

Nanotechnology in Herbal Medicine: A Promising Approach for Enhanced Drug Delivery and Therapeutic Efficacy

Prachi S. Tajne*, Vaishnavi S. Kalamb, Pavan N. Girhe, Ravindra L. Bakal Pooja R. Hatwar

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly, Dist. Amravati (444709) Maharashtra, India

Article Info:

Article History:

Received 28 March 2025
Reviewed 07 May 2025
Accepted 04 June 2025
Published 15 June 2025

Cite this article as:

Tajne PS, Kalamb VS, Girhe PN, Bakal RL, Hatwar PR, Nanotechnology in Herbal Medicine: A Promising Approach for Enhanced Drug Delivery and Therapeutic Efficacy, Journal of Drug Delivery and Therapeutics. 2025; 15(6):268-277 *DOI:* <http://dx.doi.org/10.22270/jddt.v15i6.7239>

*Address for Correspondence:

Prachi S. Tajne, Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly, Dist. Amravati (444709) Maharashtra, India

Abstract

Nanotechnology has revolutionized the field of herbal medicine by providing a platform for enhanced drug delivery and therapeutic efficacy. The use of nanocarriers and nano formulations has improved the bioavailability and solubility of herbal extracts, allowing for targeted and controlled release of active compounds. This review highlights the potential of nanotechnology in herbal medicine, including the types of nano formulations, methods of preparation, and applications in various diseases. The advantages of nano formulations, such as improved pharmacokinetics and pharmacodynamics are also discussed. Furthermore, the role of computational tools and artificial intelligence in nanotechnology is explored, including their potential to transform drug delivery and disease monitoring. Despite the promising benefits, the drawbacks of nanotechnology, including biocompatibility and toxicity concerns, are also addressed. Overall, nanotechnology has the potential to enhance the therapeutic efficacy and safety of herbal medicines

Keywords: Nanotechnology, Herbal medicine, Nano formulations, Artificial intelligence, Drug delivery

Introduction:

The Greek prefix "nano," which means "dwarf" or extremely little. It is important to differentiate between nanotechnology and nanoscience. The study of molecules and structures at nanoscales (between 1 and 100 nm) is known as nanoscience, and nanotechnology is the technology that applies this knowledge to real-world gadgets and other uses¹. The topic of nanotechnology has attracted the attention of the whole scientific community. Nobel Laureate Richard Feynman introduced the concept of nanotechnology in a December 1959 lecture at the California Institute of Technology. The processing of material separation, consolidation, and deformation by a single atom or molecule is known as nanotechnology².

Two key areas of research can be used to summarize the intersection of nanotechnologies and plant derivatives:

1. Utilizing plant extracts for the production of nanomaterials and
2. Integrating them into nano systems³.

Plant actives and extracts are among the promising prospects in nanotechnology, a multidisciplinary scientific endeavor that is making strides on several

fronts. Numerous valuable phytochemicals and herbal medications have been successfully developed as a result of the significant attention paid to nanocarrier systems for plant active ingredients and extracts⁴. Nanotechnology is a rapidly developing topic with a wide range of uses in medical science, including medicine delivery, cosmetics, food ingredient packaging, and many more⁵. Solid, liquid, or gaseous substances of nanoscale dimensions typically 1–100 nm are referred to as nanomaterials. They have special chemical and physical characteristics, including size effects, quantum effects, and large surface area⁶. Extracts, concentrated fractions, or biomarker components of herbal treatments are examples of nanoscale pharmaceuticals known as herbal nanomedicines. Herbal nanomedicines have several benefits since they are less toxic and have a better bioavailability⁷. Making a nanoformulation of the extract could potentially be helpful⁸. To optimize the synergistic phytochemical agents based on the nano delivery system, the propolis nano formulation is connected to the oral administration delivery system⁹. Due to the synergistic effects of the various phytochemical combinations available, it has been demonstrated that plant extracts, in particular, can target the underlying pathophysiology of diseases and have several modes of action¹⁰. Because of

their many pharmacological characteristics, natural products which have long been a source of therapeutic agents offer great potential. These natural substances can be further enhanced when paired with nanotechnology¹¹. To guarantee their effectiveness, accessibility, and safety in the control of the wound healing process, numerous formulations and research have examined the function of herbal extracts¹². These nano-based formulations can also help herbal medicines overcome pharmacological challenges, such as instability and poor water solubility and bioavailability¹³. Herbal medication delivery methods at the nanoscale may be used in the future to improve plant medicine's efficacy and solve its drawbacks⁸.

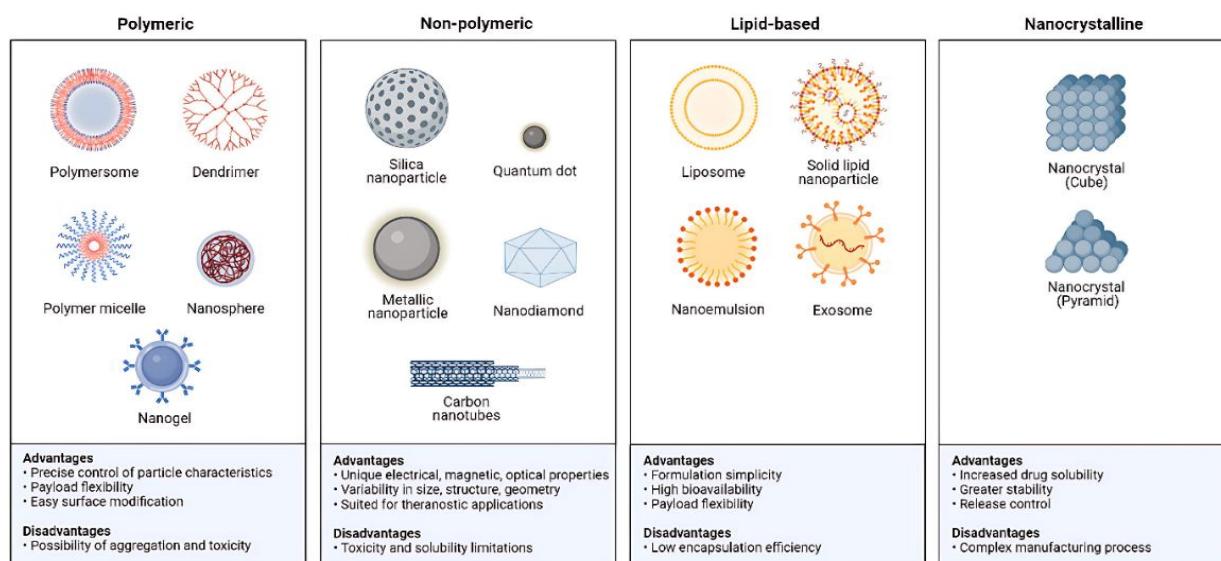
Among the many benefits of a medicine delivery system based on nanostructure are the following:

1. Because of their incredibly small capacity, they can fit through the tiniest capillary veins.
2. They can reach target organs such as the liver, spleen, lungs, spinal cord, and lymphatic system by penetrating cells and tissue gaps.
3. They can offer a prolonged time of regulated release¹¹.

Classification based on Dimensions of Nanoparticles

Nanomaterials are divided into three types based on their size: 0D, 1D, 2D, and 3D.

- **Zero-dimensional (0D):** height, breadth, and length are all 0D. The corresponding author is stationed in one location, such as Nano dots. Single-dimensional nanoparticles: For many years, one-dimensional systems like thin films or artificial surfaces have been used in engineering, chemistry, and electronics.
- **One-dimensional (1D) :** Nanofibers, nanotubes, nano horns, nanorods, thin films, and nanowires are examples of nanomaterials.
- **Two-dimensional (2D) nanoparticles:** These materials have two dimensions that go beyond the


nanoscale. Three examples are nanosheets, nanofilms, and nanolayers.

- **Three-dimensional (3D):** Bulk nanomaterials are another name for nanoparticles. In every way, these nanoparticles are not small by nature. Stated otherwise, their three-dimensional size exceeds 100 nm. These include several nanolayers, core shells, bundles of nanowires, bundles of nanotubes, and nanocomposites¹⁴.

Types of nano formulation

The pharmaceutical industry uses a variety of nano formulations to deliver drugs. Nanomaterials and nanostructures, either inorganic or organic, make up nano formulations.

1. **Inorganic Nanocarriers:** Quantum dots, Metal Nanoparticles
 2. **Lipid Based Nanocarriers:** Liposomes, Solid-Lipid Nanoparticles, Nanosuspensions, Nano emulsions.
 3. **Polymeric Nanocarriers:** Dendrimers, Nanogels, Polymer-drug conjugates, Micelles, Polymeric Nanoparticles etc^{15,16}.
- **Inorganic nanoparticles** - The many kinds of inorganic particles metal, ceramic, magnetic, and nanoshells as well as their size, description, benefits, drawbacks, and uses are created. Inorganic Nanoparticles far smaller in size than organic nanoparticles It encompasses size ranges of 1-100 nm with enhanced loading effectiveness¹⁷.
 - **Organic nanoparticles** - The benefits and drawbacks of the different kinds of organic nanoparticles such as carbon nanotubes, quantum dots, dendrimers, liposomes, and polymers are discussed¹⁸.
 - **Lipid Based Nanocarriers:** Lipid-based nanocarriers are a versatile and exciting platform for gene therapy, drug delivery, and diagnostics. These nanocarriers encapsulate pharmaceutical compounds in naturally occurring lipids, improving stability, bioavailability, and targeting capabilities¹⁹.

Figure 1: Classes of nanoparticles are employed in the pharmaceutical industry to facilitate drug delivery²⁰.

• **Polymeric Nanoparticles:**

Polymeric nanoparticles are extremely small (10^{-9} m) polymeric colloidal spheres that can either adsorb or conjugate at their surface or entrap the medication within the matrix. Diffusion and erosion from the matrix cause the medication to be released from the nanoparticles ²¹. From polymeric nanoparticles, biodegradable natural and manmade polymers are created. They are very stable and are known to release medications gradually depending on the enclosed molecule ¹⁵.

Carbon nanotubes (CNTs):

Fullerenes are a cylindrical set of carbon allotropes that comprise CNTs with unique physicochemical properties that facilitate surface modification. Polyvalent CNTs are rapidly being developed as cancer treatment methods. Targeted medication administration, which aims to target the therapeutic treatment exclusively for tumors, is the most promising approach ²².

Liposomes and Lipid-Based Systems:

Liposomes are tiny bubble-like structures with a hydrophilic head and a hydrophobic tail, like phospholipid. Additionally, lipids are arranged into water, with hydrophilic tails aggregating to form a core and hydrophilic heads freely pointing outward ²¹. Because of their superior flexibility and biocompatibility, lipid nanocarriers were chosen ¹⁵.

Solid Lipid Nanoparticles:

The particle size of solid lipid nanoparticles (SLN) ranges from 50 to 1000 nm. Particulate systems known as SLN contain stabilizers and physiological lipids that decompose naturally. These are room-temperature melting emulsified nanoparticles made of solid lipids. Mitoxantrone was used to prepare SLN for breast cancer and its lymph node metastases ²¹. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC), which are stable in both lipophilic and hydrophilic environments and safe for transporting and releasing active substances to the skin, release the liposome micelle structure ²³.

Nanosuspensions:

Colloidal dispersions of submicron drug particles are known as nanosuspensions (NSs), and they are typically described as biphasic, highly finely dispersed colloids that contain solid drug particles smaller than $1\mu\text{m}$ ²⁴.

Dendrimers:

A macromolecule with a well-defined molecular mass, the dendrimer is a symmetric, spherical, highly branching, monodisperse polymeric molecule in three dimensions. The Greek words dendron (tree) and meros (part) are the roots of the word dendrimer. Arborols and cascades are additional synonyms for dendrimer. However, the dendrimer is the most widely accepted term. High levels of surface functionality and adaptability are offered by the dendrimers. Encapsulation or conjugation of bioactive substances on the surface of dendrimers can further enhance the functionality of these nanostructure dendrimers ²⁵.

Nanogels:

Originally, the word "nanogel" was used to describe bifunctional cross-linked networks that transmit polynucleotides using a polyion and a non-ionic polymer. Nanogels with a diameter between 100 and 200 nm. Another name for nanogels is hydrogel nanoparticles or nanoparticle-based nanogels. Gels are networks of three-dimensional, nanoscale polymers that are cross-linked chemically or mechanically ²⁶.

Nano emulsion:

Nanoemulsion as a System of Colloids Nano emulsion, which ranges in size from 20 to 500 nm, is also referred to as a mini emulsion, sub-micron emulsion, or ultrafine emulsion. It is possible to modify the nano emulsion structure to suit the requirements of different applications. Oil in water (O/W), water in oil (W/O), and bi-continuous are the three different forms of nano emulsion. In the latter, the interfacial tension induced by the surfactant separates the phases that are present in a nano encapsulation system ²⁷.

Nanocrystals:

Common concerns with NPs, liposomes, or solid lipid NPs (SLNs) include high manufacturing costs, platform instability, loading problems, and scaling-up challenges. On the other hand, drug nanocrystals can be administered intravenously without the need for any carrier materials for encapsulation and/or solubilization; however, in order to stabilize pure drug crystals and reduce aggregations, surfactants or polymers are typically needed. Nanocrystals are drug crystals that have a particle size of a few hundred nanometres ²².

Different Methods of Herbal Nano-formulation:

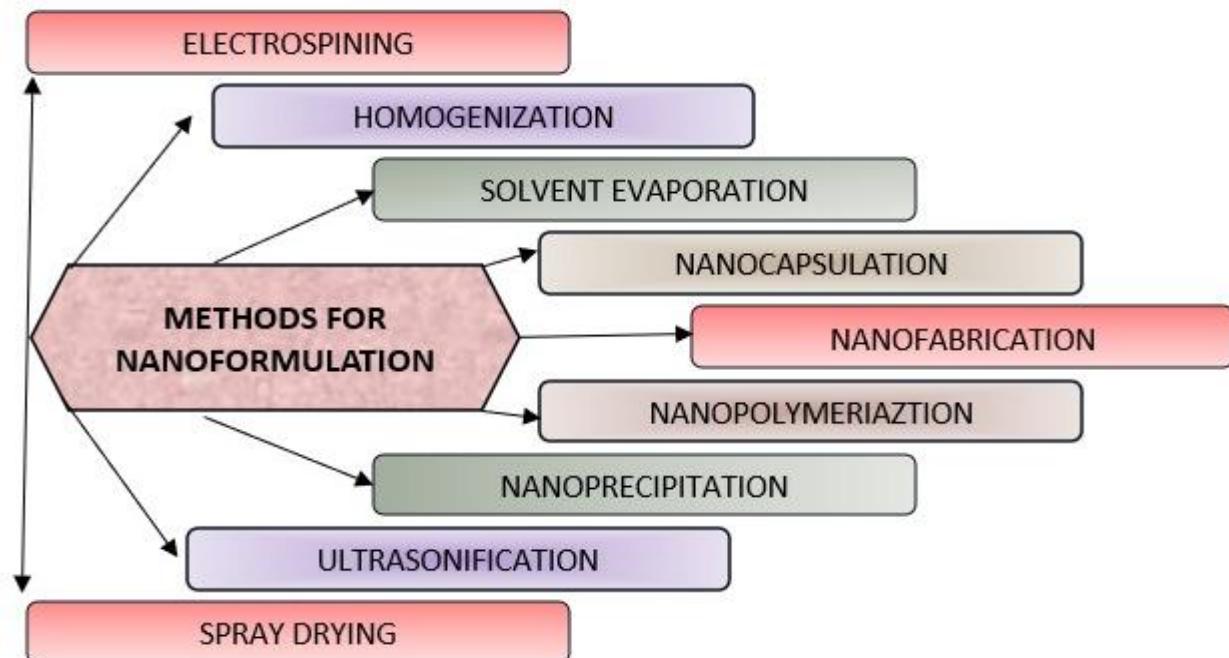


Figure 2: Schematic representation showing the methods for preparation of herbal nano-formulations ^{15, 28}.

Electrospinning:

An efficient, cost-effective, and adaptable technique for creating nanofiber layers with diameters ranging from 3.0 to more than 5.0 nm is electrospinning, which uses a high-voltage electric field to elongate droplets of injected polymer solutions. The high voltage encourages the interaction between charged polymer precursors and

external electrical fields, resulting in the formation of polymer nanofibers. The high voltage power source, which can deliver several tens of kilovolts, enables the resulting nanofibers to have unique characteristics like increased surface areas and both intra- and inter-fibrous porosity. This technology is widely used to create one-dimensional (1D) continuous polymeric materials, 1D nanocomposites, or inorganic materials ²⁹.

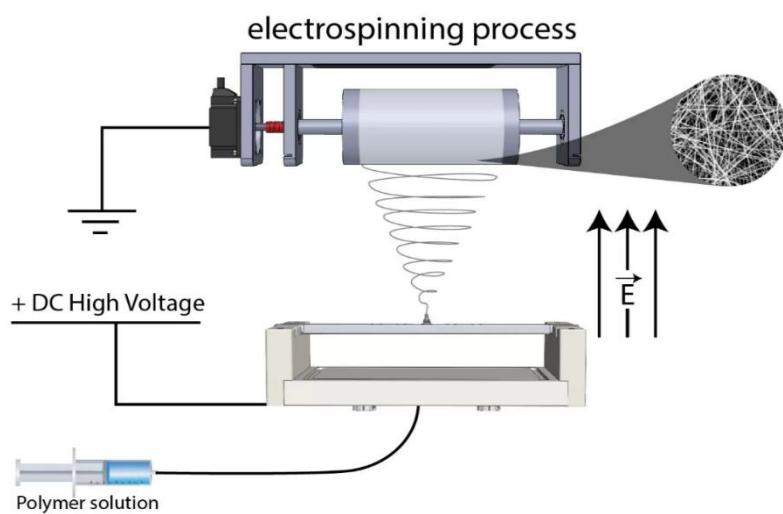


Figure 3: Systematic Representation of Electrospinning Methods ³⁰

High Pressure Homogenization:

There are two methods for producing Solid Lipid Particles (SLN) using high pressure homogenization, which are as follows:

- a. **Hot Homogenization Technique (HHT):** This method involves dispersing the drug loaded in melted lipid in an aqueous surfactant solution at the same temperature using a high shear device.
- b. **Cold Homogenization Technique (CHT):** CHT was formed to avoid temperature-induced drug degradation,

the partitioning of hydrophilic drugs from the lipid phase to the aqueous phase, and the intricacy of the nano emulsion's crystallization step, which can result in multiple modifications and/or supercooled melts³¹.

Solvent Evaporation technique:

Copolymers and medications are dissolved in a common solvent or miscible solvents as part of the solvent evaporation process. This is the preferred technique for PM manufacturing when both polymers dissolve in the solvent and are soluble in water. The solvents evaporate, forming a thin film of drug copolymer. Drug-loaded PMs are created spontaneously when water or buffers are added. Additionally, the size of the micelles is distributed during processing using a sonicator or high-pressure extruder. Likewise³².

Nanoencapsulation:

The word "nanoencapsulation" describes the potential applications of materials that are encased at nanoscale levels, including layers, films, coatings, and even straightforward micro dispersions. More encapsulation-friendly features are provided by the nanoparticle-based encapsulation technique. More efficiently and with better encapsulation-related characteristics, nanoparticles release bioactive compounds²⁸.

Nanofabrication:

Nanofabrication creates elements that are 100 nm or less in size. This is a group of techniques, and depending on the direction of the removed material, the etching process creates isotropic or anisotropic features by selectively removing the reactive agents. Sodium carbonate is used to create hollow mesoporous silica nanoparticles, which have been shown to have good biological compatibility and are widely used as drug nanoreactors or nanocarriers¹⁵.

Nano polymerization

These procedures can be classified as either direct polymerization or polymerization reaction, depending on the requirements of the formulation. Other forms of polymerizations include interfacial and emulsion polymerization. Based on the continuous phase, emulsion polymerization is further separated into organic and aqueous polymerization³³.

Nanoprecipitation

Precipitation techniques, in which a drug containing solution is subjected to particular conditions to cause the drug to precipitate into nanoparticles, can be used to create nanoparticles³⁴. When a semi-polar solvent that is miscible with water is dislocated from a lipophilic solution, the interfacial tension between the two phases decreases, increasing the shell area and resulting in a configuration of tiny organic solvent droplets even without mechanical stirring. This process is based on the interfacial accrual of a polymer³⁵.

Ultrasonication:

One innovative technological method for the accurate implementation of nanoencapsulation procedures is ultrasonication. Ultrasonication uses mechanical forces

to enable nanoscale encapsulation by taking advantage of the phenomenon of high-frequency sound waves propagating in a liquid media. This provides a new and sophisticated way for accomplishing this complex operation. Ultrasonication uses ultrasonic waves as part of its emulsification process to create ultrafine emulsions. It helps disperse solid particles in a liquid medium and break up clusters²⁸.

Spray Drying Method:

This process is employed in the manufacturing of tablets and powder. After containing API and excipients in the appropriate solvent, a macro suspension is first produced. This suspension is then passed through a homonizer to form a nanosuspension. Eliminating the solvent is the second stage. Two techniques, such as freeze drying and spray drying, are employed for solvent removal. The dryer works on a simple concept. Initially, the heater applies the drying gas into the system through laminar air flow. Fine suspension droplets are sprayed by the spray head, and after the droplets dry, they solidify into particles. This kind of powder can be used as a medication carrier for suspension, for encapsulation, for inhalation, and more³⁶.

Natural herb used in nanoformulations for the treatment of different diseases

- Curcumin:** Curcumin possesses several pharmacological properties, including anti-hyperlipidemic, immunomodulatory, chemoprotective, antineoplastic, antiulcer, and neuroprotective properties⁵.
- Licorice:** *Glycyrrhiza glabra* L. and *Glycyrrhiza uralensis*, or licorice, have anti-inflammatory qualities.
- Turmeric:** Turmeric is essential to both Ayurvedic and Traditional Chinese treatment. In vitro, turmeric's primary active ingredient, curcumin, exhibits anti-inflammatory, antibacterial, and antioxidant properties⁷.
- Propolis:** A product of bees, propolis has several pharmacological properties, including antiviral, antifungal, antibacterial, anti-inflammatory, anti-parasite, and wound-healing properties⁹.
- Ficus trijuja:** *Ficus trijuja* is a member of the moraceae family's genus *ficus*. Due to its high phenolic content, the acetone extract of *f. Amplissima* leaves exhibited strong wound-healing capabilities through anti-inflammatory and antioxidant actions⁴.
- Berberis:** The extract has a naturally occurring synergistic blend of components that have the ability to heal wounds. Among its many other biologically beneficial properties, it is a multicomponent anti-infective and, more specifically, an antibacterial agent⁴.
- Trigonella foenum graecum:** *Trigonella foenum graecum* restored normoglycemia and normalized the experimental diabetic rats' reduced levels of creatine kinase in the liver, skeletal muscle, and heart³⁷.

8. **Capsaicinoids:** Capsaicinoids have a significant biological activity and may be used pharmacologically and clinically to treat inflammatory and oxidative disorders, as well as neurological and musculoskeletal discomfort ³⁸.
9. **Hura crepitans L.:** This species is a member of the euphorbiaceae. These substances are secondary metabolites that help plants defend themselves and are essential in lowering oxidative stress, a major contributor to a number of human illnesses, including diabetes, obesity, cancer, and neurodegenerative diseases ³⁹.
10. **Quercetin:** Quercetin known for its neuroprotective and anti-inflammatory properties, quercetin is a bioflavonoid that may be found in a variety of fruits, vegetables, and oils derived from herbs ⁴⁰.

Advantages of novel formulations of herbal extracts

Herbal remedies and phytoconstituents are believed to be safer and more efficient than allopathic drugs. Globally, the use of natural medicines is increasing. Principles of nanoscience and technology have been applied to these naturally occurring drugs in order to improve their bioavailability and attain tailored distribution ⁴¹. Worldwide, herbal remedies are in widespread use and are acknowledged by both doctors

and patients as having superior therapeutic value due to their lower side effects when compared with modern medications. By decreasing toxicity and raising bioavailability, novel drug delivery systems that employ a scientific approach not only reduce the need for repeated administration to overcome non-compliance but also contribute to an increase in therapeutic value ⁴².

Pharmacokinetic And Pharmacodynamic Enhancement in Nano formulation-

Delivery techniques using nanoformulations could significantly enhance medication PK. However, nano formulation distribution can also have a detrimental impact on therapeutic efficacy and toxicity, whereas excessive buildup of nano formulations may result in tissue-specific toxicity, inadequate absorption and diffusion into tissues may impair pharmacological activity ⁴³. These consist of metallic nanoparticles, solid lipid nanocarriers, nanoparticles, and nanocapsules. The biodistribution, pharmacokinetics, bioavailability, and specificity of drug delivery to the site are all improved when these methods are chosen for nano formulation ⁴⁴. One important pharmacokinetic metric that shows the concentration of a nonvascular medication that can enter the systemic circulation via a nonvascular pathway is bioavailability. Another crucial PK parameter that is assessed by figuring out the values of Cmax and Tmax is the adsorption rate ⁴⁵.

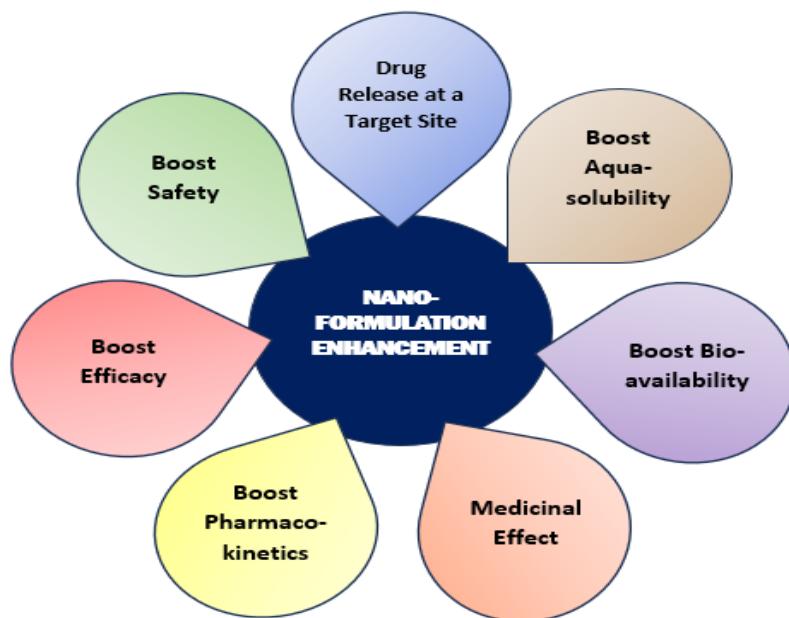


Figure 4: Benefits of nano delivery systems ⁴⁴.

Three-Dimensional Printing in Nano pharmacy (Nano Printing):

The use of 3D printing in a variety of medical applications has grown significantly. Known as Three-Dimensional Printing (3DP), this technology offers many benefits, including on-demand device creation, complex geometries, and affordable prototyping. Because it allows for personalized production, 3D printing (3DP) is posing a challenge to traditional mass manufacturing processes in the pharmaceutical business for fixed-dose

medications. 3D printing technology is acknowledged as an additive manufacturing process since it uses computers to manipulate material layers to create 3D items ⁴⁶. Because of their extremely small size and narrow size distribution, a variety of nanotechnologies, such as nanoparticles (lipid, polymer, and metallic nanoparticles), dendrimers, nanodiamonds, nanocrystals, quantum dots, carbon nanotubes, nanogels, nanoemulsions, etc., are being investigated for the creation of different nanomedicines. Through the use of apparent surface functional design, bioconjugation,

and exceptional biocompatibility, these nanomedicines are also being produced utilizing 3D printing technology as precision medications to meet the unique needs of each patient⁴⁷. Through individualized drug delivery methods, the use of 3D printing in pharmaceuticals offers innovative breakthroughs in customizing drug compositions to patients' demands, potentially improving therapeutic outcomes. Complicated drug delivery systems and formulations can be precisely created using a variety of 3D printing technologies, such as powder-based, extrusion-based, inkjet-based, and laser-based techniques⁴⁸. Layer-by-layer material deposition onto a substrate is one of the additive manufacturing processes used in 3D printing procedures. Computer software is used to build the final 3D product. Two basic steps are involved in all 3D printing techniques. One is about utilizing computer software to create products, while the other is about using a 3D printer to deposit stuff. Oral administration of solid dosage forms is the most often used medication administration technique. Accurate dosing, chemical and microbiological stability, controlled release properties, and ease of administration are all offered by oral tablets⁴⁹.

Use of Computational Tools and AI

Significant advancements in computational modeling techniques are quickly closing the gap between multi-supra molecular structures at the nanoscale, such as nanoparticles and other nano-engineered nanomaterials (ENMs), including nanocarriers, and atomistic levels of

description of both organic and inorganic molecular systems⁵⁰.

- By enabling precise, tailored therapies at the nanoscale, artificial intelligence has transformed drug delivery. Drug distribution is safer and more efficient thanks to this accuracy, which also reduces adverse effects and improves therapeutic efficacy.
- To fully realize the potential of personalized medicine, AI and nanotechnology must be integrated⁵¹.
- Artificial Intelligence (AI) in nanotechnology is transforming illness monitoring and detection by offering ongoing surveillance and early diagnosis⁵².
- The incorporation of AI into nanomanufacturing procedures is making it easier to precisely and efficiently assemble nanoscale structures, which is resulting in ground-breaking developments across a range of industries.
- A new era of environmental monitoring and remediation is being ushered in by the combination of AI and nanotechnology.
- Energy conversion processes are greatly improved by nanomaterials, which are carefully designed at the nanoscale⁵¹.
- Groundbreaking advancements in healthcare are being made possible by the convergence of nanorobotics and medicine⁵³.

Nanotechnologies Applications

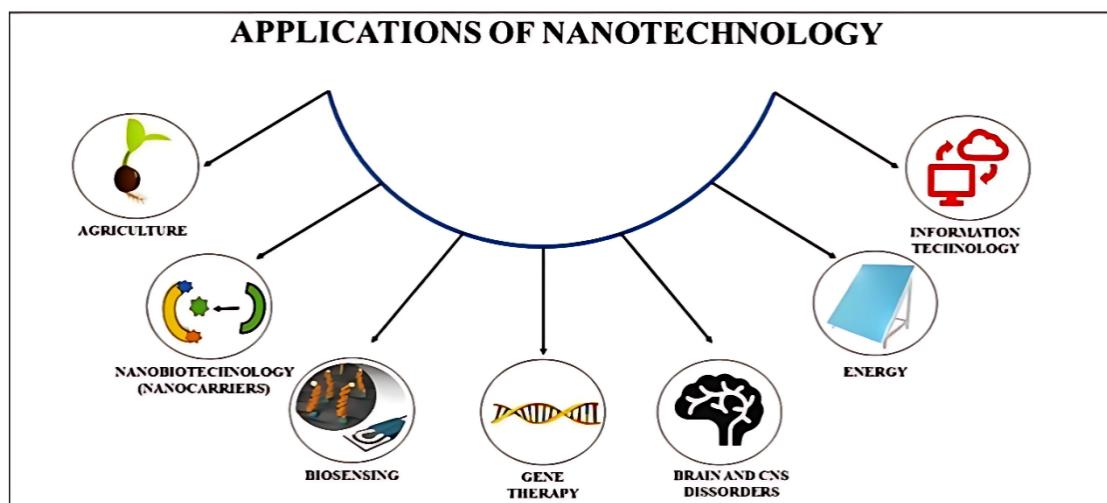


Figure 5: Applications Of Nanotechnology⁵⁴

Applications of nanotechnologies include tissue engineering, medication and gene delivery, protein detection, fluorescent biological labeling, pathogen detection, DNA structural probing, and more. Other methods used in medicine for cancer diagnosis and treatment include phagokinetic investigations, MR imaging contrast enhancement, isolation and purification of biological molecules and cells, and tumor killing by heating (hyperthermia). Advanced medicines

with less invasiveness and cost-effective diagnostic equipment that are quicker, smaller, and more sensitive are both made possible by nanotechnology.

Drawbacks of Nanotechnology

The main cause for concern is the nano formulations' biocompatibility. The most important factors are how easily nanotechnology-based treatments have been offered globally at the most basic levels (government

hospitals, primary healthcare, etc.) and how much they cost. Furthermore, further research is required to fully understand its toxicity and effects on the environment, human body, and biochemical pathways. Researchers are seriously concerned about the ethical application of nanomedicine in society and the associated safety concerns⁵⁵.

Conclusion

Nanotechnology has emerged as a promising approach for enhancing the therapeutic efficacy and safety of herbal medicines. The use of nano formulations and nanocarriers has improved the bioavailability and solubility of herbal extracts, allowing for targeted and controlled release of active compounds. With the integration of computational tools and artificial intelligence, nanotechnology has the potential to transform drug delivery and disease monitoring. However, further research is needed to fully realize the potential of nanotechnology in herbal medicine and to address the concerns related to biocompatibility and toxicity. As the field continues to evolve, it is expected that Nanotechnology will play a significant role in the development of novel and effective herbal medicines. Ultimately, the combination of nanotechnology and herbal medicine may provide a new concept for the treatment.

Conflict of Interest: The authors declare no potential conflict of interest with respect to the contents, authorship, and/or publication of this article.

Author Contributions: All authors have equal contribution in the preparation of manuscript and compilation.

Source of Support: Nil

Funding: The authors declared that this study has received no financial support.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting in this paper are available in the cited references.

Ethical approval: Not applicable

References

1. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. *Molecules*. 2019;25(1):112. <https://doi.org/10.3390/molecules25010112> PMid:31892180 PMCid:PMC6982820
2. Falke PB, Shelke PG, Hatwar PR, Bakal RL, Kohale NB. A comprehensive review on Nanoparticle: Characterization, classification, synthesis method, silver nanoparticles and its applications. *GSC Biological and Pharmaceutical Sciences*. 2024; 28(01), 171-184. <https://doi.org/10.30574/gscbps.2024.28.1.0268>
3. Ungureanu AR, Ozon EA, Musuc AM, Anastasescu M, Atkinson I, Mitran RA, Rusu A, Popescu L, Gird CE. Preparation And Preliminary Analysis Of Several Nanoformulations Based On Plant Extracts And Biodegradable Polymers As A Possible Application For Chronic Venous Disease Therapy. *Polymers*. 2024; 16: 1362. <https://doi.org/10.3390/polym16101362> PMid:38794552 PMCid:PMC1125073
4. Sharma N, Vasisht K, Kaur J, Sandhu SK, Dey K, Hameed B.A, Bajaj R, Kaur I.P, Karan M. Blending Ethnomedicine With Modern Technology From Conventional To Tailored Products: Modulating Biopharmaceutical Properties Of Berberis Extract By Solid Lipid Nanoparticles For Wound Healing. *J. Funct. Biomater.* 2023; 14:418. <https://doi.org/10.3390/jfb14080418> PMid:37623663 PMCid:PMC10455672
5. Hussain A, Attique F, Naqvi SAR. Nanoformulation of Curcuma longa Root Extract and Evaluation of Its Dissolution Potential. *ACS Omega*. 2022;8(1):1088-1096. <https://doi.org/10.1021/acsomega.2c06258> PMid:36643543 PMCid:PMC9835792
6. Ai S, Li Y, Zheng H. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. *J Nanobiotechnology*. 2024;22(1):140. <https://doi.org/10.1186/s12951-024-02426-3> PMid:38556857 PMCid:PMC10983666
7. Agrawal R, Jurel P, Deshmukh R, Harwansh R.K, Garg A, Kumar A, Singh S, Guru A, Kumar A, Kumarasamy V. Emerging Trends In The Treatment Of Skin Disorders By Herbal Drugs: Traditional And Nanotechnological Approach. *Pharmaceutics*. 2024; 16: 869. <https://doi.org/10.3390/pharmaceutics16070869> PMid:39065566 PMCid:PMC11279890
8. Devi A, Khanam S. Preparation And Characterization Of Herbal Nanoformulation Containing Andrographis Paniculata Extract. *IJPSR*. 2019; 10(12): 5380-5385.
9. Kustiawan PM, Syaifie PH, Al Khairy Siregar KA, Ibadillah D, Mardiyati E. New insights of propolis nanoformulation and its therapeutic potential in human diseases. *ADMET DMPK*. 2024;12(1):1-26. <https://doi.org/10.5599/admet.2128> PMid:38560717 PMCid:PMC10974817
10. Wickramasinghe ASD, Kalansuriya P, Attanayake AP. Nanoformulation of Plant-Based Natural Products for Type 2 Diabetes Mellitus: From Formulation Design to Therapeutic Applications. *Curr Ther Res Clin Exp*. 2022;96:100672. <https://doi.org/10.1016/j.curtheres.2022.100672> PMid:35586563 PMCid:PMC9108891
11. Herdiana Y. Nanoparticles Of Natural Product-Derived Medicines: Beyond The Pandemic, *Helijon*. 2025; 11: E42739. <https://doi.org/10.1016/j.helijon.2025.e42739> PMid:40083991 PMCid:PMC11904502
12. Hashad IM, Aly SH, Saleh DO, Aboel-Nasr NME, Shabana ME, El-Tokhy FS, El-Nashar HAS, Abdelmohsen UR, Mostafa NM, Mostafa AM. Mechanistic wound healing officus trijuja leaf extract and its lipid nanocapsule supported by metabolomic profiling and in vivo studies. *Int. J. Mol. Sci.* 2025, 26, 928. <https://doi.org/10.3390/ijms26030928> PMid:39940701 PMCid:PMC11817089
13. Rezaei-Tazangi F, Forutan Mirhosseini A, Fathi A, Roghani-Shahraki H, Arefnezhad R, Vasei F. Herbal And Nano-Based Herbal Medicine: New Insights Into Their Therapeutic Aspects Against Periodontitis. *Avicenna J Phytomed*, 2024; 14(4): 430-454.
14. Shinde NM, Shelke PG, Hatwar PR, Bakal RL Gautam DG. A review on nanoparticles in cancer therapeutics with its classification and synthesis, *GSC Biological and Pharmaceutical Sciences*, 2024; 29(03): 099-112. <https://doi.org/10.30574/gscbps.2024.29.3.0463>
15. Srinivasan N, Recent Advances In Herbal-Nano Formulation: A Systematic Review. *Asian Journal Of Biological And Life Sciences*. 2023;12(1). <https://doi.org/10.5530/ajbls.2023.12.4>
16. Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis M.L, Pellegrini E, Stringaro A. Phytocompounds And Nanoformulations For Anticancer Therapy: A Review. *Molecules*. 2024; 29, 3784. <https://doi.org/10.3390/molecules29163784> PMid:39202863 PMCid:PMC11357218
17. Vani Mamillapalli, Amukta Malyada Atmakuri1, Padmalatha Khantamneni, Nanoparticles For Herbal Extracts. *Asian Journal Of Pharmaceutics*. Apr-Jun 2016 ;10 (2):S54
18. Gawai AY, Bakal RL, Hatwar PR, Nehar KN, Bhujade PR. Introduction about Global infectious disease and use of

- nanotechnology. *Journal of Drug Delivery and Therapeutics*. 2024; 14(12):181-190 <https://doi.org/10.22270/jddt.v14i12.6915>
19. Awlqadr F, Majeed K, Altemimi A, Hassan A, Qadir S, Saeed M, Faraj A, Salih T, Al-Manhel A, Najm M, Tsakali E. Nanotechnology-based herbal medicine: Preparation, synthesis, and applications in food and medicine. *Journal of Agriculture and Food Research*. 2025; 19: 101661, <https://doi.org/10.1016/j.jafr.2025.101661>
20. Mangle AP, Bakal RL, Hatwar PR, Kubde JA. Lipid-Based Nanocarriers for Enhanced Oral Bioavailability: A Review of Recent Advances and Applications, *Asian Journal of Pharmaceutical Research and Development*. 2025; 13(1):71-80, DOI: <http://dx.doi.org/10.22270/ajprd.v13i1.1506>
21. Yadav D, Suri S, Choudhary A, Sikender M, Hemant, Beg M, Garg V, Ahmad A, Asif M. Novel Approach: Herbal Remedies And Natural Products In Pharmaceutical Science As Nano Drug Delivery Systems. *IJPPT*. Sep-2011; 3(3)3092-3116
22. Mukherjee S, Joshi V, Reddy K, Singh N, Das P, Datta P. Biopharmaceutical And Pharmacokinetic Attributes To Drive Nanoformulations Of Small Molecule Tyrosine Kinase Inhibitors. *Asian Journal of Pharmaceutical Sciences*. 2024; 19 100980 <https://doi.org/10.1016/j.ajps.2024.100980> PMid:39640056 PMCid:PMC11617995
23. Pinar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation Strategies Of Nanosuspensions For Various Administration Routes. *Pharmaceutics*. 2023; 15: 1520. <https://doi.org/10.3390/pharmaceutics15051520> PMid:37242763 PMCid:PMC10221665
24. Mahure LD, Hatwar PR, Bakal RL Turankar CC. Nanotechnology-based approaches for acne treatment: A comprehensive review. *GSC Biological and Pharmaceutical Sciences*, 2025; 31(01), 156-162 <https://doi.org/10.30574/gscbps.2025.31.1.0150>
25. Kumari A, Singla R, Guliani A, Yadav SK. Nanoencapsulation for drug delivery. *EXCLI J*. 2014;13:265-286. Published 2014 Mar 20.
26. Mustafa IF, Hussein MZ. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. *Nanomaterials (Basel)*. 2020;10(8):1608. Published 2020 Aug 17. <https://doi.org/10.3390/nano10081608> PMid:32824489 PMCid:PMC7466655
27. Mendake RA, Hatwar PR, Bakal RL, Amalkar SV. Review on Nanogel as a Novel Platform for Smart Drug Delivery System. *Journal of Drug Delivery and Therapeutics*. 2024; 14(8):161-174 <https://doi.org/10.22270/jddt.v14i8.6704>
28. Singh A, Pal P, Pandey B, Goksen G, Sahoo U, Lorenzo J, Sarangi P. Development of "Smart Foods" for health by nanoencapsulation: Novel technologies and challenges, *Food Chemistry: X*. 2023;20, 100910, ISSN 2590-1575. <https://doi.org/10.1016/j.fochx.2023.100910> PMid:38144773 PMCid:PMC10740092
29. Bhowmick D, Shipu I. Advances In Nanofiber Technology For Biomedical Application: A Review. *World Journal Of Advanced Research And Reviews*. 2024; 22(01), 1908-1919 <https://doi.org/10.30574/wjarr.2024.22.1.1337>
30. https://in.images.search.yahoo.com/search/images;_ylt=Awr1Qh hn3gVoOglAKcu7HAx.;_ylu=Y29sbwNzZzMEcG9zAzEEdnRpZAME c2VjA3BpdnM-?p=Systematic+Representation+Of+Electrospinning+Methods&fr 2=piv-web&type=E210IN885G0&fr=mcfee#id=81&iurl=https%3A%2F%2Fwww.inovenso.com%2Fwp-content%2Fuploads%2F2018%2F11%2F1.jpg&action=click
31. Parhi R, Suresh P. Preparation and characterization of solid lipid nanoparticles-a review. *Curr Drug Discov Technol*. 2012;9(1):2-16. <https://doi.org/10.2174/157016312799304552> PMid:22235925
32. Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in Polymeric Micelles for Drug Delivery Applications. *Pharmaceutics*. 2022 Aug 5;14(8):1636. <https://doi.org/10.3390/pharmaceutics14081636> PMid:36015262 PMCid:PMC9412594
33. Yadav J, Maheshwari S, Kumar A, Alka, Kumar R, Mishra A, Bhadauriya S, Shukla S, Jain N. Nano Herbal Formulation: A New Approach Of Medicinal Plants And Their Therapeutic Modalities. *International Journal Of Food And Nutritional Sciences*. 2022; 11, Iss 09.
34. Sandhiya V and Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. *Future Journal of Pharmaceutical Sciences*. 2022; 11, Iss 09.
35. Patel M and Prajapati BG. A Review on Nanoparticle: Formulation Strategies, Characterization and Therapeutic Applications, *Nanomed Nanotechnol*. 2022; 7(1): 000216. <https://doi.org/10.23880/NNOA-16000216>
36. Ajmire ON, Hatwar PR, Bakal RL and Thak IK. Nanoparticles: A promising approach for enhancing drug delivery and efficacy, *GSC Biological and Pharmaceutical Sciences*, 2025, 30(02), 117-126, <https://doi.org/10.30574/gscbps.2025.30.2.0044>
37. Marella S, Tollamadugu N. Nanotechnological approaches for the development of herbal drugs in treatment of diabetes mellitus - a critical review. *IET Nanobiotechnol*. 2018; 12(5):549-556 <https://doi.org/10.1049/iet-nbt.2017.0242> PMid:30095411 PMCid:PMC8676124
38. Pappalardo I, Santarsiero A, De Luca M, Acquavia M.A, Todisco S, Cadeo C, Bianco G, Infantino V, Martelli G, Vassallo A. Exploiting the Anti-Inflammatory Potential of White Capsicum Extract by the Nanoformulation in Phospholipid Vesicles, *Antioxidants*. 2021; 10:1683. <https://doi.org/10.3390/antiox10111683> PMid:34829554 PMCid:PMC8614711
39. Vassallo A, Armentano MF, Miglionico R. *Hura crepitans L. Extract: Phytochemical Characterization, Antioxidant Activity, and Nanoformulation*, *Pharmaceutics*. 2020;12(6):553. Published 2020 Jun 15. <https://doi.org/10.3390/pharmaceutics12060553> PMid:32549193 PMCid:PMC7356585
40. Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders, *Front. Bioeng. Biotechnol*. 2020;8:238. <https://doi.org/10.3389/fbioe.2020.00238> PMid:32318551 PMCid:PMC7154137
41. Ogbonna1J, Kenechukwu F, Attama A, Chime S. Different Approaches To Formulation Of Herbal Extracts /Phytopharmaceuticals /Bioactive Phytoconstituents - A Review. *Int. J. Pharm. Sci. Rev. Res.* 2022; 16(1).
42. Kathole KS, Hatwar PR, Bakal RL, Karule VG. Nano technology-based drug delivery systems and herbal medicine. *Journal of Drug Delivery and Therapeutics*. 2025; 15(3):133-141 <https://doi.org/10.22270/jddt.v15i3.7017>
43. Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. *Br J Pharmacol*. 2014;171(17):3963-3979. <https://doi.org/10.1111/bph.12604> PMid:24467481 PMCid:PMC4243971
44. Sindhu RK, Verma R, Salgotra T, Rahman MH, Shah M, Akter R, Murad W, Mubin S, Bibi P, Qusti S. Impacting The Remedial Potential Of Nano Delivery-Based Flavonoids For Breast Cancer Treatment. *Molecules*. 2021; 26, 5163. <https://doi.org/10.3390/molecules26175163> PMid:34500597 PMCid:PMC8434139
45. Eity TA, Bhuiya MS, Chowdhury R. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. *J Trop Med*. 2024;2024:5594462. <https://doi.org/10.1155/2024/5594462> PMid:39380577 PMCid:PMC11461079
46. Jain K, Shukla R, Yadav A, Ujjwal RR, Flora SJS. 3D Printing in Development of Nanomedicines. *Nanomaterials (Basel)*. 2021 Feb 7;11(2):420. <https://doi.org/10.3390/nano11020420> PMid:33562310 PMCid:PMC7914812
47. Meshram SI, Hatwar PR, Bakal RL, Raut PV. Artificial Intelligence-Assisted Fabrication of 3D Printed Technology in Pharmaceutical Development and Its Application, *Journal of Drug Delivery and*

- Therapeutics. 2024; 14(8):214-222
<https://doi.org/10.22270/jddt.v14i8.6735>
48. Simon M.C, Laios K, Nikolakakis I, Papaioannou T.G. Three-Dimensional Printing Technology In Drug Design And Development: Feasibility, Challenges, And Potential Applications, J. Pers. Med. 2024; 14: 1080. <https://doi.org/10.3390/jpm14111080> PMid:39590572 PMCid:PMC11595649
49. Sautha V, Butola M, Chaudhary M, Kumar P, Jakhmola V, Dhyani S, Ansori A. N. M. Overview of 3d Printing Technology with Pharmaceutical Applications. Challenges and Future Aspects. Biomed Pharmacol J. 2025;18. <https://doi.org/10.13005/bpj/3070>
50. Buchete N-V, Cicha I, Dutta S And Neofytou P. Multiscale Physics-Based In Silico Modelling Of Nanocarrier-Assisted Intravascular Drug Delivery. Front. Drug Deliv. 2024; 4:1362660. <https://doi.org/10.3389/fddev.2024.1362660>
51. David B. Olawade, Abimbola O. Ige, Abimbola G. Olaremu, James O. Ijiwade, Adedapo O. Adeola. The synergy of artificial intelligence and nanotechnology towards advancing innovation and sustainability - A mini-review. Nano Trends. 2024; 8: 100052, <https://doi.org/10.1016/j.nwnano.2024.100052>
52. Palavicini G. Intelligent Health: Progress And Benefit Of Artificial Intelligence In Sensing-Based Monitoring And Disease Diagnosis. Sensors. 2023; 23: 9053. <https://doi.org/10.3390/s23229053> PMid:38005442 PMCid:PMC10675666
53. Dong H, Lin J, Tao Y. AI-enhanced biomedical micro/nanorobots in microfluidics. Lab Chip. 2024;24(5):1419-1440. <https://doi.org/10.1039/D3LC00909B> PMid:38174821
54. Sune PR, Jumde KS, Hatwar PR, Bakal RL, More SD, Korde AV. Nanoparticles: Classification, types and applications: A comprehensive review. GSC Biological and Pharmaceutical Sciences, 2024, 29(03): 190-197 <https://doi.org/10.30574/gscbps.2024.29.3.046>
55. Kumari S, Goyal A, Sönmez Gürer E, Algin Yapar E, Garg M, Sood M, Sindhu RK. Bioactive Loaded Novel Nano-Formulations For Targeted Drug Delivery And Their Therapeutic Potential. Pharmaceutics, 2022; 14:1091. <https://doi.org/10.3390/pharmaceutics14051091> PMid:35631677 PMCid:PMC9146286