

Introduction about Global infectious disease and use of nanotechnology

Ankita Y. Gawai*, Ravindra L. Bakal Pooja R. Hatwar Krushnali N. Nehar, Pranali R. Bhujade

Department of Pharmaceutics, Shri Swami Samarth Institute of Pharmacy, At. Parsodi, Dhamangaon Rly, Dist. Amravati (444709) Maharashtra, India

Article Info:

Article History:

Received 11 Sep 2024
Reviewed 03 Nov 2024
Accepted 29 Nov 2024
Published 15 Dec 2024

Cite this article as:

Gawai AY, Bakal RL, Hatwar PR, Nehar KN, Bhujade PR, Introduction about Global infectious disease and use of nanotechnology, Journal of Drug Delivery and Therapeutics. 2024; 14(12):181-190 *DOI:* <http://dx.doi.org/10.22270/jddtv14i12.6915>

*Address for Correspondence:

Ankita Y. Gawai, Department of Pharmaceutics, Shri Swami Samarth Institute of Pharmacy, At. Parsodi, Dhamangaon Rly, Dist. Amravati (444709) Maharashtra, India

Abstract

Infectious diseases, including COVID-19, malaria, tuberculosis, and sexually transmitted diseases (STDs), pose significant threats to global health. Nanotechnology has emerged as a promising tool in the diagnosis, treatment, and prevention of these diseases. This review highlights the applications of nanotechnology in combating infectious diseases. Nanoparticles, such as metallic nanoparticles, liposomes, and quantum dots, have been employed in the detection and treatment of infectious diseases. Nanotechnology-based drug delivery systems have improved the efficacy and reduced the toxicity of antiviral and antibacterial drugs. Additionally, nanotechnology has enabled the development of point-of-care diagnostics and vaccines for infectious diseases. This review provides an overview of the current state of nanotechnology in infectious disease management and highlights its potential to revolutionize the field. By leveraging the unique properties of nanoparticles, nanotechnology can provide innovative solutions for the diagnosis, treatment, and prevention of infectious diseases, ultimately improving global health outcomes.

Keywords: Nanotechnology, Infectious diseases, COVID-19, Malaria, Tuberculosis, HIV/AIDS

Introduction:

Infectious diseases constitute the primary cause of mortality worldwide¹. Infectious conditions caused by viruses (human immunodeficiency virus (HIV), hepatitis C, and dengue fever), parasites (malaria, trypanosomiasis, and leishmaniasis), and bacteria (tuberculosis and cholera) are significant contributors to morbidity and death in the developing countries². Nanotechnology is a modern and innovative domain characterized by technological advances¹. Nanotechnology is characterized as a technology employed to fabricate nanoscale materials across various domains, including materials engineering, energy, biotechnology, physics, and pharmacy³. It provides an incredible chance for improving drug-resistant microbial infections¹. Furthermore, it significantly influences the treatment of global infections, as well as and health care devices such as imaging probes, drug delivery systems, and diagnostic biosensors within the pharmaceutical sector⁴. Nanoparticles (NPs) are microscopic entities made of several hundred atoms, with dimensions quantified in nanometers⁵. Nanoparticles (NPs) are solid, biocompatible polymeric entities ranging from 1 to 100 nanometers (nm) in size, characterized by an enclosing interfacial coating⁶. Nanoparticles and Nanopharmaceuticals are classified into many types of

nanosystems according to their distinct properties, namely inorganic, organic, lipid-based, polymeric, and nanocapsules, among others⁷.

Organic Nanotechnology - Organic nanoparticles are the most thoroughly researched and widely accepted form of nanoparticles for drug delivery and therapeutic applications in human systems⁶. Organic nanoparticles contain polymeric nanoparticles, nanocapsules, nanospheres, liposomes, dendrimers, solid lipid nanoparticles, quantum dots, among others⁸.

- Liposomes** - The term liposome is derived from two Greek words: 'Lipo', meaning fat, and 'Soma,' meaning body. Liposomes are tiny bilayer vesicles created from natural phospholipids. They may contain hydrophilic and lipophilic compounds in aqueous environments or inside the phospholipid bilayer⁹.
- Quantum Dots** - Quantum dots, or semiconductor nanocrystals, have unique optical and physical characteristics that render them appropriate for diagnostic advancements¹⁰.
- Dendrimers** - Derived from the Greek term 'dendron', signifying tree. Dendrimers are a unique category of polymeric compounds. Dendrimers are often characterized as monodisperse macromolecules

exhibiting a highly three-dimensional architecture, which confers a significant degree of surface activity and an extensive range of abilities⁹.

Inorganic nanoparticles: Inorganic Nanoparticles far smaller in size than organic nanoparticles. It encompasses size ranges of 1-100 nm with enhanced loading effectivenss⁶.

It includes:

a. Silver nanoparticles: consist of silver atoms typically measuring between 1 nm and 100 nm. Numerous synthetic techniques have been developed to manufacture AgNP¹. SNPs are notable inorganic nanoparticles with substantial effectiveness, mostly attributed to silver's intrinsic inhibitory and

antibacterial properties, as well as its improved conductivity⁶.

- b. Gold Nanoparticles - Gold nanoparticles, nanorods, and nanoparticles eliminate bacterial infections by emitting narrowed laser pulses at the appropriate wavelength¹. Gold nanoparticles (AuNPs) possess exceptional qualities, including electrical, optical, mechanical, and biological capabilities, which have garnered substantial interest in the pharmaceutical industry¹¹.
- c. Aluminium oxide nanoparticles - The bacterial cell wall became altered at elevated concentrations of aluminium oxide (Al₂O₃) nanoparticles. Alumina nanoparticles are thermodynamically stable at elevated temperatures¹².

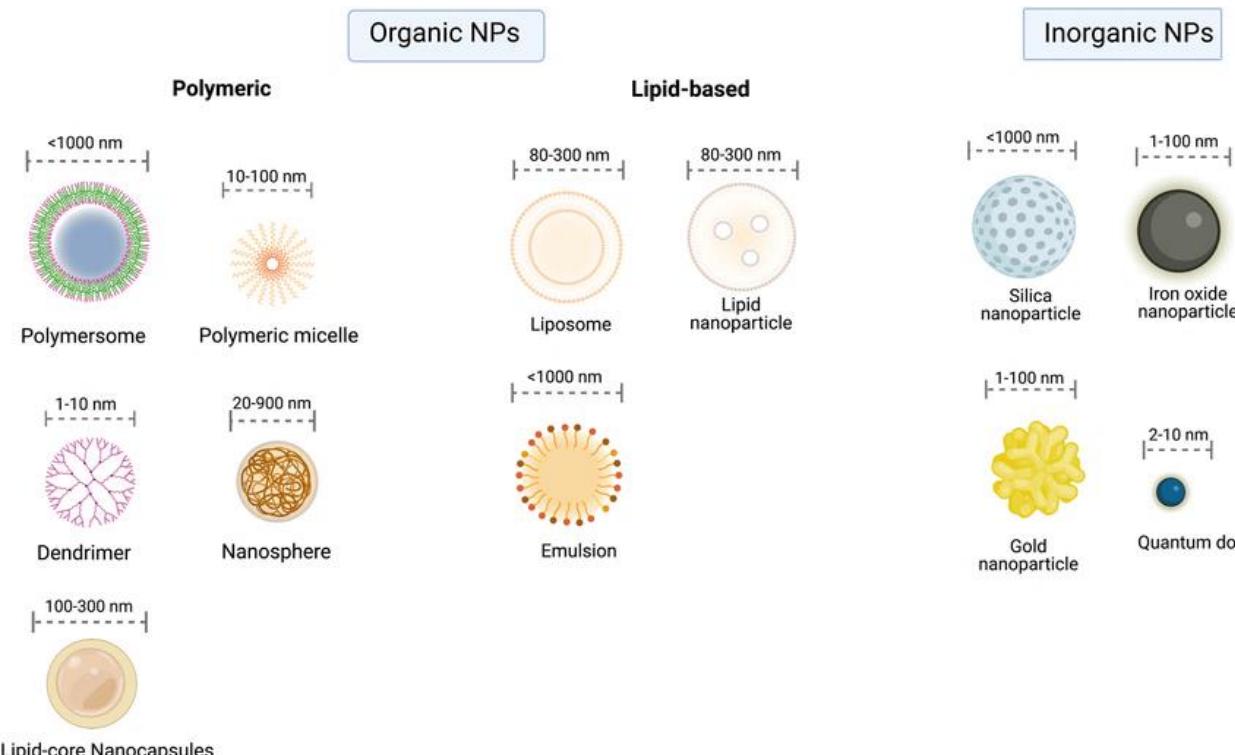


Figure 1: Various classifications of Nanoparticles (NPs)¹³.

Infectious Disease –

Coronavirus –

COVID19, a severe and acute respiratory condition that originated in December 2019 and is a persistent hazard¹⁴.

The initial case was detected in Wuhan, Hubei Province, China, and it swiftly disseminated to 25 nations¹⁵. Corona viruses are classified within the subfamily Coronavirinae, Order Nidovirales, including family Coronaviridae¹⁶.

The origin of this name comes from the Latin term corona, or crown¹⁷.

Coronaviruses (CoVs) have been among the primary causes of death in recent decades¹⁸. Coronaviruses are single stranded, Positive sense RNA viruses that possess

the longest genome of any known RNA virus, with a genomic content (GC) varying from 32 to 43%¹⁷.

Recent research from China indicates that COVID19, the illness produced by SARS-CoV2, is characterized by three clinical patterns: asymptomatic or mildly symptomatic cases, mild to moderate disease, and severe pneumonia necessitating ICU hospitalization¹⁹.

The illness is spread by respiratory droplets from infected individuals during coughing or sneezing and mostly impacts the lung parenchyma¹⁵.

Categories of coronavirus²⁰.

- Alpha coronavirus
- Beta coronavirus
- Gamma coronavirus
- Delta coronavirus

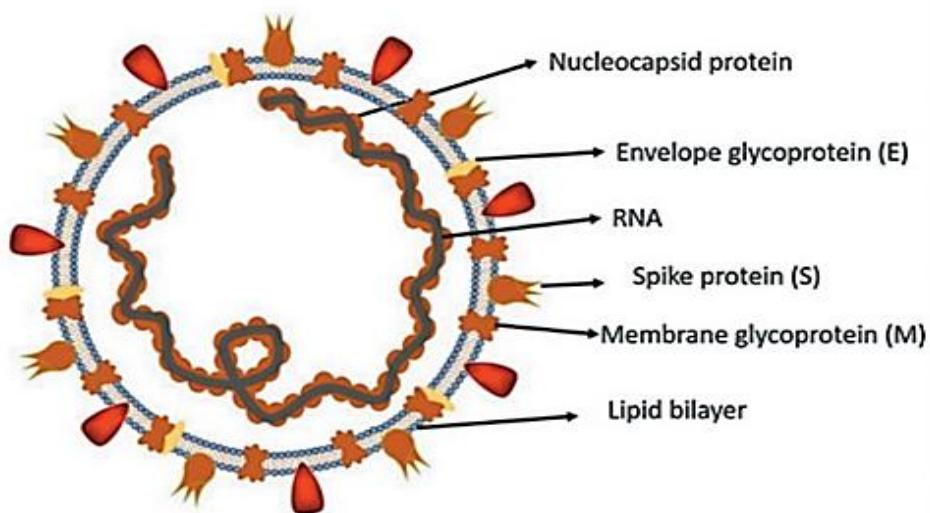


Figure 2: Structure of the human coronavirus²¹.

Symptoms of coronavirus

The predominant symptoms of COVID19 are fever (85.6 %), cough (68.7%) and tiredness (39.4%). Dyspnea, headache, anorexia, anosmia, ageusia, tachypnea, emesis, diarrhea, rhinorrhea, and abdominal discomfort are less prevalent symptoms of the disease²². Conversely, sputum production (33.4%), respiratory distress (18.6%), pharyngodynia (13.9%), chills (11.4%), nasal obstruction (4.8%), and hemoptysis (0.9%) constitute the principle symptoms of this condition¹⁵.

Nanotechnology Utilized in COVID-19

The utilization of nanotechnology in personal protective equipment (PPE) imbedded textiles, which enhance the physicochemical features of fabrics, including fire resistance, self-cleaning capabilities, antimicrobial effects, and UV protection, among others²³. Nanomedicine strategies primarily aim to mitigate toxicity and adverse effects while addressing constraints associated with therapeutic agents²⁴.

Nanotechnology in SARS-CoV-2 Detection

The initial diagnostic stage for COVID-19 patients relies on their travel and communication history²⁵. Nucleic acid-based testing was initially the principal detection method for SARS-CoV-2. Combinatorial Nanotechnology-Driven Therapy²⁶. Protein assays with nanotechnology. Nanotechnology-based point-of-care testing (POCT) can be employed to identify illnesses in remote locations and deliver immediate treatment, hence aiding in the prevention of infection transmission²⁷.

Application of nanotechnology in coronavirus therapy

Nanotechnology may enhance the safety and efficacy of COVID-19 treatments by facilitating drug encapsulation, targeted delivery to areas, and minimizing drug toxicity²⁸.

Table 1: Advantages of Nanotechnology in COVID-19¹.

	Conventional Approach	Nanotechnology-based Approach
Diagnosis	Lengthy time of detection Limitations in antibody tests like technical production and identification problems Lack of suitability False positive or negative findings	Early-stage detection No or minimized contamination Protected error risk Sensitivity Possibility of miniaturization with metallic NPs NPs conjugated with corona virus specific antibodies
Treatment	Absence of effective therapeutics Low surface area to mass ratio Chemical reactivity/instability Side effects from high serum and non-target Concentrations Inaccessibility of the target by the drug	Stabilized in the systemic circulation Targeted, controlled and sustained delivery Controllable size and size-dependent transport, biocompatibility Reduced toxicity Theranostic approach Noninvasive administration like inhalations
Vaccines	Low blood stability, slow absorption and short half life Insufficient immune response Higher doses risk for side effects Poor immunogenicity, Absorption non targeting, slow absorption High storage and delivery requirements	Multiple targeting Strong immuno stimulatory effects Manageable size and surface properties Reduced adverse effects Controllable drug release Strong stimulation of humoral and cellular responses
Personal protective equipment (PPE)	Shortage of supplies Low filtration efficiency Single-use (use-and-throw) - economic, eco-safety and waste management problems Breathing pressure and heat dissipation Ineffective disinfection and sanitizing	Reusable and improved bio-safety Self-cleaning, high efficiency and effective disinfectants with antimicrobial and antiviral properties Designing contamination-free equipment Adding inherent virucidity to surfaces Antimicrobial releasing self-sanitizing and surface topologies with viral self-deactivation

MALARIA:

In 2020, there were an expected 241 million cases and 627 thousand fatalities due to malaria globally²⁹. Malaria is a protozoan illness carried by female Anopheles mosquitoes, caused by the infection of a susceptible host with Plasmodium parasites³⁰. The name malaria originates from the Italian phrase “malaaria,” which translates to bad air³². The bulk of illnesses are attributed to *P. falciparum* and *P. vivax*, with the more severe *P. falciparum* responsible for the bulk of malaria-related fatalities worldwide³².

Human Plasmodium species responsible for malaria³³:

- a) Plasmodium falciparum,
- b) Plasmodium vivax

c) Plasmodium ovale

d) Plasmodium knowlesi

e) Plasmodium malariae

Signs and Symptoms of Malaria- The prevalent symptoms encompass fever, chills, headache, myalgia, emesis, severe anemia, spleen unresponsive coma, and mortality if untreated³⁴. Malaria is the predominant etiology of fever, and the majority of patients exhibit few aberrant physical signs².

In uncomplicated malaria, symptoms advance sequentially through the chilly, heat, and sweating phases.

- A feeling of cold combined with shivering

- Fever, headaches, and vomiting
- Seizures may occasionally manifest in younger individuals afflicted with the condition.

- Sweating, succeeded by a reversion to baseline temperature, accompanied with fatigue³⁵.

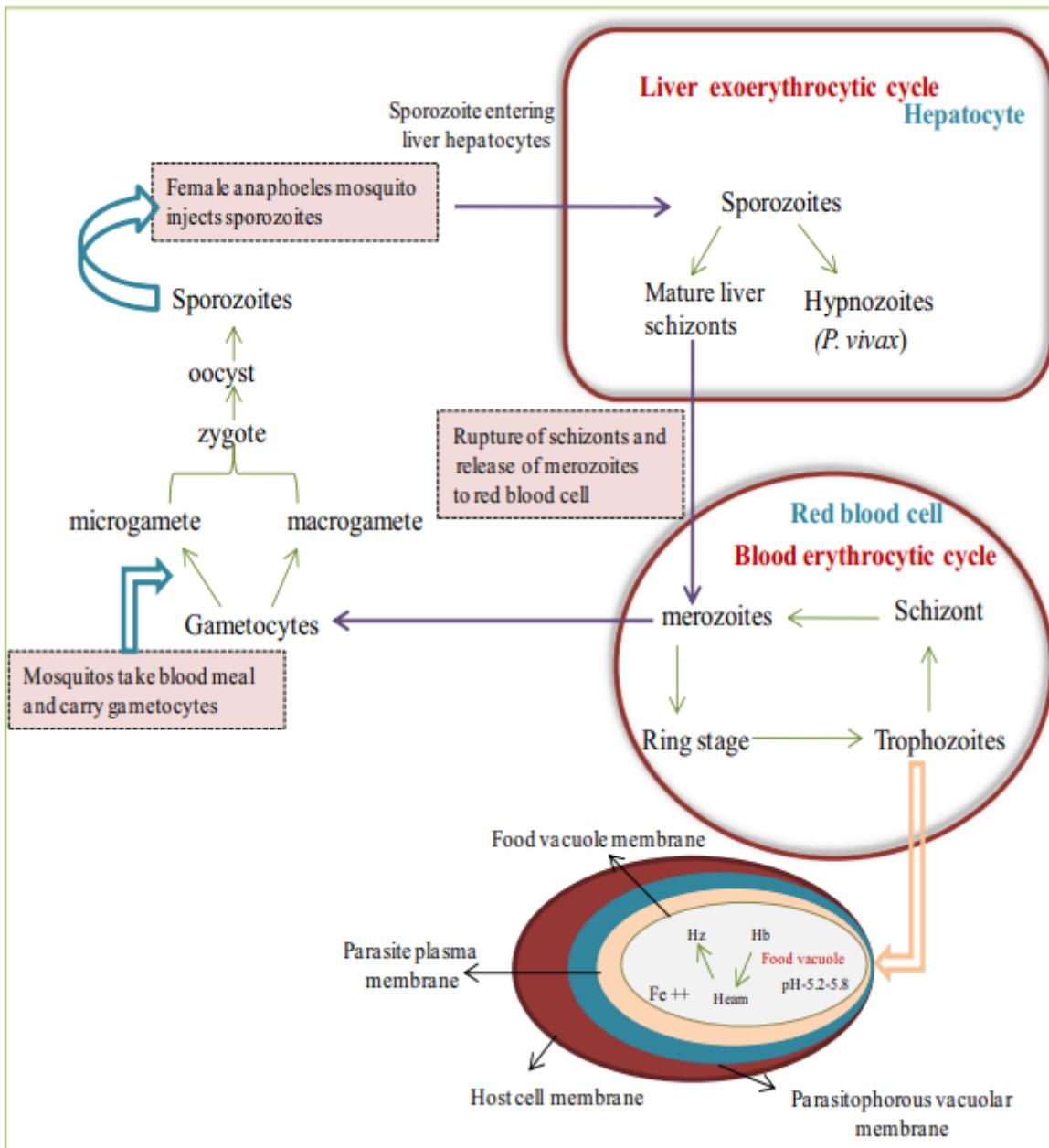


Figure 3: Life Cycle of the Malaria Parasite³⁴.

Techniques employed in the laboratory diagnosis of malaria encompass

1. Microscopic Diagnosis.
2. Antigen Detection Technique
3. Molecular Detection Technique (PCR).
4. Serological Detection Method (ELISA)
5. Field Assessment
6. Diagnostic procedures in the laboratory³⁵
7. Rapid diagnostic assays or immunochromatographic testing - This device is recognized as a prevalent point-of-care test (POCT) for malaria diagnosis. Rapid

diagnostic tests (RDTs) utilize a lateral flow immunoassay method to identify biomarkers unique to the *Plasmodium* parasite³⁶.

Application of nanotechnology in malaria therapy -

- Metallic nanoparticles - gold and silver
 - a. Nonbiological techniques (physical and chemical).
 - b. Biological Method (sustainable nanoparticles from bacteria, fungi, and plants)
- Inorganic non-metallic nanoparticles: Titanium dioxide.
 - a. Zinc oxide

b. Cadmium oxide³⁶

- Carbon-based nanoparticles: Multiwalled carbon nanotubes.

Liposomes may transport both hydrophilic and hydrophobic medicines, exhibit great stability, are biodegradable, non-toxic, and can be delivered via parenteral and cutaneous routes. They boost the therapeutic index and allow for surface functionalization possibilities⁴⁴.

Nanoemulsions may be administered by oral, parenteral, and cutaneous routes, are thermodynamically stable, and can be sterilized using filtering.

Metallic nanoparticles have antifungal and antibacterial properties, characterized by excellent stability and uniformity in structure³⁴.

Nanostructured lipid carriers (NLCs) have enhanced stability and drug loading relative to solid lipid nanoparticles (SLNs), possess an extended shelf life, and facilitate straightforward scaling and sterilization. Polymeric nanoparticles are biocompatible, cost-effective, circumvent the reticular endothelial system, allow for ligand-specific interactions, and prevent drug leakage.

Solid lipid nanoparticles are biocompatible, easily scalable and sterilizable, very stable, and may be delivered by oral, parenteral, and cutaneous routes. They eliminate the need of organic solvents and can encapsulate both lipophilic and hydrophobic medicines⁶.

TUBERCULOSIS -

Tuberculosis (TB) is an airborne infectious illness caused by *Mycobacterium tuberculosis* (MTB) that predominantly impacts the lungs³⁷. Prior to the COVID-19 epidemic, more than 4,000 individuals died to tuberculosis (TB) regularly³⁸

Characteristics of *Mycobacterium tuberculosis*: *Mycobacterium tuberculosis* is classified as

ORDER- Actinomycetes,

CLASS- Actinomycetes

FAMILY- *Mycobacteriaceae*.

GENUS- *Mycobacterium*³⁹

Mycobacterium tuberculosis is an aerobic, non-spore-forming, nonmotile facultative bacterium characterized by curved intracellular rods.

Dimensions - 0.2-0.5 micrometers by 2-4 micrometers.

The cell walls of mycobacteria include mycolic acid-rich long-chain glycolipids and phospholipoglycans (mycolides), which safeguard them from lysosomal degradation and preserve red basic fuchsin dye upon acid rinsing, characteristic of the acid-fast stain^{39,40}.

Symptoms of tuberculosis⁴¹: Include the expectoration of mucus and sputum.

a. Fever - 74 (46.5%)

b. Weight reduction - 82 (51.6%)

c. Thoracic discomfort,

d. Jaundice: 31 cases (20.0%)

e. Diarrhea

f. Hemoptysis

g. Nocturnal hyperhidrosis

Types of tuberculosis - There are primarily two forms of TB.

a) Active TB - Bacteria reproduce and spread inside the body, resulting in tissue destruction.

b) Latent tuberculosis - This stage can last for an extended duration. Treatment typically involves administering a single medication for a duration of nine months. In active tuberculosis, germs proliferate and disseminate throughout the body, resulting in tissue damage⁴².

Nanotechnology employed in the detection and treatment of TB -

Various nanoparticles, such as metallic nanoparticles (gold and silver) and fluorescent nanoparticles, can be utilized for diagnosing numerous infectious illnesses, including tuberculosis. Gold nanoparticles were the first nanomaterials employed as nano-diagnostics for tuberculosis testing in 1996⁴³.

Quantum Dots -

Nanotechnology employs semiconductor nanocrystals, known as "quantum dots," measuring no more than 10 nanometers, which may be induced to glow in various colors based on their size, to enhance the specificity of fluorescence or electron microscopy in detecting TB bacilli⁴⁴.

Imaging Nanotechnology -

Labeling of targeted TB-bacilli molecules with quantum dots or synthetic chromophores, such as fluorescent proteins, to enable direct examination of intracellular signalling complexes through optical techniques, such as confocal fluorescence microscopy or correlation imaging⁴⁴.

Sparse Cell Detection - This technique leverages the distinctive characteristics of sparse cells, seen in the variations in deformation of intracellular TB bacilli.

The nanotechnology-based drug delivery system enhances the tolerance of harmful chemotherapies, facilitates prolonged and regulated drug release, and ultimately increases bioavailability⁴².

Exosomes are lipid bilayer membrane vesicles with a diameter ranging from 30 nm to 150 nm, released by nearly all live cells, and have a varied function in the detection and treatment of TB infection.

Liposomes: Rifampicin encapsulated in liposome nanoparticles has demonstrated enhanced anti-TB efficacy, increased absorption rate, reduced cytotoxicity, improved *in vivo* drug administration, and prolonged retention duration.

Noisome: Niosomes as a drug carrier, may be employed for prolonged medication delivery to minimize drug

consumption and side effects by enhancing bioavailability⁴⁵.

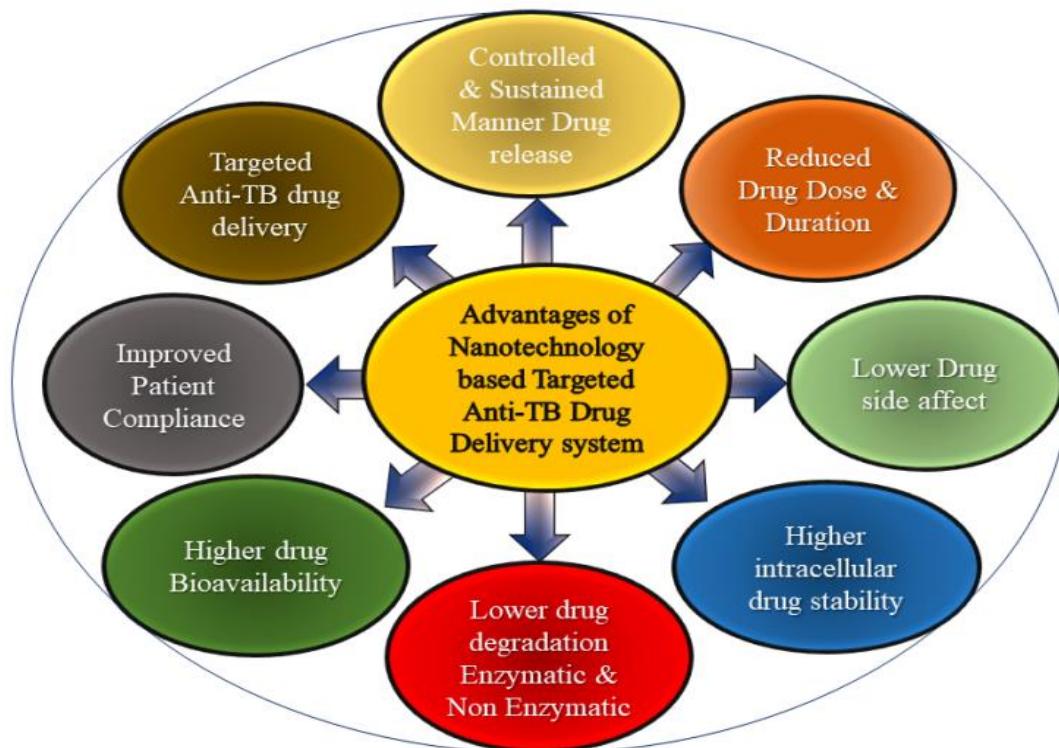


Figure 4: Nanocarrier-based anti-tuberculosis medication delivery system⁴⁶.

STD: SEXUALLY TRANSMITTED DISEASE:

Sexually transmitted infections (STIs) result in reproductive morbidity globally. In 2019, the World Health Organization (WHO) anticipated 376 million new cases of chlamydia, gonorrhea, syphilis, and trichomoniasis⁴⁷. Sexually transmitted infections (STIs) are among the most prevalent communicable illnesses globally, linked to considerable morbidity and mortality, with a rising frequency worldwide⁴⁸.

STIs are responsible for HIV and other illnesses⁴⁹.

HIV/AIDS represents a significant challenge for the medical community, as AIDS is life-threatening and still lacks a cure, although it may be managed. The human immunodeficiency virus (HIV) is a retrovirus classified under the lentivirus family. HIV comprises a cylindrical core encased in a spherical lipid bilayer exterior.

HIV is spread through three primary methods. Sexual intercourse, exposure to contaminated bodily fluids, including sweat, tears, saliva, semen, and vaginal secretions. Vertical transfer from mother to kid during gestation, parturition, or lactation⁵⁰.

There are two strains of HIV that lead to AIDS, namely

HIV-1

HIV-2

Acute HIV infection often starts with symptoms resembling mononucleosis.

Symptoms of HIV seroconversion may encompass fever, chills, lymphadenopathy, stomach discomfort, pharyngitis, diarrhea, and rash.

Incubation duration: 2-6 weeks⁵¹.

There are four primary phases of HIV⁵⁰.

Stage I: Clinical Latency/Asymptomatic Disease

Stage II: Mild Signs and Symptoms of HIV

Stage III: Advanced manifestations and indicators of HIV

Stage IV: Acquired immunodeficiency syndrome (AIDS).

AIDS: The human immunodeficiency virus (HIV), the etiological agent of acquired immune deficiency syndrome (AIDS), was identified more than 25 years ago. Acquired Immunodeficiency Syndrome (AIDS) is characterized by a CD4+ T cell count below 200 cells per μ L or the manifestation of certain disorders in conjunction with an HIV infection⁴⁹.

Diagnosis of AIDS

1) ELISA assay,

2) Saliva test.

3) Viral load test⁴⁵.

Nanotechnology applied in HIV treatment has led to the introduction of various nanoparticle formulations aimed at prolonging the therapeutic window, thereby decreasing the required dosing frequency and addressing patient compliance issues. Stavudine, a nucleoside analogue, has been encapsulated in gelatin nanoparticles

and subsequently coated with a layer of soya lecithin-liposome for dual-functionalized HIV-1 treatment.

Virucidal nanomaterials- Various nanomaterials, including metal nanoparticles and graphene-based nanosheets, have inherent virucidal capabilities attributable to their distinctive physicochemical characteristics.

An unconventional nanoparticle platform consisting of endogenous ribonucleoprotein, known as vaults, has

been utilized for HIV-1 therapy. The distinctive characteristics of nanoparticles are especially appealing for addressing several obstacles that hinder the effective practical use of RNAi antiviral treatment. Diverse tissue-targeted nanoparticle formulations, including those for vaginal administration, topical use, and cerebral distribution for neurosis treatment, have been synthesized to enhance the management and prevention of HIV infections at specific tissue locations⁵³.

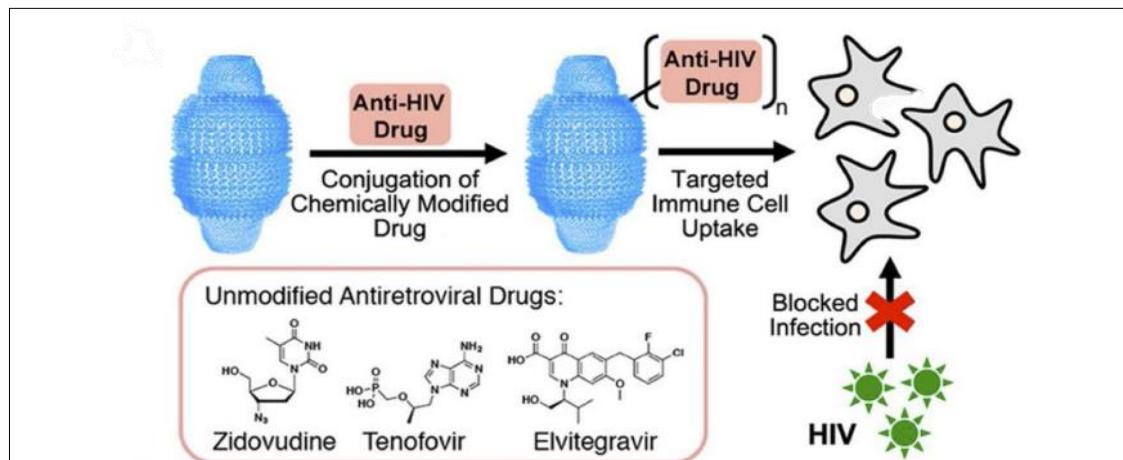


Figure 5: Antiretroviral drug-conjugated vault nanoparticles for the inhibition of human immunodeficiency virus (HIV)⁵³.

References

- 1) Al-Awsi GRL, Alameri AA, Al-Dhalimy AMB, Gabr GA, Kianfar E. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. *Braz J Biol.* 2023 Jan 30;84:e264946. PMID: 36722677. <https://doi.org/10.1590/1519-6984.264946>
- 2) Hauck TS, Giri S, Gao Y, Chan WC. Nanotechnology diagnostics for infectious diseases prevalent in developing countries. *Adv Drug Deliv Rev.* 2010 Mar 18;62(4-5):438-48. PMID: 19931580. <https://doi.org/10.1016/j.addr.2009.11.015>
- 3) Alabdali A YM, Kzar M, Chinnappan S, Mani R R, Xin C K, Ting I TY, Yung L J, Wei P L Y. Nanotechnology in the Treatment of Infectious Diseases: A Review. *International Journal of Nanoscience and Nanotechnology.* 2023; 19(1): 1-8. doi: 10.22034/ijnn.2023.531029.2056
- 4) Omietimi HB, Afolalu SA, Kayode JF, Monye SI, Lawal SL, Emetere ME, "An overview of nanotechnology and its application" E3S Web of Conferences, 2023;391:01079. <https://doi.org/10.1051/e3sconf/202339101079>
- 5) Chintagunta AD, Sai krishna M, Nalluru S, "Nanotechnology: an emerging approach to combat COVID-19" emergent mater,2021;4:119-130. <https://doi.org/10.1007/s42247-021-00178-6> PMid:33615141 PMCid:PMC7883336
- 6) Srujana S, Anjamma M, Alimuddin, Singh B, Dhakar RC, Natarajan S, Hechhu R. A Comprehensive Study on the Synthesis and Characterization of TiO₂ Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye. *Adsorption Science & Technology.* 2022;2022 <https://doi.org/10.1155/2022/7244006>
- 7) Balkrishna A, Arya V, Rohela A, Kumar A, Verma R, Kumar D, Nepovimova E, Kuca K, Thakur N, Thakur N and Kumar P, "Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines" *Vaccines* 2021;9:1129. <https://doi.org/10.3390/vaccines9101129> PMid:34696237 PMCid:PMC8537718
- 8) Araste, F., Bakker, A.D. & Zandieh-Doulabi, B. Potential and risks of nanotechnology applications in COVID-19-related strategies for pandemic control. *J Nanopart Res.* 2023;25:229. <https://doi.org/10.1007/s11051-023-05867-3>
- 9) Bagmar N A, Hatwar P R. and Bakal Dr. R. L, "A Review On Targeted Drug Delivery System, *World Journal of Pharmaceutical Research*,2023;12(19):288-298. DOI:10.20959/wjpr202319-30070
- 10) Gupta AK, Singh A, Singh S, "Diagnosis of Tuberculosis: Nanodiagnostics Approaches" *NanoBioMedicine*, 2021;261-283. https://doi.org/10.1007/978-981-32-9898-9_11
- 11) Pradhan D, Biswasroy P, Goyal A, Ghosh G, and Rath G, "Recent Advancement in Nanotechnology-Based Drug Delivery System Against Viral Infections" *pharmaceutical science and technology*,2021;22(47):2-19. <https://doi.org/10.1208/s12249-020-01908-5> PMid:33447909 PMCid:PMC7808403
- 12) Bismillah M, Aunza N A, Rasool R, Ullah I, Syed S I, Alshehri S, Ghoneim Mohd M, Alzarea S I, Nadeem Mohd S, Kazmi I, "Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics" *Antibiotics*, 2021;10 (1473): 2-61. <https://doi.org/10.3390/antibiotics10121473> PMid:34943685 PMCid:PMC8698349
- 13) Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR and Gonçalves-de-Albuquerque CF, "Potential of nano formulations in malaria treatment" *Frontiers in Pharmacology*,2022; 13:999300. <https://doi.org/10.3389/fphar.2022.999300> PMid:36386185 PMCid:PMC9645116
- 14) Ayan S, Aranci-Ciftci K, Ciftci F and Ustundag CB, "Nanotechnology and COVID-19: Prevention, diagnosis, vaccine, and treatment strategies", *Frontiers in Materials*,2023; 9:1059184. <https://doi.org/10.3389/fmats.2022.1059184>
- 15) Mehta OP, Bhandari P, Raut A, Kacimi SEO and Huy NT, "Coronavirus Disease (COVID-19): Comprehensive Review of Clinical Presentation", *Frontiers in Public Health*,2021; 8:582932. <https://doi.org/10.3389/fpubh.2020.582932> PMid:33520910 PMCid:PMC7844320
- 16) Estefânia V. R. Campos, Anderson E. S. Pereira, Oliveira JLD, Carvalho LB, Guilher Casagrande M, Lima RD and Fraceto LF,

"How can nanotechnology help to combat COVID-19? Opportunities and urgent need", *Journal of Nanobiotechnology*, 2020;18(125):2-23. <https://doi.org/10.1186/s12951-020-00685-4> PMid:32891146 PMCid:PMC7474329

17) Mollarasouli F, Zare Shehneh N, Ghaedi M, "A review on corona virus disease 2019 (COVID 19): current progress, clinical features and bioanalytical diagnostic methods", *Microchimica Acta*, 2022;189(103):2-25. <https://doi.org/10.1007/s00604-022-05167-y> PMid:35157153 PMCid:PMC8852957

18) Alimardani V, Abolmaali SS, and Tamaddon A Mohd, "Recent Advances on Nanotechnology-Based Strategies for Prevention, Diagnosis, and Treatment of Coronavirus Infections", *Jounral of Nanomaterial*, 2021;1-20. <https://doi.org/10.1155/2021/9495126>

19) Ong CWM, Migliori GM, Ravaglione M, MacGregor-Skinner G, Sotgiu G, Alffenaar JW, Tiberi S, Adlhoch C, Alonzi T, Archuleta S, Brusin S, Cambau E, Capobianchi MR, Castilletti C, Centis R, Cirillo DM, Ambrosio LD, Delogu G, Esposito SMR, Figueiroa J, Friedland JS, Ho BCH, Ippolito G, Jankovic M, Kim HY, Klintz SR, Ködmön C, Lalle E, Leo YS, Leung CC, Märton AG, Melazzini MG, Fard SN, Penttinen P, Petrone L, Petruccioli E, Pontali E, Saderi L, Santin M, Spanevello A, Crevel AV, Werf MJVD, Visca D, Viveiros M, Zellweger JP, Zumla A and Goletti D, "Epidemic and pandemic viral infections: impact on tuberculosis and the lung", *European Respiratory Journal*, 2020;56(2001727). <https://doi.org/10.1183/13993003.01727-2020> PMid:32586885 PMCid:PMC7527651

20) Huang X, Kon E, Han E, Zhang X, Kong N, Mitchell M J, Peer D, and Tao W, "Nanotechnology-based strategies against SARS-CoV-2 variants" *Nature Nanotechnology*, 2022;17(10):1027-1037. <https://doi.org/10.1038/s41565-022-01174-5> PMid:35982317

21) Rai M, Bondea S, Yadava A, Plekhanovac Y, Reshetilov A, Guptad I, P Golińskab, R Pandita and Ingle A P, "Nanotechnology-based promising strategies for the management of COVID-19: current development and constraints", *Expert Review Of Anti-Infective Therapy*, 2022;20(10):1299-1308. <https://doi.org/10.1080/14787210.2021.1836961> PMid:33164589

22) Yayahrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS, "Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives" *Int J Nanomedicine*, 2021;16:5713-5743. <https://doi.org/10.2147/IJN.S327334> PMid:34465991 PMCid:PMC8402990

23) Vazquez-Munoz R, Lopez-Ribot JL, "Nanotechnology as an Alternative to Reduce the Spread of COVID-19", *Challenges*, 2020;11(15):2-14. <https://doi.org/10.3390/challe11020015>

24) Souris M, Chiani M, Farhangi A, Mehrabi MR, Nourouzian D, Raahemifar K, Soltani M, "Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment" *Nanomaterials* 2022;12(5):7832-40. <https://doi.org/10.3390/nano12050783> PMid:35269270 PMCid:PMC8912597

25) Tavakol S, Zahmatkeshan M, Mohammadinejad R, Mehrzadi S, Joghataei MT, Alavijeh MS, Seifalian A, "The role of nanotechnology in current COVID-19 outbreak" *Heliyon*, 2021;4(7):e06841. <https://doi.org/10.1016/j.heliyon.2021.e06841> PMid:33880422 PMCid:PMC8049405

26) Majumder J, Minko T, "Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19", *The AAPS Journal*, 2021;23(1):1-22. <https://doi.org/10.1208/s12248-020-00532-2> PMid:33400058 PMCid:PMC7784226

27) Singh P, Singh D, Sa P, Mohapatra P, Khuntia A, K Sahoo S, "Insights from nanotechnology in COVID-19: prevention, detection, therapy and immunomodulation" *Nanomedicine (Lond)*, 2021;16(14):1219-1235. <https://doi.org/10.2217/nmm-2021-0004> PMid:33998837 PMCid:PMC8127834

28) Cavalcanti IDL, Cajubá de Britto Lira Nogueira M, "Pharmaceutical nanotechnology: which products are been designed against COVID-19?" *J Nanopart Res* 22, 276 (2020).

29) Andrade M V, Noronha K, Diniz B P C, Guedes G, Carvalho L R, Silva V A, Calazans J A, Santos A S, Silva D N and Castro M C, "The economic burden of malaria: a systematic review" *Malaria Journal*, 2022;21(283):1-10. <https://doi.org/10.1186/s12936-022-04303-6> PMid:36199078 PMCid:PMC9533489

30) Varo R, Chacour C, Bassat Q, "Update on malaria", *Med Clin (Barc)*, 2020;155(9):395-402. <https://doi.org/10.1016/j.medcli.2020.05.010> PMid:32620355

31) Nureye D and Assefa S, "Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia", *Scientific World Journal*, 2020;115. <https://doi.org/10.1155/2020/1295381>

32) Possemiers H, Leen Vandermosten ID, Philippe E. Van den Steen D, "Etiology of lactic acidosis in malaria" *PLOS PATHOGENS*, 2021;17(1):1-17. <https://doi.org/10.1371/journal.ppat.1009122> PMid:33411818 PMCid:PMC7790250

33) Trivedi S, Chakravarty A, "Neurological Complications of Malaria", *Current Neurology and Neuroscience Reports*, 2022;22:499-513. <https://doi.org/10.1007/s11910-022-01214-6> PMid:35699901 PMCid:PMC9192935

34) Gujjar L, Kalani H, Pindiprolu SK, Arakareddy B P, Yadagiri G, "Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria", *Parasite Epidemiology and Control*, 2022;17:e00244. <https://doi.org/10.1016/j.parepi.2022.e00244> PMid:35243049 PMCid:PMC8866151

35) Hassan AO, Oso OV, Obeagu EI and Adeyemo AT, "Malaria Vaccine: Prospects And Challenges" *Madonna University Journal of Medicine and Health Sciences*, 2022;2(2):22-40.DIO:<https://orcid.org/0000-0002-4538-0161>

36) Saftawy E EL, Farag MF, Gebreil HH, Abdelfatah M, Aboulhoda BE, Alghamdi M, Albadawi EA, Abd Elkhalek MA, "Malaria: biochemical, physiological, diagnostic, and therapeutic updates" *PeerJ*, 2024;12(e17084):1-21. <https://doi.org/10.7717/peerj.17084> PMid:38529311 PMCid:PMC10962339

37) Acharya B, Acharya A, Gautam S, Ghimire S P, Mishra G, Parajuli N, Sapkota B, "Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of *Mycobacterium tuberculosis*", *Molecular Biology Reports*, 2020;47:4065-4075. <https://doi.org/10.1007/s11033-020-05413-7> PMid:32248381

38) McQuaid CF, McCreech N, Read JM, Sumner T, CMMID COVID-19 Working Group; Houben RMGJ, White RG, Harris RC, "The potential impact of COVID-19-related disruption on tuberculosis burden" *Eur Respir J*, 2020;56(2):2001718. <https://doi.org/10.1183/13993003.01718-2020> PMid:32513784 PMCid:PMC7278504

39) Natarajan A, Beena P M, Devnkar A V, Mali S, "A systemic review on tuberculosis" *Indian Journal of Tuberculosis*, 2020;(67):295-311. <https://doi.org/10.1016/j.ijtb.2020.02.005> PMid:32825856

40) Obeagu EI and Obeagu GU, "Human Immunodeficiency Virus and tuberculosis infection: A review of prevalence of associated factors" *International Journal of Advanced Multidisciplinary Research*, 2023;10(10):56-62. <http://dx.doi.org/10.22192/ijamr.2023.10.10.005>

41) Panic N, Maetzel H, Bulajic M, Radovanovic M, and J-Matthias Lohr, "Pancreatic tuberculosis: A systematic review of symptoms, diagnosis and treatment", *United European Gastroenterology Journal*, 2020;8(4):396-402. <https://doi.org/10.1177/2050640620902353> PMid:32213022 PMCid:PMC7226685

42) Kaur M, Gogna S, Reetika, Kaur N, Minhas P, Sharma D, Katual M K, "Nano-Technological Developments in Tuberculosis Management: An Update", *Tathapi UGC Care Journal*, 2020;19(5):313-329.

43) Gupta M, Shivangi, Laxman S. Meena, "Multidirectional Benefits of Nanotechnology in the Diagnosis, Treatment and Prevention of

Tuberculosis", Journal of Nanotechnology and Nanomaterials, 2020;1(2):46-56.DIO:
<https://www.scientificarchives.com/journal/journal-of-nanotechnology-and-nanomaterials>
<https://doi.org/10.33696/Nanotechnol.1.008>

44) Cheepsattayakorn A and Cheepsattayakorn R, "Roles of Nanotechnology in Diagnosis and Treatment of Tuberculosis", Journal of Nanotechnology in Diagnosis and Treatment, 2013;1(1):19-25. <https://doi.org/10.12974/2311-8792.2013.01.01.3>

45) Chen W, Huang L, Tang Q, Wang S, Hu C, Zhang X, "Progress on diagnosis and treatment of central nervous system tuberculosis" Radiology of Infectious Diseases, 2020;7(4):160-169. <https://doi.org/10.1016/j.jrid.2020.07.005>

46) Ahmad F, Pandey N, Singh K, Ahmad S, Khubaib M, Sharma R, "Recent Advances in Nanocarrier-Based Therapeutic and Diagnostic Approaches in Tuberculosis" Precis. Nanomed, 2023;6(4). 1134-1156. <https://doi.org/10.33218/001c.90699>

47) Van Gerwen OT, Muzny CA and Marrazzo JM, "Sexually transmitted infections and female reproductive health" Nature Microbiology, 2022;7:1116-1126. <https://doi.org/10.1038/s41564-022-01177-x> PMid:35918418
 PMCID:PMC9362696

48) Adamson PC, Loeffelholz MJ, Klausner JD, "Point-of-Care Testing for Sexually Transmitted Infections: A Review of Recent Developments", Arch Pathol Lab Med, 2020;144(11):1344-1351.

49) Homes KK, Levine R, Weaver M, "Effectiveness of condoms in preventing sexually transmitted infection, Public Health Review", Bulletin of the World Health Organization, 2004;82(6):454-461.

50) Sahoo CK, Sahoo NK, Rao SRM, Sudhakar M, "A Review on Prevention and Treatment of Aids", Pharmacy & Pharmacology International Journal, 2017; 5(1): 00108. <https://doi.org/10.15406/ppij.2017.05.00108>

51) O'Byrne P, MacPherson P, Orser L, "Approach to sexually transmitted infection testing for men who have sex with men" Can Fam Physician, 2024;70(7-8):449-455. <https://doi.org/10.46747/cfp.700708449> PMid:39122439
 PMCID:PMC11328724

52) Stump DS and Woude SV, "Animal Models for HIV AIDS: A Comparative Review" Comparative Medicine Copyright 2007 by the American Association for Laboratory Animal Science, 2007;57:33-43.

53) Zhou J, Krishnan N, Jiang Y, Fang R H, Zhang L, "Nanotechnology for virus treatment" Nano Today, 2021;36: 101031. <https://doi.org/10.1016/j.nantod.2020.101031> PMid:33519948
 PMCID:PMC7836394