are required in 
early drug development—especially in neurology—
when AI predicts efficacy and toxicity in silico. 

For example, prediction models can replace a significant 
portion of animal tests, leading to major time and cost 
savings. 

2. AI Bio Simulation Platforms: 

Platforms like VeriSIM Life’s BIOiSIM have helped reduce 
animal testing by more than 50% in practical drug 
development scenarios. 

The company also reports that Roche has reduced its use 
of animals in experimental testing by almost 40% over 
the past eight years, thanks in part to AI and simulation 
tools. 

 

 

3. Regulatory and Broader Trends: 

FDA and NAM (New Approach Methodologies): The FDA 
is actively encouraging a shift away from animal testing, 
promoting AI, organ-on-a-chip, and human cell–based 
models. These methods are broadly intended to reduce 
and potentially replace animal testing in regulatory 
pathways. 

Historical Trend in Animal Use: In a broader context (not 
AI-specific), animal use in drug-related research has 
fallen—from about 30% of all animal use in 2005 to 
approximately 20% today (in Europe). This reflects 
broader methodological shifts and ethical pressures.69 

7. Future Directions and Research Gaps: 

1. Explainable AI (XAI): Essential for regulatory 
acceptance and clinical trust. 

2. Multimodal Integration: Combining chemical, 
biological, imaging, and clinical data to create holistic 
models. 

3. Federated Learning: Enables training across 
institutions without sharing raw data, preserving privacy 
while enhancing dataset diversity. 

4. Generative AI: Continued development of diffusion 
models, GANs, and reinforcement learning for de novo 
design. 

5. Democratisation of Tools: Open-source platforms and 
cloud-based services are needed to ensure equitable 
access. 

6. Clinical Translation: More emphasis on prospective 
clinical validation rather than retrospective 
benchmarking.70 

8. Conclusion: 

Artificial intelligence is emerging as a transformative 
force in drug discovery, offering innovative, data-driven 
solutions to address the fundamental challenges of high 
costs, extended development timelines, and low clinical 
success rates that have long hindered the pharmaceutical 
pipeline. By harnessing advanced architectures such as 
graph neural networks, transformer models, 
reinforcement learning frameworks, and large language 
models, AI has demonstrated a measurable impact across 
the entire spectrum of drug discovery—from target 
identification and lead optimisation to toxicity prediction 
and clinical trial design. Importantly, these innovations 
align closely with ethical imperatives by reducing 
reliance on traditional animal studies, thereby advancing 
the principles of Replacement, Reduction, and 
Refinement (3Rs). 
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                                            Figure 2: AI in Drug Discovery Conclusion Flowchart 

 

The case studies presented, including platforms from 
Exscientia, Insilico Medicine, Recursion, Atomwise, and 
AlphaFold, highlight how AI has already shortened 
discovery timelines, improved predictive accuracy, and 
streamlined decision-making. Applications in predictive 
toxicology, pharmacokinetic modelling, and trial 
optimisation further illustrate AI’s capacity to minimise 
unnecessary in vivo experimentation while enhancing 
translational efficiency. At the same time, regulatory 
bodies such as the FDA and EMA continue to explore 
frameworks for validation, transparency, and 
accountability, underscoring the need for explainable and 
equitable AI systems. 

AI-driven drug discovery should not be viewed merely as 
a computational tool but as a paradigm shift that requires 
cultural, regulatory, and ethical adaptation. If responsibly 
integrated, AI can enable the development of safer, more 
effective, and globally accessible medicines, ultimately 
redefining the future of healthcare. 
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