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Abstract 
____________________________________________________________________________________________________________ 

Hydrogels are three-dimensional polymeric networks renowned for their remarkable water-
absorbing capacity, tunable physicochemical properties, and high biocompatibility. This review 
comprehensively explores the synthesis, classification, and physicochemical and biological 
characteristics of both natural and synthetic hydrogels. Advances in crosslinking mechanisms, 
including ionic, chemical, and physical methods, are critically analyzed alongside their 
functional properties such as pH-, temperature-, and photo-responsiveness. Special emphasis 
is given to the role of hydrogels in drug delivery systems, including buccal, oral, vaginal, 
transdermal, ocular, and injectable formulations. Additionally, their applications in wound 
healing, tissue engineering, biosensing, and 3D cell cultures are examined. Limitations and 
challenges in clinical translation, regulatory concerns, scale-up processes, and strategies to 
enhance drug loading and controlled release are discussed. The review underscores the 
transformative potential of hydrogels in personalized and regenerative medicine and calls for 
further translational research to address current constraints and expand clinical applicability. 
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1. Introduction 

Hydrogels are three-dimensional networks composed of 
synthetic or natural polymers, renowned for their 
exceptional ability to absorb and transmit water due to 
their porous structure. They're non-toxic, non-reactive, 
and safe for pharmaceutical use1. 

Lately, hydrogels have become a hot topic in drug 
delivery, particularly for oral administration. Their high 
water content allows them to carry hydrophilic drugs 
effectively, while offering excellent biocompatibility and 
a tissue-like feel. In diffusion-controlled delivery, drugs 
are loaded into hydrogels, protected from damage, and 
gradually released. However, hydrogels struggle with 
lipophilic drugs, which are poorly water-soluble—an 
issue, since over 40% of drugs fall into this category. 
Researchers are working on various strategies to 
overcome this limitation 2. 

Hydrogels can be made from both natural and synthetic 
polymers, often blended to enhance their properties. 

Among natural polymers, polysaccharides are commonly 
used3. They've shown promise in many applications, such 
as scaffolds4, absorbents5, drug delivery6, and cartilage 
replacements7. Common examples include pullulan, 
starch, dextran, chitosan, alginate, and cellulose, along 
with their derivatives8,9. 

Chemically, hydrogels are made using traditional 
methods like polymerization or more complex cross-
linking techniques9. Their water-holding power comes 
from functional groups like hydroxyl, carboxyl, sulfonic, 
and amidic groups. Hydrogels can also respond to 
environmental changes—such as temperature, pH, light, 
or electric fields—by changing their physical state. How 
they respond depends on factors like cross-linking, 
charge density, and polymer type10. 

2. History of hydrogel in case of medicinal and 
drug delivery 

The history of hydrogels in medicine and medication 
administration is extensive. Hydrogel was first 
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developed in the 19th century and attracted interest due 
to its biocompatibility, physical qualities that could be 
adjusted, and capacity to replicate real tissues. Below are 

some significant advancements in the development of 
hydrogel.

 

 

Figure 1 : Evolution of Hydrogels 

 

2.1 Early Hydrogel Development 

Around 1900, the word "Hydrogel" was originally 
employed to refer to an inorganic salt gel that is 
colloidal11. The first hydrogel for contact lenses(soft), 
poly (2-hydroxyethyl methacrylate) (pHEMA), was 
developed in 1960 by Wichterle and Lim12. Initially, 
hydrogel research concentrated on relatively basic 
networks of synthetic polymers that were chemically 
crosslinked, primarily for use in drug delivery and 
ophthalmology. Usually, monomers which are water 
soluble were polymerized with a multifunctional 
crosslinking agent present, or hydrophilic polymers 
were crosslinked to create these first-generation 
hydrogels13. Key polymers used in early hydrogels 
include pHEMA14, poly vinyl alcohol(PVA)15, and poly 
ethylene glycol(PEG)16. 

2.2 Second Generation Hydrogels: Stimuli-
Responsive Materials 

In the 1970s, hydrogel research began to concentrate on 
developing hydrogels that could respond to changes in 
the surrounding, such as temperature, pH and 
concentrations of biomolecules17. For in situ forming 
systems, hydrogels that are sensitive to temperature are 
desirable thus they can be administered as a fluid prior 
to gelling. Common polymers used in temperature-
sensitive hydrogels include poly(ethylene glycol)-
polyester block copolymers18, poly(N-isopropyl 
acrylamide)19 and poly(N-(2-hydroxypropyl) 
acrylamide)20. Acidic or basic groups in pH-sensitive 
hydrogels ionize at high or low pH levels, allowing for 

regulated release21. There are now hydrogels that react 
to the concentrations of biomolecules, such as glucose-
sensitive hydrogels that use glucose oxidase to release 
insulin22. 

2.3 Advanced hydrogel systems 

Hydrogels with enhanced mechanical characteristics and 
regulated degradation are produced by stereo-
complexation between enantiomeric poly(lactides)23. To 
create supramolecular hydrogels, cyclodextrin inclusion 
complexes with polymers such as PEG are utilized. 
Hydrogels are also made from self-assembling proteins 
and peptides, which use natural building blocks to 
construct organized structures like β-sheets or coiled 
coils. Smart hydrogels include multi-component 
hydrogels, double-network hydrogels with combinations 
of ionic, covalent, or physical interactions, and in situ 
chemically cross-linkable hydrogels with low toxicity. 
Although there are stability restrictions, hydrogel 
synthesis uses enzymatic crosslinking with enzymes 
such as transglutaminase and horseradish peroxidase. In 
situ hydrogel creation frequently uses the Michael 
addition, a conjugation reaction between electrophilic 
olefins and nucleophiles. Click chemistry is a chemo-
selective crosslinking technique for hydrogels, especially 
copper-free click chemistry. Initiators like potassium 
persulfate and N,N,N′,N′-tetramethyl ethylenediamine 
are employed in radical polymerization to crosslink 
macromers containing methacrylate or acrylate groups. 
Another technique for crosslinking natural polymers 
with (meth)acrylate groups is photopolymerization24.

 

•Hydrogels' physical 
qualities were improved 
and fine-tuned by using 
physical interactions as 
crosslinking techniques.

•Smart hydrogels can be 
tailored to properties 
such as mechanical 
stability and release 

kinetics 
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surrounding 
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•Chemically crosslinked 
synthetic polymers with 
comparatively simple 
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Figure 2: History of Hydrogels25. 

3. Properties of hydrogel 

Hydrogels are extremely beneficial and adaptable in a 
variety of applications, especially in tissue engineering, 
drug administration, and medicine, because to their 
special combination of features. The categories of 
physical, chemical, and biological qualities include a 
variety of attributes. The following explains a few of 
them. 

3.1. Physical Properties: 

3.1.1 Swelling Behaviour: Because hydrogels are 
hydrophilic materials, they can swell dramatically in the 
presence of water. Three processes contribute to this 
swelling: the water diffusion into the hydrogel and the 

expansion of the hydrogel network leads to the relaxing 
of polymer chains. 

3.1.2 Mechanical Properties: Hydrogels' mechanical 
strength is crucial, especially for biomedical uses like 
tissue engineering and drug delivery, requiring a balance 
between flexibility and durability. Strength can be 
tailored by adjusting polymer type and crosslinking. 
Mechanical properties are assessed using methods such 
as tension, compression, and frequency-based tests. 
Rheometers are commonly used for sinusoidal testing, 
where samples are placed on specific geometries to 
perform various sweep measurements.26 

3.1.3 Thermal Stability: The degree of thermal stability 
exhibited by hydrogels varies based on their composition 
and crosslinking techniques. In order to preserve their 

1894 •1894: The term 'Hydrogel' first appeared in literary work 

1960s
•1958: Gamma radiation is used to crosslink PVA hydrogel
•1960:  The seminal work of Wichterle and Lim on PHEMA hydrogels is published.
•1968:  Temperature-dependent phase transition in PNIPAAm solutions

1970s •1970: Crosslinking PEG hydrogel using gamma radiation.
•1972: Using pluronic hydrogel to release antimicrobials under control condition. 

1990s

•1990: By using redox-mediated radical polymerization, PNIPAAm hydrogel was      
crosslinked 

•1992: PNIPAAm hydrogel reacting to temperature and pH 
•1993: Photopolymerization used to crosslink PEG-PLA Hydrogel
•1993: Poly(oxazoline) hydrogel crosslinked using Co2+ / Fe3+ lons 
•1994: Crosslinking supramolecular PEG hydrogel by the creation of an inclusion 

complex.
•1995: Hydrogel that is hybrid of natural and synthetic polymers. 
•1997: PEG-PLA hydrogel that respond to temperature.
•1998: Hydrogel made of synthetic proteins that self-assemble. 

2000s
•2000: Stereocomplex hydrogel of dextran 

•2001: Michael addition crosslinking of PEG hydrogel 

•2006: Crosslinking PVA hydrogel  using Click Chemistry 

2010s
•2010s: The era of smart hydrogels



Todkar et al.                                                                                                                               Journal of Drug Delivery & Therapeutics. 2025; 15(7):180-197 

ISSN: 2250-1177                                                                                           [183]                                                                                            CODEN (USA): JDDTAO 

integrity under physiological settings, this stability is 
essential27. 

3.1.4 Degradation Rate: The selection of materials and 
crosslinking techniques can regulate the hydrogels' 
degradation; this is especially crucial for biomedical 
applications where a gradual degradation is frequently 
necessary. 

3.2. Chemical Properties:  

3.2.1 Crosslinking Mechanisms: Crosslinking can be 
done chemically or physically to create hydrogels. 
Physical hydrogels rely on weak interactions (like 
hydrogen bonds), while chemical hydrogels involve 
covalent bonds, which generally provide greater 
stability. 

3.2.2 Stimulus-Responsive Behaviour: Hydrogels 
respond to various stimuli: physical (temperature, light), 
chemical (pH, ionic strength), and biological (enzymes). 
Physical stimuli are usually external, while chemical and 
biological ones are internal. Shape memory hydrogels are 
a special type that retain a permanent shape and can 
return to their original form using physical or chemical 
triggers. 

3.3. Biological Properties: 

3.3.1 Biocompatibility: Hydrogels are highly 
biocompatible, making them ideal for medical uses like 
drug delivery, wound healing, and tissue engineering. 
Their soft, tissue-like nature minimizes immune 
reactions. Natural polymer-based hydrogels, such as 
those made from chitosan or alginate, offer excellent 
biocompatibility and biodegradability, ensuring safe 
interaction with biological tissues.26,27

 

4. Classification of hydrogels: 

 

Figure 3: Classification of hydrogel 

 

5. Methods of preparation of hydrogels: 

Numerous techniques can be used to create hydrogels in 
order to obtain the appropriate mechanical, structural, 
and functional characteristics. These techniques can be 
roughly divided into groups according to the kind of 
crosslinking process, the makeup of the polymer, and the 
intended use. Here is a summary of the main techniques 
for making hydrogel. 

 

 

5.1 Ionic crosslinking: 

Ionic crosslinking is a widely used method for forming 
hydrogels, especially with polysaccharides like chitosan 
and alginate. It involves ionic interactions between 
multivalent cations and negatively charged polymer 
groups, creating stable gel networks. For example, Savić 
Gajić, Savić et al. (2023) prepared alginate hydrogels by 
mixing alginate with calcium chloride. The alginate 
solution was stirred for 24 hours, then added dropwise 
into a CaCl₂ solution using a syringe to form the hydrogel 
through ionic gelation.28
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Figure 4: Mechanism of ionic crosslinking 

 

5.2 Interpenetrating Polymer Network (IPN): 

Interpenetrating polymer network (IPN) hydrogels 
consist of two or more interlaced polymer networks that 
are physically entangled but not covalently bonded. They 
are synthesized either simultaneously—where both 
networks form at the same time through separate 
mechanisms—or sequentially, where one network is 

formed first and the second is polymerized within it. This 
method allows precise control over hydrogel structure 
and properties. For instance, Matsumoto, Sakikawa et al. 
(2018) created an IPN hydrogel by polymerizing N-
isopropylacrylamide with a crosslinker in the presence 
of sodium alginate, using a redox initiator system and 
final ionic crosslinking to form the network29

 

 

Figure 5: Mechanism of Interpenetrating polymer network hydrogel matrix 

 

5.3 Chemical crosslinking: 

Chemically crosslinked hydrogels are typically prepared 
by dissolving natural (e.g., chitosan, gelatin) or synthetic 
(e.g., PVA, PEG) polymers in a solvent, followed by adding 
a crosslinking agent like glutaraldehyde or carbodiimide. 
Conditions such as pH, temperature, and time are 

controlled, and initiators like heat or UV may be used. For 
example, Ali, Ranjha et al. prepared PVA/Gelatin 
hydrogels by dissolving PVA in water at 60°C and gelatin 
in 3% acetic acid at 37°C. The solutions were mixed, and 
chemical crosslinking was triggered using HCl and 
glutaraldehyde. 30.

 

 

Figure 6: Mechanism of chemical crosslinking 
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5.4 Freez thraw method: 

Freeze-thaw hydrogels are physically crosslinked 
networks formed by repeated freezing and thawing, 
promoting hydrogen bonding without toxic chemicals. 
Ding, Song et al. prepared hydrogels by dissolving PVA in 

distilled water, mixing it with Curdlan gel, and stirring for 
2 hours. The mixture was poured into Petri dishes, frozen 
at -20°C for 12 hours, then thawed at room temperature 
for 4 hours. This freeze-thaw cycle was repeated four 
times to form stable hydrogels. 31.

 

 

Figure 7: Mechanism of freez thrawing for hydrogel  

 

5.5 Gamma Radiation induced polymerization: 

Gamma radiation-induced hydrogels are formed using 
high-energy gamma rays (e.g., from cobalt-60) to initiate 

polymerization and crosslinking without chemical 
agents. This process creates free radicals in aqueous 
polymer solutions, forming covalent bonds32.

 

Figure 8: Mechanism of Gamma radiation-induced polymerization for hydrogel preparation 

6. Medicinal application of hydrogel 

 

Figure 9: Various medicinal applications of hydrogel 

6.1 Drug Delivery 

Smart hydrogels, made from natural or synthetic 
polymers, are promising for targeted drug delivery due 
to their ability to respond to stimuli like temperature, pH, 
or magnetic fields by changing properties such as 
swelling or permeability33. While natural hydrogels are 
biocompatible, they often lack mechanical stability and 
are difficult to process34. Chemical modification can 
enhance their performance, but synthetic polymers are 

preferred for their easy tunability, hydrophilicity, and 
biodegradability, which also help reduce opsonization 
and phagocyte clearance33. 

6.1.1 Thermo-responsive hydrogel- 

Thermo-responsive hydrogels can expand or shrink with 
temperature changes, altering their volume, solubility, 
and structure. Despite these shifts, they can maintain 
their gel-like state across different temperatures.

 

Drug Delivery

Wound Dressings

Tissue Engineering

3D Cell Cultures

Contact lens

Biosensors
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Table 1: Examples of thermos-responsive hydrogel 

Drug Carrier Key Features Duration Notes 

Dexamethasone 
(anti-
inflammatory) 

N-2-hydroxypropyl 
methacrylamide 
(ProGel-Dex 
hydrogel) 

- Liquid at 4 °C, forms gel at ≥30 °C- 
Injected into arthritic joints- Targets 
immune cells (synoviocytes)- Minimizes 
side effects 

Slow 
release 
over 30 
days 

Small polymer size 
(~6.8 kDa) ensures 
fast clearance from 
the body34 

Topotecan (anti-
cancer) 

Solid Lipid 
Nanoparticles 
(TPT-SLN) with 
Poloxamer 
407/188 

- Gelation above 31 °C- Used in colorectal 
cancer model- Better anti-cancer effect 
than pure topotecan- Fewer side effects 

Lasts up to 
28 days, 
stable for 
6 months 

Promising results, 
but longer-term 
studies still 
needed35 

Lamivudine (3TC) 
+ Zidovudine (AZT) 
(anti-HIV) 

Nano co-crystal 
with Pluronic F-127 

- Reduces dose frequency- Sustained 
drug release- Less toxicity than standard 
therapy 

Releases 
>168 
hours (~7 
days) 

Can improve 
adherence in HIV 
therapy36 

Antibody-based 
therapy 

PEGMA-based 
hydrogel 

- PEG alternative- Controls protein 
release by adjusting PEGMA- Dissolves at 
37 °C to release protein 

Sustained 
release for 
13 days 

Potential for use as 
a sustained 
antibody delivery 
system37 

 

6.1.2 PH-responsive hydrogel 

pH-responsive hydrogels swell with pH changes, absorbing water and releasing drugs. When taken orally, they can target 
the gut or intestines for drug delivery38. They're also effective in cancer treatment, releasing medication in the acidic 
environment of tumors39. 

Table 2: Examples of pH responsive hydrogel 

Drug Material Key Features Effectiveness Notes 

Bortezomib (BTZ, 
anti-cancer) + 
Luteolin (LUL) 

pH- and photo-
responsive 
hydrogel (mPEG-
LUL-BTZ) 

- Releases BTZ at acidic pH 
(5.5)- Works up to 50 hours- 
Safe in normal animals- 
Boosted by photothermal 
agent ICG 

Reduced tumor 
growth in rats 

Combining with ICG 
(indocyanine green) 
enhances 
photothermal & 
photodynamic 
therapy40 

Amifostine 
(radioprotective 
drug) 

pH-responsive 
hydrogel (MAC-g-
PCL) 

- Gel formation at pH 1.2 
(stomach)- Rapid release at 
pH 7.4 (intestine)- Protects 
Ami from stomach acid 

Burst release in 
intestine; improved 
survival in mice 

Suitable for oral 
delivery of drugs with 
low stomach stability 
or poor 
bioavailability41 

 

6.1.3 Photo-responsive hydrogels 

Photo-responsive hydrogels use light energy to change their characteristics. It is simple to manage the alteration by 
varying the durations of light stimulation and turning on and off the light in a specific wavelength42. 

Table 3: Examples of Photo responsive hydrogel 

Drug Material Key Features Effectiveness Notes 

Doxycycline 
(antibiotic) 

Light-sensitive 
hydrogel with 
carboxylated 
spiropyran 
(SPCOOH) 

- UV light triggers drug release- 
Reduces initial burst release- 
Allows controlled, sustained 
delivery 

Up to 42 hours under 
UV light 

Better control than 
non-photoresponsive 
hydrogels43 

Insulin (for 
diabetes 
management) 

Photoresponsive 
hydrogel with 
black phosphorus 
(BP) + pNIPAM in 
microneedles 

- Light converts to heat 
(photothermal)- Triggers 
insulin release- Microneedles 
ensure painless skin 
penetration 

Effective blood 
glucose control in 
mice 

Promising for smart, 
responsive insulin 
delivery systems44 
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Table 4: Examples of Dual-responsive hydrogels 

Drug Material Key Features Effectiveness Notes 

Doxorubicin (DOX), 
Curcumin (CUR), 
Methotrexate (MTX) 

pH-/thermo-
responsive 
hydrogel 
(NIPAAm + 
DMAEMA) 

- Dual responsiveness: pH 
(5.8/5.5) and temperature 
(40 °C)- Sustained release of 
DOX & CUR: 168h- MTX: 50h 

DOX/CUR: 
168h, MTX: 
50h 

Significantly 
improved cancer cell 
death vs. free drugs 
(colon & breast 
cancer models)45 

Magnesium ions (for 
gut health / 
therapy) 

pH-/redox-
responsive 
hydrogel (PLP-
CDE) 

- Swells in acidic/reducing 
environments- Controlled Mg²⁺ 
release at pH 6.8- Enhanced 
with DTT- Minimal in pH 1.2 
(stomach) 

Mg²⁺ released 
up to 6 hours 
in intestines 

Designed for oral 
delivery with 
intestinal targeting, 
especially for 
sensitive molecules or 
ions46 

 

6.2 Wound Dressings 

Hydrogels help heal wounds by absorbing excess 
exudate, creating a protective barrier, and maintaining a 
moist environment that supports recovery 47. They’re 
biocompatible, biodegradable, and mimic the natural 
extracellular matrix (ECM), offering features like 

antibacterial activity, blood clotting, and tissue 
regeneration48. Natural polymers like chitosan, 
hyaluronic acid, collagen, and cellulose contain bioactive 
agents, making them ideal for wound dressings. Modified 
in-situ collagen–hyaluronic acid hydrogels are especially 
effective for promoting natural wound healing.

 

Table 5: Examples of hydrogel for wound dressings 

Hydrogel 
Composition 

Bioactive 
Agents 

Antibacterial Activity 
Wound Healing 
Effect 

Notes 

Graphene–silk fibroin 
hydrogel 

Ciprofloxacin 
Effective against P. 
aeruginosa, S. aureus, 
and biofilms 

Enhances fibroblast 
growth, supports 
burn wound healing 

Combines 
antimicrobial and 
regenerative 
properties49 

PVA hydrogel with κ-
carrageenan and 
chitosan HCl 

Cefotaxime 
sodium (CTX) 

Active against S. aureus, 
E. coli, and P. aeruginosa 

Improves 
granulation and re-
epithelialization in 
diabetic burns 

Good oxygen 
permeability50 

pH-sensitive hydrogel 
with silver 
nanoparticles 

Silver 
nanoparticles 

Effective against biofilms 
of P. aeruginosa and S. 
epidermidis 

Not yet studied in 
vivo 

Needs more 
research for in-
body 
effectiveness51 

Injectable collagen–PEG 
hydrogel 

Stem cell factor 
(SCF) from 
umbilical cords 

Unclear 

Promotes 
angiogenesis, 
reduces 
inflammation in 
diabetic wounds 

Antibacterial 
effect not well 
studied52 

Gelatin–PVA hydrogel 

3-carboxy-
phenylboronic 
acid, VAN-
AgNCs, 
Nimesulide 

Kills P. aeruginosa, S. 
aureus (dose-dependent) 

Strong hemostasis, 
supports cell 
growth, aids chronic 
diabetic wound 
healing 

Combines 
multiple 
functionalities: 
clotting, anti-
inflammatory, 
antibacterial53 

Carboxymethylcellulose 
(CMC) hydrogel 

Plasma-derived 
exosomes 

Not determined 

Activates VEGF 
pathway, enhances 
regeneration and 
angiogenesis in 
diabetic wounds 

pH-responsive 
delivery system54 
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Pluronic F127 hydrogel 
Stem cell 
exosomes 
(umbilical cords) 

Not determined 
Promotes VEGF, 
TGFβ-1, cell 
proliferation 

Encouraging 
results for chronic 
wound healing, 
antibacterial 
effects need more 
study55 

Thermoresponsive 
hydrogel (PEG, PPG, 
PDMS) 

Lignin 
(antioxidant) 

Inhibits C. lipolytica, L. 
monocytogenes, S. 
aureus 

Enhances cell 
growth, supports 
wound healing 

Lignin gives both 
antioxidant and 
antibacterial 
benefits56 

Alginate–polylysine–
hyaluronic acid 
hydrogel 

Curcumin, 
epigallocatechin 
gallate 

Binds/inhibits E. coli, S. 
aureus 

Reduces oxidative 
stress, fights 
inflammation, 
boosts blood vessel 
growth 

Suitable for 
radiation-
damaged skin57 

Polydopamine-based 
hydrogel 

Silver 
nanoparticles 
(generated in 
situ from silver 
nitrate) 

Inhibits S. aureus, E. coli 
Not fully evaluated 
in vivo 

Needs more 
research on 
wound healing 
impact58 

 

6.3 Tissue Engineering 

An interesting but challenging therapeutic option for 
individuals with permanent tissue damage and 
functional failure.59 It aims to promote tissue 

regeneration by producing a platform that mimics the 
extracellular matrix present in vivo. Because of their 
biodegradability, biocompatibility, mechanical strength 
and similar extracellular matrix found in vivo.60

 

Table 6: Examples of hydrogel for tissue engineering 

Hydrogel Composition Application Area Outcomes Animal Model or Notes 

3D-printed chitosan-
collagen 

Nerve regeneration 
(peripheral) 

Reduces cavity/scar formation, 
promotes nerve fiber renewal 
and functional recovery 

Demonstrated in animal 
model61 

Alginate + Fibrin + 
Hyaluronic acid (HA) 

Peripheral nerve 
regeneration 

Used as 3D printing additive for 
nerve scaffolds 

Application in regenerative 
biofabrication62 

HA–cellulose hydrogel 
Central nervous 
system 

Supports central nerve healing 
Focus on brain and spinal 
cord repair63 

Gelation hydrogel 
(crosslinked w/ 
horseradish peroxidase 
+ choline oxidase) + 
mMSCs 

Traumatic brain 
injury 

Enhances neurotrophic secretion, 
neural differentiation, and cell 
viability; promotes neuro-repair 

Tested in rats with brain 
injury64 

Not specified 
Intervertebral disc 
regeneration 

Hydrogel supports hBMSC 
differentiation into nucleus 
pulposus cells 

Key for spinal disc therapy65 

PEG–fibrinogen 
microsphere hydrogel + 
hiPSCs 

Heart regeneration 
Supports cardiac differentiation, 
generates cardiomyocytes 

Useful in injection-based 
regenerative therapy66 

Alginate/Silk Sericin w/ 
lamellar coating 
(ASS@L) + ADSCs 

Heart (myocardial 
infarction) 

Injectable system improves heart 
healing post-heart attack 

Demonstrated effectiveness in 
acute myocardial infarction 
model67 

Silk fibroin 
Cardiac pacemaker 
therapy 

Enables pacemaker cells to mimic 
real sinoatrial node cells in 
structure and function 

Silk-fibroin-based pacemaker 
cells successfully functioned 
in rats as in situ heart 
pacemakers68 
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6.4 3D Cell Cultures 

In the body, cells grow in a 3D environment shaped by 
the ECM, which guides how they behave. 3D lab 
platforms mimic this setup better than 2D ones, helping 

us study cells more realistically. 69Hydrogels provide a 
soft, moist 3D space like the natural ECM, making them a 
popular choice for 3D cell cultures.70 Made from natural 
or synthetic polymers, hydrogels have unique properties 
that make them great for 3D cell cultures.69

 

Table 7: Natural, synthetic, and semi-synthetic hydrogels for 3D cell cultures. 

Type Material Application Key Findings 

Natural 
Collagen(Type I & 
II)71 

Chondrocyte culture, 
cartilage regeneration 

Supports chondrogenesis, maintains 
chondrocyte phenotype, enhanced with silk 
fibroin for stability 

 
Hyaluronic Acid 
(HA)72 

Neural, cardiac, cartilage 
regeneration; cancer 3D 
models 

Promotes stem cell differentiation, cancer cell 
proliferation, angiogenesis; RGD-modified HA 
enhances neural differentiation 

 Fibrin73 
Cardiomyocyte, adipose-
derived stem cell culture, 
bone, vascular modeling 

Simulates ECM, supports vascularization, 
osteogenesis, oocyte maturation; tunable 
stiffness enhances specific cell functions 

 Alginate74 
Neural retina, neuron 
networks, cancer 3D culture 

RGD/collagen-modified alginate promotes 
adhesion, neural differentiation, and neuron 
network development 

Synthetic 
PVA (Polyvinyl 
Alcohol)75 

Cancer modeling (glioma, 
breast, pancreatic), mHSC 
culture 

Enhances stem cell growth, promotes tumor 
spheroid formation, reduces apoptosis in cancer 
cells 

 
PEG 
(Polyethylene 
Glycol)76 

Tumor spheroids, stem cells, 
cartilage regeneration 

Biocompatible, encapsulates drugs, tunable 
stiffness; supports chondrocyte and mMSC 
development 

Semi-
synthetic 

HA-PEG, PEG-
alginate-RGD77 

Hepatocytes, endothelial cells, 
osteogenesis 

Improves mimicry of in vivo ECM, enhances 
osteogenesis, supports capillary sprouting and 
fibroblast proliferation 

 

 

6.5 Contact lens 

The first corneal lens, was created in 1948 78. Over time, 
efforts to improve contact lenses grew, but a major 
breakthrough came when Otto Wichterle developed soft 
lenses using HEMA, despite doubts from his superiors. 79 
Since the early days of contact lenses, the need for more 
breathable, lightweight materials has been clear to 
improve eye comfort and health. A major step forward 
came in 1974 with the addition of silicone to Poly(methyl 
methacrylate), creating silicone acrylates. Later, silicone 
hydrogel lenses entered the U.S. market in 2001 and 
quickly gained popularity, making up 73% of soft lens 
prescriptions by 2014. 80 

Hydrogels in contact lenses must transmit at least 91% 
of light, but temperature changes can cause cloudiness by 
separating water—so proper storage is key 81. Their 
comfort, strength, and flexibility depend on mechanical 
properties, which are hard to measure accurately 
because hydrogels are so water-rich and respond to 
deformation.82 Strength affects handling, while a low 
elastic modulus means the lens is softer and more 
comfortable. Surface traits like friction, wettability, and 

lubrication are also crucial—wetting agents are often 
added to improve comfort by reducing friction83. Studies 
show people prefer lenses that are softer, have higher 
water content, and allow better oxygen flow to the eye.84 
Siloxane hydrogels are introduced to combine the high 
oxygen permeability of fluorosiloxanes with the 
wettability, softness, and comfort of traditional 
hydrogels.85. 

6.6 Biosensors 

Biosensors offer fast, real-time, and accurate detection. 
Hydrogels act as a bridge between biomolecules and the 
physical sensor components, often containing 
hydrophilic molecules for binding. Common materials 
include alginate, alginic acid, and blends with N-
isopropyl acrylamide, acrylamide, or chitosan86. 
Devadhasan and Kim developed a hydrogel-based pH 
sensor using a CMOS image sensor. The hydrogel changes 
color across pH 1–14, and the sensor captures this for 
precise analysis—useful for detecting hazardous 
chemicals on-site 87.
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7. Formulation and drug delivery application of 
hydrogel 

Hydrogels are widely employed as drug delivery vehicles 
and are widely used in drug delivery. The commercial 
drug delivery products are mentioned in paragraph 
according to administration route.  

 

Figure 10: Different routes of drug delivery through 
hydrogel 

7.1 Buccal delivery 

The oral cavity, covered by100 cm² of mucus-lined 
epithelium, includes the floor (sublingual delivery), 
cheeks (buccal route), and gums (gingival route) for 
medication administration.88 The oral cavity is ideal for 
drug delivery due to easy administration and avoidance 
of first-pass metabolism and GI tract degradation.89 

Polymer having good adhesion are used for buccal 
mucosa, good spreadability, wetness, swelling, and 
viscoelasticity mechanical qualities90, low cost, 
biodegradability, and bioadhesive qualities in both liquid 
and dry states characteristics, non-toxic breakdown 
products, and it can't act as a conduit for secondary 
infections as dental caries91. Use of Cellulose or acryl 
polymers high adhesion for extended hours, with high 
drug content. Hydrogel-based mucoadhesive tablets can 
control the release profile of the drug it depending on the 
hydration. 

Hydrogels used in these applications are: polyacrylic 
(PA) resins, carboxymethyl cellulose (CMC), 
hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), 
hydroxypropyl methyl cellulose (HPMC), chitosan, 
hydroxypropyl cellulose (HPC).88Even with a high drug 
concentration, the use of cellulosic or acrylic polymers 
typically provides nearly instantaneous, strong adhesion 
performance for extended periods of time. 

Marketed formulations 

• Mouthwashes, oral gels, and sprays all contain 
Lubrajel™ BA (by Ashland) oral moisturizing 
hydrogel, a mouth moisturizing solution. 

• Hydrogel 15% (by Honest O3) is a sunflower seed oil-
infused oral gel that contains ozone. This specially 
designed mucoadhesive hydrogel cleanses and 
nourishes the mouth for optimum health. 

7.2 Oral delivery 

Oral delivery is convenient for treating chronic diseases 
but works best for small molecules. Large molecules like 
proteins and peptides face challenges such as 
degradation by stomach acid and enzymes, low intestinal 
permeability, and poor bioavailability92. As molecular 
weight rises above 500–700 Da, absorption drops 
significantly, and most large, hydrophilic drugs lack the 
lipophilicity needed to pass through the intestinal 
barrier93. one of the major challenges is to deliver big 
molecules orally94.To improve oral delivery of proteins 
and peptides, innovative strategies like hydrogel 
encapsulation are used to protect them from stomach 
acid95. These hydrogels stay compact in acidic 
environments, preventing early drug release. Natural 
polymers with anionic groups are ideal, as they remain 
protonated in low pH96. pH sensitivity is often achieved 
by grafting natural polymers with acrylic acid 
derivatives97. Known as "stimuli-responsive hydrogels," 
these materials adjust drug release based on changes in 
their environment, responding to physical (e.g., 
temperature, light) or chemical (e.g., pH, ionic strength) 
stimuli95. 

Liu et al. published review on the polymeric network 
design of hydrogels to address response and mechanical 
properties.98 

Oral drug delivery often uses two hydrogel-based 
systems: matrix and reservoir. In matrix systems, the 
drug is mixed into the polymer, swells upon contact with 
fluids, and releases as it diffuses through the gel while the 
matrix slowly erodes. In reservoir systems, a drug core is 
enclosed by a polymer shell, with release controlled by 
the shell’s properties and the drug’s characteristics.99 

Here are some commercially available hydrogel-based 
oral drug delivery systems. 

• Sanofi Aventis's Suprax® is a patented antibiotic 
(since 1979) that treats bacterial infections by 
binding to penicillin-binding proteins, disrupting 
peptidoglycan synthesis, and damaging the bacterial 
cell wall. 

• Pfizer’s Lopid® is a lipid-regulating drug that 
increases HDL cholesterol and reduces serum 
triglycerides and VLDL cholesterol. 

7.3 Vaginal delivery 

The vagina is prone to infections like vaginitis, making it 
a common site for delivering antimicrobial drugs. 
However, factors like hormonal changes, menstrual 
cycles, and age-related variations in vaginal fluid can 
affect drug absorption and retention. Despite challenges 
like rapid physiological clearance, various solid, semi-
solid, and liquid formulations are used for vaginal drug 
delivery.  

Two main methods to overcome this restriction are using 
mucoadhesive formulations to prolong vaginal retention 
and applying stimulus-responsive gels that undergo sol-
gel transitions in the vaginal cavity100. Mucoadhesive 
properties enhance vaginal surface contact and prolong 
residence time, involving hydration, wetting, and 

Buccal delivery

Oral delivery

Vaginal delivery

Transdermal delivery

Ocular delivery 
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diffusion during adhesion.101Excipients or polymers 
typically provide these properties. Commonly used in 
vaginal formulations are hydrogels like polyacrylates, 
chitosan, cellulose derivatives (e.g., HPMC, CMC), 
hyaluronic acid, and Carbopol, valued for their strong 
hydration and bioadhesive properties.102 Alginate and 
gelatin are suitable for vaginal delivery due to their 
moisture retention and biocompatibility. Thermo-
sensitive hydrogels are the most common environment-
responsive gels, undergoing reversible sol-gel transitions 
in response to temperature changes, driven by 
mechanisms like micelle packing, hydrophobic 
interactions, and coil-to-helix transitions.102 

Marketed products based vaginal applications listed 
below 

• Replens® Moisturizer adheres to dry cells, providing 
continuous hydration until they naturally renew. 

• Hydeal-D® and Hyalo Gyn®, both HA derivatives, 
act as moisturizers by adhering to the vaginal cavity, 
extending residence time, and providing hydration 
and protection. 

7.4 Transdermal delivery 

Transdermal delivery is a great alternative to pills, 
especially for drugs that don’t absorb well or for people 
who can’t handle injections.103The first transdermal 
system, using scopolamine for motion sickness, was 
approved in the U.S. in 1979. A decade later, nicotine 
patches became the first major transdermal success, 
boosting patient compliance and patch awareness.104 

Hydrogels are used in transdermal delivery as creams 
and patches, offering hydration that enhances drug 
solubility. They also help stabilize and boost delivery 
systems like micelles, nanoparticles, and liposomes.105 

Marketed products based transdermal delivery are listed 
below 

• The special mix of Clean & Clear® Persa-Gel® 10 
Acne Medication starts working right away, release 
medication deeper in pore from where pimple begin. 

• Many ingredients in a cosmetic uses hydrogel to 
regulate passage through skin are delivered by 
Johnson & Johnson's Neutrogena® family. 

7.5 Ocular delivery  

From an anatomical and physiological perspective, the 
eye is a very unique organ since it has several distinct 
structures, each of which performs a very specific role. 
This is why scientists have always found it so difficult to 
build and optimize ocular medication delivery devices.106  

Hydrogels offer several advantages over traditional 
materials like implants or colloidal systems, especially in 
eye treatments. Their high-water content and gentle 
preparation help preserve delicate molecules like 
proteins and peptides. Plus, some types—like 
temperature-sensitive or in situ forming hydrogels—can 
be applied with less invasive methods than long-term 
implants.107  

The global market for eye-related biopharmaceuticals 
topped $8 billion in 2016 and is expected to grow quickly, 
reaching around $35.7 billion by 2025.108 

Marketed products based ocular delivery are listed 
below 

• For the treatment of severe, persistent dry eyes, 
Hylo® Gel (by Candorpharm Inc.) guarantees a 
thorough and delayed lubrication of the ocular 
surface.  

• SYSTANE® Gel Drops offer long-lasting relief from 
irritation caused by dry eyes. These eye drops have a 
thicker formulation that covers the eyes like a shield.

 

8. Patents of hydrogel 

Table 8: The patents on hydrogel drug delivery system.109 

Sr. 
No 

US Patent 
number 

Title Inventor Publication 
Year 

Assignee 

1 12110879 Artificial muscle actuators  Marcio Dias Lima, Yang 
Yang, Luis Plata, Marilu 
Guerrero, Franklin Le, 
Randy Allen 

October 8, 
2024 

 

LINTEC OF 
AMERICA, INC. 

2 12053527 Compositions with 
permeation enhancers for 
drug delivery 

Daniel S. Kohane, Rong 
Yang, Lily Yun Lin 

August 6, 
2024 

Children's 
Medical Center 
Corporation, 
Massachusetts 
Institute of 
Technology 

4 11903384 Hydrogels as rheology 
modifiers and methods 

Danny Brown, Christine 
Colby, Lillian Magidow, 
Megan Barta 

February 
20, 2024 

WinField 
Solutions, LLC 



Todkar et al.                                                                                                                               Journal of Drug Delivery & Therapeutics. 2025; 15(7):180-197 

ISSN: 2250-1177                                                                                           [192]                                                                                            CODEN (USA): JDDTAO 

5 11866636 Embedded treatment fluid 
additives for use in 
subterranean formation 
operations 

Dipti Singh, Aaron 
Michael Beuterbaugh, 
Enrique Antonio Reyes 

January 9, 
2024 

Halliburton 
Energy Services, 
Inc. 

6 11739174 Cationic cyclic amine and 
amphipathic transfection 
reagents 

Nicholas A. A. Rossi, 
Anatoly Pinchuk, Karen 
Neder, James Ludtke, 
Laura Juckem 

 August 29, 
2023 

Mirus Bio LLC 

7 11578176 Silicone hydrogel contact 
lenses having non-uniform 
morphology 

Azaam Alli, Donald E. 
Riederer, Alexander 
Guzman, Bernardo Santa 
Maria 

February 
14, 2023 

 Johnson & 
Johnson Vision 
Care, Inc 

8 11555127 Curable film-forming 
compositions comprising 
catalyst associated with a 
carrier and methods for 
coating a substrate 

Scott J. Moravek, Davina J. 
Schwartzmiller 

January 17, 
2023 

PPG Industries 
Ohio, Inc. 

9 8968764 Nerve regeneration 
employing keratin 
biomaterials 

Mark E. Van Dyke March 3, 
2015 

Wake Forest 
University Health 
Sciences 

 

9. Future prospect of hydrogel 

9.1 Limitation of hydrogel: 

Hydrogels face limitations in applicability, sustainability, 
and clinical use. Many natural and synthetic types, like 
Pluronic and poly (N-isopropyl acrylamide) and poly 
(phosphazene), are liquid at cool temperatures but form 
gels at body temperature. Though promising, they 
require further research. Poly(ester)-based copolymers 
may help overcome these issues. PEG and poly(ester)-
based hydrogels are less effective for long-term therapy 
and unsuitable for nasal or oral delivery, despite FDA 
approval for implants. Challenges remain, including 
chemical interactions, structural compatibility, burst 
release with charged proteins, and effectiveness in 
injectable systems for protein and peptide delivery.13 
Enzymatic stimuli-responsive systems often use harmful 
catalysts and cross-linkers that can damage sensitive 
proteins, cells, or drugs. Challenges also include uneven 
encapsulation, low loading efficiency, and premature 
drug release.110 

9.2 Challenges in Injectable Formulation 

Injectable hydrogels (IHs) raise concerns that require 
further research. Crosslinking must protect sensitive 
molecules like proteins, peptides, and DNA while 
supporting cell viability. Understanding interactions 
with cells and tissues helps prevent cytotoxicity and 
inflammation. Key factors like structure definition, 
reproducibility, degradation time, release kinetics, 
gelation, injection viscosity, and post-gelation strength 
must be carefully considered.111. IHs should be designed 
with application-specific features, ensuring 
biocompatibility and chemical-physical crosslinking 
tailored to specific diseases or medical conditions.112  

 

 

9.3 Loading and Release of Therapeutic Agents 

Injectable hydrogels (IHs) can carry and release 
treatments like proteins, small drug molecules, or even 
living cells, depending on their size, interaction, and 
compatibility with the gel. Microparticle depot systems, 
such as lidocaine-based hydrogels, are already used in 
clinics, though lidocaine tends to release quickly. Other 
hydrogels, like those with hyaluronic acid, are approved 
for facial treatments. To better control drug release—
especially for wounds—more drugs need to be tested in 
hydrogel formulations.113 To slow down drug release and 
extend its effect, hydrogel mesh size can be reduced using 
physical or chemical crosslinking, or by increasing the 
drug’s affinity to the gel.114 

9.4 Hydrogel Bioactivity 

For tissue regeneration, hydrogels need to be able to 
absorb, adapt, and gradually break down. Bioactive 
materials like gelatin, fibrin, or hyaluronic acid help cells 
or growth factors stick and work effectively like in 
clinical trials for kidney and heart repair. Non-adhesive 
polymers, such as PEG or polyacrylamide, often need to 
be modified with sticky molecules to support cell growth. 
However, some hydrogels, like TraceIT®, degrade too 
quickly. So, longer-lasting hydrogels that break down 
over weeks or months are better suited for healing.115 

9.5 Technological Challenges 

Clinical translation of hydrogel delivery faces major 
challenges, including chemistry, GMP compliance, 
practical use, and regulatory clarity. Development costs 
are estimated between USD 50 million and 800 million. 

9.6 Scale-Up Strategies and GMP Processes 

cGMP standards are essential for scaling up biomaterial-
based hydrogels, as most are developed at small pilot 
scales during preclinical phases. Large-scale production 
must address issues like consistency, safety, and 
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reproducibility. Additionally, the highwater content of 
hydrogels complicates synthesis, storage, sterilization, 
and overall process optimization. 

9.7 Regulatory Approvals 

Regulatory approval and USFDA clearance for injectable 
hydrogels is a lengthy process, complicated by their 
diverse structures, crosslinking methods, and 
biomaterials.113 

10. Conclusion 

Hydrogels have emerged as versatile biomaterials with 
broad applications in drug delivery and regenerative 
medicine due to their biocompatibility, tunable 
physicochemical properties, and responsiveness to 
environmental stimuli. This review highlights their 
critical roles across diverse biomedical platforms, 
including drug carriers, wound dressings, tissue 
scaffolds, and biosensors. Despite their promising 
therapeutic utility, several challenges persist—such as 
premature drug release, limited stability in physiological 
conditions, and scalability issues—which hinder their 
full-scale clinical adoption. Addressing these limitations 
through innovative crosslinking strategies, stimuli-
responsiveness enhancement, and bioactive material 
integration is essential. Furthermore, rigorous 
investigations into regulatory pathways, 
biocompatibility, and long-term efficacy are crucial for 
the successful translation of hydrogel-based 
technologies from bench to bedside. With continued 
advancements in polymer chemistry and biomedical 
engineering, hydrogels hold immense promise for the 
future of precision medicine and next-generation 
therapeutics. 
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