

KIRGANELIA RETICULATA (POIR) BAILL.: A REVIEW ON ITS BOTANY, ETHNOBOTANY, PHYTOCHEMISTRY AND PHARMACOLOGY

*Rajesh Kumar Soni¹, Vihangesh Dixit¹, Akanksha Chandra¹, Raghuveer Irchhaiya¹, Nandlal Singh¹, Harsh Singh²

¹Institute of Pharmacy, Department of Pharmacognosy, Bundelkhand University, Jhansi (U.P.) India

²Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, (U.P), India

*Corresponding author's: Tel: +918756696949, +918737001776, Email ID: rajeshsoni1987@gmail.com

ABSTRACT

Kirganelia reticulata (Poir.) Baill. is known for its importance in various traditional medicine around the world and are proved pharmacologically as an antiviral against Hepatitis B, hepatoprotective, antidiabetic and antioxidant. In Ayurvedic system of Indian medicine recognized its activity against jaundice, diuretic, fever, liver disorder, in bleeding gums, small pox, syphilis, etc. The review summarizes the up-to-date and comprehensive information concerning the botany, traditional use, phytochemistry and pharmacology of important drug. *Kirganelia reticulata* and discusses the possible future scope for future research. In present review covers a literature survey across from 1826 to 2012. The some information collected from published literature on species of *Kirganelia reticulata* (Poir.) Baill. (=*Phyllanthus reticulatus* Poir.) and traditional ayurvedic texts. Phytochemical studies have shown the presence of many valuable compounds such as lignans, flavonoids, steroids, coumerins, triterpenes, phenols, flavonones, alkaloids are common compounds in test species. The extract and the compounds isolated from *Kirganelia reticulata* show a wide spectrum of Biological activities including antidiabetic, antibacterial, antioxidant, hepatoprotective, antiplasmoidal, anticiceptive, analgesic and anti-inflammatory properties. Conclusion: The present review summarizes information concerning the morphology, ecology, ethanopharmacologically, phytochemistry, and traditional diseases and applications of *K. reticulata*. This review target at gathering the research work undertaken till date on this plant in order to provide sufficient baseline information for future works and commercial exploitation.

Keywords: *Kirganelia reticulata*, Ethnomedicinal, Phytochemical, Ethnopharmacology.

1. INTRODUCTION

Kirganelia reticulata (Poir) Baill. is belonging to the family Euphorbiaceae, popularly known as 'potato plant or potato bush' and are variously named in different parts of the world. Synonymously, it is also named as *Phyllanthus reticulatus* Poir. and commonly used in Indian Ayurvedic system of medicine in various ailments related to liver, kidney, genitourinary system and stomach. It has properties of *Rasa* (*Kashaya*, *Tikta*, *Madhura*, *Guna* (*Lakhu*) and *Veerya* (*Seeta*). The ayurvedic literature has shown its wide utilization as in *vata*, *pitta*, *diabetes*, burning sensation, burns, skin diseases, obesity and urinary retention, skin eruption¹. The use of this drug is now gaining momentum because of its novel antiviral activity against Hepatitis B virus and for several other biological activities such as hypotensive effects viral infections; hepatotoxicity causing liver diseases, jaundice²⁻⁸.

K. reticulata elaborates different class of organic compounds of, medicinal importance including alkaloids, flavonoids lignans, sitosterol, polyphenols, triterpenoids, saponins, coumerins phytosterols⁹⁻¹². The maximum number of phytochemical compound is present in leaves then stem and root¹³. The present review assesses the potential of *K. reticulata* in relation to its traditional uses and in terms of finding based on modern bioscientific research. The link between conventional remedies and recent research in various areas has been well established in other plant derived products. The plant is known to contain several pharmacological important biomolecules whose well established in other plant derived products. Furthermore, this drug has several pharmacological

important bio-molecules whose efficacy is well established by several biochemical and pharmacological studies. This review intent to compile various studies on this plant and critically evaluates the issues related to botany, traditional use in various parts of the world, phytochemistry and ethnopharmacology to highlights its importance in future research.

2. TAXONOMY AND DISTRIBUTION

Kirganelia reticulata (Poir) Baill. (=Syn. *Phyllanthus reticulatus* Poir.) is belonging to the family Euphorbiaceae. It is a large shrub growing in hedges, waste places and in forest. Leaves are usually ovate-oblong to elliptic, 1-5 cm long, 0.7-3 cm wide, produced on short lateral branchlets, looking like leaflets of a compound leaf. Flowers are borne in clusters on short axillary branchlets, small, yellowish, sexes separate on the same plant. The flowering shoots and pedicels are covered in short, velvety hairs. Fruit is berry-like, 4-6 mm across, blackish when ripe^{14,15}. The flowering and fruiting season is during the month of March-July¹⁶⁻²¹.

This plant is widely distributed throughout the tropical countries of the world including India, Sri Lanka, the Himalayas, China, Indo-china, Malaysia, into tropical Australia and is supposed to also occur in tropical parts of Africa²²⁻²⁷. The name 'Phyllanthus' means "leaf and flower" because the flower, as well as the fruit, seems to become one with the leaf. The genus (Euphorbiaceae) consists of about 6500 species in 300 genera, of which 200 are

American, 100 African, 70 from Madagascar and the remaining Asian and Australasian^{28,29}.

Figure 1: *K. reticulata* (Poir) Baill. plant.

3. HISTORICAL PERSPECTIVE

K. reticulata has been indexes in majority of published phytochemical, pharmacological and traditionally uses reviews and research articles till date with different named. In Poiret, 1804 is described this species based on a collection made by an unknown collector in tropical Asia and deposited in Lamarck herbarium in Paris. Although Poiret's protologue mentions that species grew "dans les Indes" the sheet no locality information and it is therefore unclear from where and from whom Lamarck received this plant. Given that the collection must have been made before 1804³⁰⁻³². It is one of largest genera of the euphorbiaceae. It contains compounds known to be biologically active³³. In 1985, scientific research has identified within the genus potential sources of agents against cancer³⁴ and hepatitis B virus³⁵⁻³⁷. The objective of this review is to organize taxonomically all such citations as could be found. Ethnobotanical surveys were carried out in Bukoba Rural District to explore the traditional ethno-medical knowledge, the use and conservation of medicinal plants in the management of HIV/AIDS opportunistic infections and to determine whether levels of harvesting are sustainable. The district is currently an epicentre of HIV/AIDS and although over 90% of the population in the district relies on traditional medicines to manage the disease, this traditional knowledge still remains largely

unknown. Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) is a major public health problem in many countries particularly those in sub-Saharan Africa. Hence in sub-Saharan Africa, traditional healers play a crucial role of providing primary health care by taking care of people living with HIV/ AIDS^{38,39}. In 2006, almost two thirds (63%) of all persons infected with HIV/ AIDS in the world were living in sub-Saharan Africa⁴¹. Tanzania as it affects mostly the young and most economically productive population⁴². HIV/AIDS are susceptible to fungal and bacterial opportunistic infections that result from immunosuppression⁴³. It is one of the leading causes of deaths in Tanzania and worldwide⁴⁴. The use of plants as (*K. reticulata*) medicine is common to many cultures, and a number of advanced pharmaceutical drugs were derived from plants⁴⁵. Tanzania depends on traditional medicines for the management of various diseases including HIV/AIDS⁴⁶. In Rural area of Tanzania especially in bukoba district, suffer from HIV/AIDS⁴⁷. Many plants species is using in HIV/AIDS diseases but one of most plant is *K. reticulata* used in treating various disease related to HIV/AIDS in Bukoba rural district, Tanzania. The leaves part of *K. reticulata* used in treated of chronic cough chronic diarrhoea, cryptococcal meningitis, Herper zoster, oral candidiasis, oral sores, skin infections, skin rashes, tuberculosis⁴⁸. Some important medicinal uses of *K. reticulata* species in different countries worldwide such as Africa, Sudan, Kenya, Tanzania, Pakistan, Indochina, Philippines, Malay Peninsula, Australia, India and Sri Lanka respectively. Many diseases and traditional uses.

4. VERNACULAR NAME AND TRADITIONAL USES

In **Table No. 1.** & **Table No. 2.** Lists showed the traditional uses, local names, modes of preparation and the induced effects.

In Indian folk medicine, the drug is used for different ailments including asthma, stomachic, diuretic, fever, and thirst, astringent, inflammation and carcinoma⁴⁹⁻⁵³. The leaves and bark are sweet and cooling and hence are used in constipation and urinary disorder while leaves juice is used for the treatment of diarrhoea in children⁵¹. Decoction of bark is used as astringent, diuretic and alternative⁵⁴. For bleeding gums, pill of this drug along with camphor and cubeb is kept in the mouth^{19,55}. In India, leaves juice of this drug are used in infant diarrhoea in the Lakhimpur district, Assam⁵⁶⁻⁶³. The roots are used in Madras as a red dye⁶⁴. In Indo-china, the whole plant is used in the treatment of small pox and syphilis. The fruit is said to be eaten in the times of scarcity in E. Africa⁶⁵. An ink is prepared from ripe fruits in the Philippines. In East Africa, fruits and roots are alleged to be used for criminal execution, eaten by stock animals⁶⁵ and also Digo and Swahili peoples (East Africa) are used root infusion for gonorrhoea, decoction as purgative other part of the medicine for hookworm⁶⁶. Mostly in Tanzania, Dried whole plant of *K. reticulata* is used in decoction for gonorrhoea^{67,68}.

Table 1: Vernacular Name of *K. reticulata* (Poir) Baill. Worldwide

S. No.	Language	Vernacular Name
1.	Bengali	Panjuli, Panseuli, Chitki, Pankushi, pan chitki.
2.	Sanskrit	Krishna-kamboji, Poolika. Kale madh
3.	Ayurveda	Kaamboji.
4.	Hindi	Panjuli, Buinowla, Makhi, Panjoli,
5.	Gujarati	Datwan and Kam-Boi
6.	Kannada	Anamsule, Chippulinellu, Huli, Karesuli, Karihuli.
7.	Konkani	Kaili
8.	Marathi	Pavan and Pavana, Panpoi
9.	Assamese	Amlakhi
10.	Oriya	Bonoti-Hudi, Jandaki, Jojangi or Phajoli.
11.	Punjabi	Panjuli.
12.	Tamil	Abiranji Civappuppula, Karunelli, Karuppupilanji or Nirppu-Lanji.
13.	Telugu	Nallapuli, Nal-Lapuruguda, Nellapurududu or Pandicarranlue
14.	Malayalam	Niroori, Niroli, Nirnelli.
15.	English	Potato plant, Potato bush, Reticulated leaf-flower. Black-berried, featherfoil, Black-honey shrub, Netted-leaved leaf-flower.
16.	Chinese	Xiao guo ye xia zhu.
17.	Phillipine	Malatinta, Tinatinaan, Tintatintahan(Tagalog)- sungot-olang (Bisaya),
18.	Indonesia	Matang-buiud, Tintatintahan.(Biak), wawulutan (Sundanese), trembilu, Congcong belut (Javanese),
19.	Central and Rural Tanzania	Kitukuto, Kaumura.
20.	African	Aartappelbos.
21.	IsiZulu	Umchumelo
22.	XiTsonga	Thethenya
23.	Intaba	Yengwe
24.	Thailand	Kaang plaa khruea, mat kham (northern), am aai (eastern).
25.	Kenyan	Mkwamba,
26.	Japanese	Shima komi kansou
27.	Vietnamese	Phèn đen, Diệp hả châu mạng, Cây no, Kô kang pá.
28.	Malaysia	Kayu darah belut, tampal besi.
29.	Switzerland	Mchunguchungu, mfungozi, mkasiri., mviongozi, Mwino, mzizima.
30.	Cambodia	Prâpéeñh chhmôôl.
31.	Laos	Am ai, kang pa.

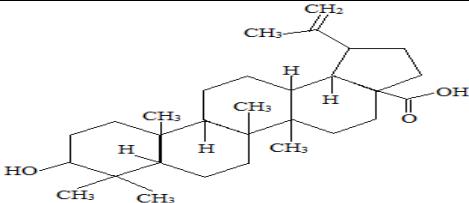
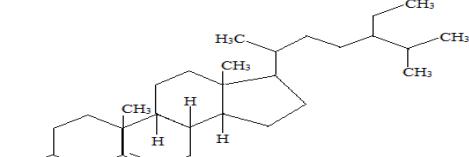
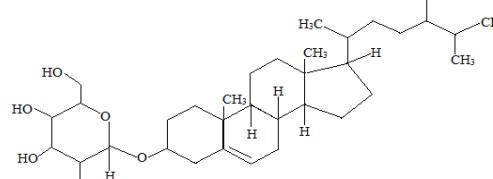
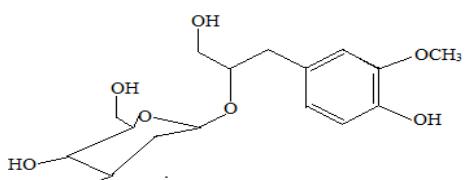
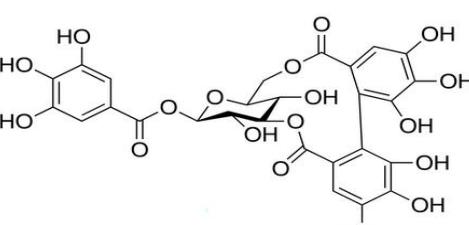
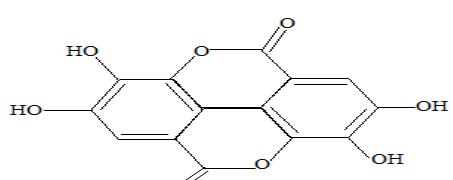
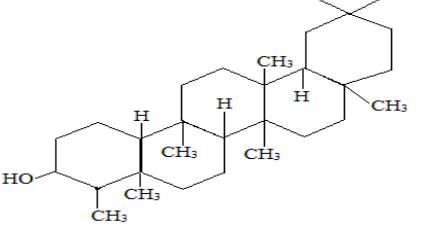
5. PHYTOCHEMISTRY

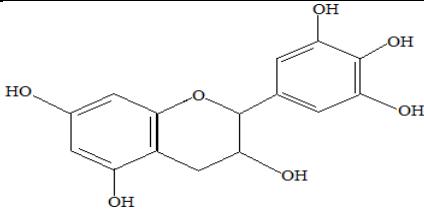
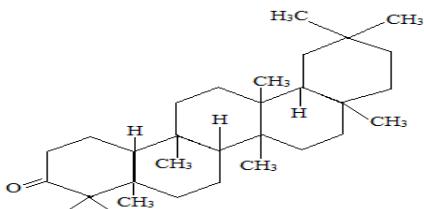
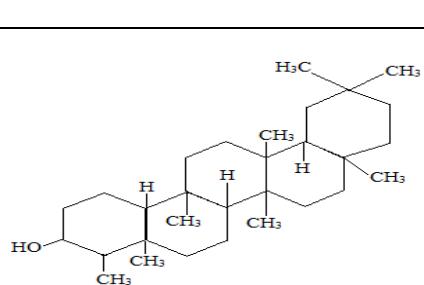
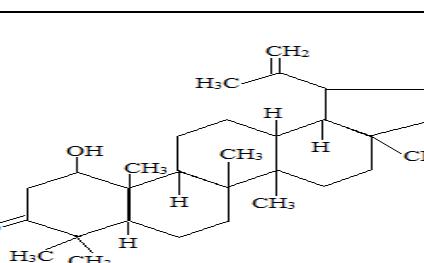
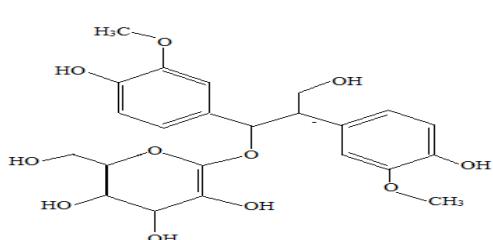
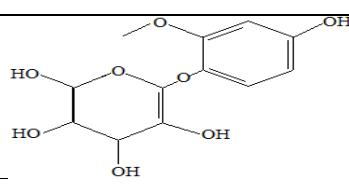
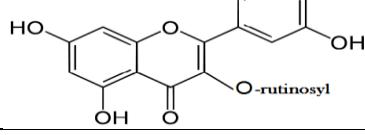
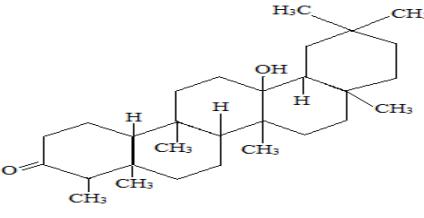
The secondary metabolites present in *K. reticulata* are alkaloids, tannins, saponins, coumerins, sterol, triterpenoids, polyphenols, flavonoids, glycosides and essential oil^{12,13,69-75}, flavonoids (tricin, quercetin, quercetin, rutin, kaempferol etc.)^{9,76}. Ellagitannins (geraniinic acid, corilagin, gallic acid, etc.)^{76,77}, titerpenoids (glochidionol, Stigmast-22-en-3-ol, stigmast-5-en-3-ol, 21 α -hydroxyfriedel-4(23)-en-3-one etc.)^{11,78}, sterols (stigmasterol, β -Sitosterol-3-O- β -glucoside, β -sitosterol, Stigmasta-5,6-dihydro-22-en-3 β -ol etc.)^{9,10,76} and main lignans are reticulosides A and reticulosides B⁷⁹. Some lignans and compounds isolated from *K. reticulata* as pentacosane, octacosane, lup-20(29)-en-3 β -24-diol, sorghumol and sorghumol acetate, friedelin, epifriedenol, kokoonol, β -sitosterol, taraxerone, teraxeryl acetate, 21 α -Hydroxyfriedelin-3-one, betulin, friedelan-3 β -ol, betulinic acid, *p*-comeric acid, ellagic acid, pyrogallic acid, pirorisinol^{9,10,70,75,78,80,81}. The chemical screening of *K. reticulata*, extracted out had founded antiplasmoidal⁸², antidiabetic⁸³, antimicrobial and cytotoxic⁶⁹ and hepatoprotective⁸⁴. Bioactivities and also properties like isotachioside⁸⁵, epigallocatechin⁸⁶, mananthoside⁸⁷, carthamoside B₅⁸⁸, hovetrichoside A⁸⁹, 3,4-

dihydroxyphenylpropanol 3-O-D-glucopyranosides⁹⁰, turpenionosides A⁹¹, isoguanine⁹², respectively⁹³ and isolated from leaves of this plant three known compounds found under NMR analysis as lupeol, lupeol acetate and stigmasterol⁹⁴⁻⁹⁷. Eight compounds, including two flavonoid glycosides, were isolated from the butanol-soluble fraction of the methanolic extract of the leaves of *K. reticulata*. The recently developed high-performance liquid chromatography solid-phase extraction–nuclear magnetic resonance (HPLC-SPE-NMR) technique, which has been demonstrated to be a powerful tool⁹⁸⁻¹⁰⁰, for identification and quantification of various chemical constituent in the plant material (reference of above technique used for this plant). The qualitative phytochemical analysis, conducted on *K. reticulata* crude drug samples, result positive reaction for various groups of chemical constituents and chemical structures given in the Table No. 3 & 4.

The terpenoids isolated from *K. reticulata* are glochidionol, stigmast-22-en-3-ol, Stigmast-5-en-3-ol, Turpenionosides A, Turpenionosides B etc., flavonoids such as quecetin, kaempferol, rutin, Isoquercirtin, astragalin, Quercetin 3-O- α -L-rhamnopyranoside etc., ellagitannins include geraniinic acid corilagin and sterol such as sitosterol, β -

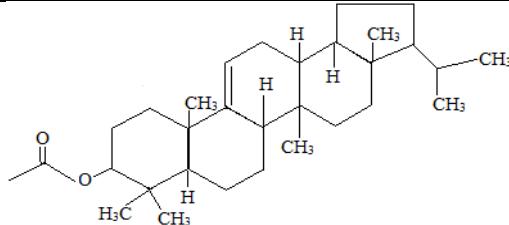
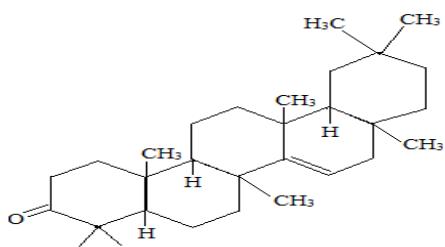
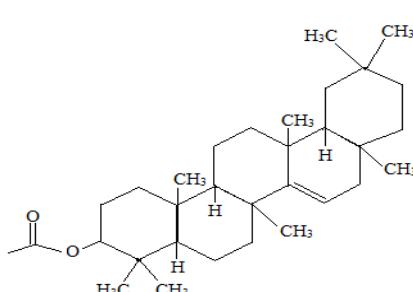
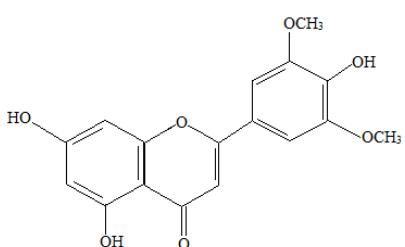
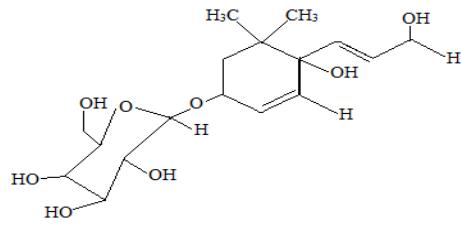
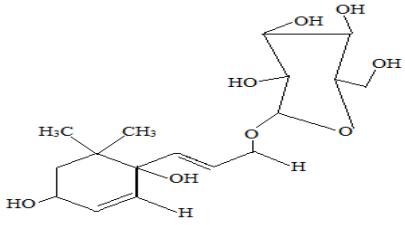
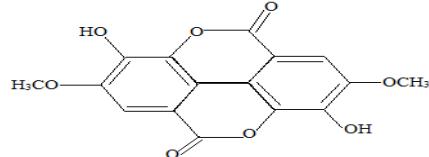
sitosterol, Stigmasterol etc. *K. reticulata* had been reported to have pharmacological effect such as in antibacterial activities found a maximum inhibitory activity is exhibited by both methanolic and ethanolic extracts. The entire plant powder of *K. reticulata* shows good








antioxidant activity of about 90.0% and antidiabetic activity shows weak potential in allaxon- induced diabetic mice. It exhibited hepatoprotective activities in rats against CCl₄- induced liver damage.









Table 2: Ethnomedicinal uses of *K. reticulata* (Poir) Baill. in different countries worldwide

	(not clear which species of euphorbiaceae, or perhaps all cited this species was cited as a possible synonym for cecuringa melanthesoides- (F.Mull; H.K. Airy-Shaw)	Young leaves	several sickness, open sores & leprosy Applied locally for pinworm	
14.	Sri Lanka	Bark Root Powdered leaves Juice of leaves Fruits	Decoction used as astringent & diuretic Decoction for asthma Sores, burns & suppurations Children's diarrhoea In bowel inflammation, "disease of the blood"	49
15.	Pakistan (sind.)	Leaves	Diuretics and cooling medicine	57, 60, 62
16.	Indochina	Whole plant	Smallpox, syphilis, bleeding gums	130, 128
17.	India, Indochina	Bark	Alterative	131
18.	Malay Peninsula	Stem & leaves Leaves	Rubbed on chest for asthma Decoction drunk for sore throat	132 128
19.	India	Leaves Bark	Diuretic and cooling medicine Decoction of four ounces twice or more daily as an alterative, "attenuant" (allegedly To weak enthe effects of a pathogen or drug), astringent to the Bowels; useful in Inflammations and disease of blood (unSpecified)	133
20.	India, Assam Lakhimpur	Juice of leaves	Infant diarrhea	56, 57, 58, 59, 60, 61, 63, 64
21.	India Maharastra: Konkan' Costal region	Leaves Juice of leaves	Reduced to thin extract with other "alterative" plant and made into pill With aromatics, this pill "rubbed down" in milk, twicw daily made into pill with camphor and cubes for bleeding gums.	57, 134, 60, 61, 62
22.	India East & West coasts	Root and root bark Leaves	Decoction of 4 ounce twice daily alterative, for venereal sores infusion of 1-2 ounces astringent, diuretic, cooling	134, 61
23.	India	Dry bark & Leaves	Decoction as a diuretic, alterative and for cooling effect	

Table 3: Structures of isolated compounds and identified from *K. reticulata* (Poir) Baill.








S.NO.	Chemical Name	Isolated from part	Structure	Ref
1.	Astragalin (Kaempferol 3-O- β -D glucopyrano- side)	Leaves		76
2.	Betulin	Roots and stems		76, 10
3.	Betulinic acid	Stem & Leaves		78

4.	Beta-Sitosterol	Roots, Stem & Stem bark		10,75,9
5.	Beta-sitosterol-3-O- β -glucoside	Leaves		76
6.	Carthamosides B ₅	Whole plant		12
7.	Corilagin	Leaves		76
8.	Ellagic acid	Leaves		76
9.	Epifriedelinol	Roots		9,10

10.	Epigallocatechin	Whole plant		12
11.	Friedelin	Roots and stems		76,10,9
12.	Friedelan-3 β -ol	Stem & leaves		78
13.	Golchidolonol	Leaves, Stem and Roots		10,11,78
14.	HovertrichosidesA	Whole plant		12
15.	Isotachioside	Whole plant		12
16.	Kaempferol 3-rutinoside	Leaves		76
17.	Kokoonol	Roots		9

18.	Lupeol	Leaves		97
19.	Lupeol acetate	Leaves		97
20.	Methyl gallate	Leaves		76,77
21.	Methyl brevifolincarboxylate	Leaves		76
22.	Octacosane	Roots		9
23.	Octacosanol	Roots		10
24.	Pentacosane	Stem bark		75
25.	Quercetin 3-O- β -D-glucopyranoside (isoquercitrin)	Leaves		76

26.	Quercetin (Quercetin 3-O- α -L rhamnopyranoside)	Leaves		76
27.	Rutin (quercetin 3- rutinoside)	Leaves		76
28.	Stigmasterol	Leaves		97,76
29.	Stigmastasterol-3-O- β - glucoside	Leaves		76
30.	Stigmast-22-en-3-ol	Leaves		11
31.	Stigmast-5-en-3-ol	Leaves		11
32.	Sorghumol	Roots		9
33.	Sorghumol acetate	Roots		9

34.	Taraxerone	Roots		10
35.	Taraxerone acetate	Roots		9
36.	Tricin	Roots		9
37.	Turpenionosides A	Whole plant		12
38.	Turpenionosides B	Whole plant		12
39.	2,7-Di-O-methylellagic acid	Leaves		76

40.	3,4,3'-Tri-O-methylellagic acid	Leaves		76
41.	3-4-dihydrophenylpropanol 3-O- β -D-Glucopyranoside	Whole plant		12
42.	(5R*, 6R*)-4,6-dimethoxycarbonyl-5-[2',3',4'-trihydroxy-6'-(methoxycarbonyl)-phenyl]-5,6-dihydro-2H-pyran-2-one	Leaves		76
43.	21 α -Hydroxy-friedelan-3-one	Roots and Stem bark		10,75

Table 4: Compounds present in *K. reticulata* throughout extractions:^{13,72}

S.N.	Solvent Used	Compounds obtained from the plant		
		Leaf	Stem	Root Bark
1	Pet. Ether	alkaloids, carotenoids, coumerins, dihydrochalcones, steroids	-----	-----
2	Methanol	alkaloids, anthocyanins, anthocyanidins, catabolic compounds, coumarins, dihydrochalcones, emodins, flavonoids, flavones, glycosides, lignans, phenols, triterpenoid	alkaloids, anthocyanins, flavonoids, flavonols, glycosides, phenols, saponins, triterpenoids	alkaloids, anthocyanins, antraceneglycosides, flavonoids, flavonols, glycosides, phenols, triterpenoids
3	Water	alkaloids, anthocyanins, coumarins, dihydrochalcones, emodins, flavonoids, flavones, phenols, Saponins triterpenoid	alkaloids, antraceneglycosides, flavonoids, flavonols, glycosides, triterpenoids	Alkaloids, flavonoids, flavones, glycosides, saponins, triterpenoids

6. ETHNOPHARMACOLOGICAL ACTIVITY

In worldwide, the plant was reported for various ethnopharmacological activities such as tumor-promoting activity found (Hecker, personal communication);¹⁰¹ hypotensive activity¹⁰² antifungal and in vitro Hypotensive activity^{67,10,103} etc. These are described as following:

6.1. Antidiabetic activity, Anti- hyperglycaemic And hypoglycaemic activities

The plant *K. reticulata* is claimed to have antidiabetic activity in tribal area. To validate the tribal claim, the petroleum ether and ethanolic extracts of leaves of the *K. reticulata* were orally tested at 500 and 1000 mg/kg for

hypoglycaemic effect in alloxan induces diabetic mice. It shows antidiabetic activity at the dose of 1000mg/kg. The phytochemical screening of the residues revealed the presence of terpenoids glycosides, protein, carbohydrates and absence of alkaloids and steroids^{83,105,106}.

6.2. Antibacterial activities

The in vitro antibacterial activities of leaf extract (Methanol and Ethanol) from 10 genus species. Which are medicinally important, were investigated by agar-well diffusion method against four food borne human pathogens (*Staphylococcus aureus*, *Salmonella typhi*, *Vibrio cholera* and *Pseudomonas aeruginosa*). Leaf extracts contained high level of phenols and exhibit differential antibacterial

activity against all four tested human pathogenic bacteria. The phenolic constituents of the tested extracts are closely associated with antibacterial activity. Highest antibacterial activity is exhibited by *K. reticulata* and can be used as a promising source of antibacterial drug¹⁰⁷, methanol, chloroform and hexane extracts from leaves of *K. reticulata*, used in Indian ayurvedic medicine for the treatment of several ailments of microbial and non-microbial origin were evaluated for potential antibacterial activity against methicillin- isolated from clinical specimen was studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) resistant *Staphylococcus aureus* (MRSA). Antibacterial activity and biofilm production of crude extracts against MRSA (ATCC 25923) values of the methanol, chloroform and hexane extracts were in the range of 12.5 to 50.0 mg/ml and 25.0 to 100.0 mg/ml, respectively. Amongst the evaluated extracts, the methanolic extract showed the strongest antibacterial effect as well as biofilm inhibition. Micro plate screening used for detection of biofilm formation by *Staphylococci* is a quantitative model to study its adherence level and has been a sensitive method¹⁰⁸. and the in vitro antibacterial activity of crude methanolic, chloroform and hexane extracts of the leaves of *K. reticulata* were investigated. Susceptibility of some Gram-negative organisms (*Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella typhi*) and Gram-positive organism (*Staphylococcus aureus*) were tested. Agar well diffusion and broth dilution methods were used to determine the minimum antibacterial activity against all the tested microorganisms. The extracts exhibited antibacterial activities with zones of inhibition ranging from 9.07-30.10 mm, 8.17-24.57 mm and 5.60-14.67 mm for methanol, chloroform and hexane extracts respectively. Screening of crude extracts showed notable minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) at concentrations of 100 to 6.25 mg/ml¹. The organisms were more sensitive to the methanolic extract of the leaves, whereas extracts from other solvents like chloroform and hexane showed moderate to weak activity respectively. Similar results have been showed in MIC and MBC¹⁶.

6.3. Antioxidants activities and Free radical scavenging

Antioxidant activity of entire plant of *K. reticulata* by performing different in vitro antioxidant assays, including 2,2-Diphenyl-1- Picrylhydrazyl (DPPH) radical scavenging, beta-carotene bleaching, superoxide anion radical scavenging, reducing power and metal chelating assay at different concentrations (100, 200 and 400 µg/ml). The entire plant powder of *K. reticulata* shows good antioxidant activity of about 90.0% when compared with standard butylated Hydroxy Toluene (BHT) (85%) at a concentration of 400 µg/ml. Results obtained reveal that methanolic extracts of entire plant of *K. reticulata* possess higher antioxidant activity when compared when compared with ethanolic extract. Thus, this study suggests that *K. reticulata* plant can be used as a potent source of nature antioxidants¹⁰⁹. Free radicals are implicated for many diseases including Diabetes mellitus, arthritis, cancer, ageing, etc. In treatment of these diseases, antioxidant therapy has gained utmost importance. *K. reticulata* popularly important medicinal plant. Keeping in view of the cited activity, it is contemplated to screen the

plant for *in vitro* antioxidant activity using different models viz. DPPH radical scavenging, ABTS radical scavenging, iron chelating activity and lipid peroxidation assay, nitric oxide scavenging assay, alkaline DMSO assay, total antioxidant capacity and non- enzymatic haemoglobin glycosylation assay. The results were analyzed statistically by regression method. Its antioxidant activity was estimated by IC50 value and the values are 20.36 µg/ml (DPPH radical scavenging), 42.59 µg/ml (ABTS radical scavenging), 32 µg/ml (Iron chelating activity) and 41.91 µg/ml (lipid peroxidation), 122.8 µg/ml (nitric oxide scavenging) and 2.57 µg/ml (alkaline DMSO). In total antioxidant capacity assay, 1 mg of extract is equivalent to 51 µg of ascorbic acid. It showed 66.64% inhibition of haemoglobin glycosylation. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals, metal chelation or inhibition of lipid peroxidation. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicate that *K. reticulata* is effective against free radical mediated diseases¹¹⁰, antioxidant properties of the medicinal plant *K. reticulata*. The different solvent extracts of *K. reticulata* leaves were screened for their *in vitro* phytochemical and antioxidant activity. Leaves were extracted with solvents of different polarities like aqueous, ethanol, methanol, chloroform, acetone and hexane. The distributions of the main active principles such as alkaloid, flavonoids, phenols, steroids tannins etc. present in the plant were analyzed. It was also focused to determine the total phenolic and flavonoid content present in the extracts. Extracts showed promising results for total antioxidant capacity and reductive capability when compared with standard drug. The ethanol extract was found to possess excellent phytochemical and antioxidant activities. The antioxidant property may be attributed to the presence of flavonoids and phenolics present in the drug. The ability of the crude extracts of *K. reticulata* towards reduction, presence of phenol, flavonoid and antioxidant is an indication of its broad spectrum potential which may be employed in the management of various diseases⁷². Many plants possess antioxidant ingredients that provided efficacy by additive or synergistic activities. Antioxidant activity of the methanol crude extract of entire plant of *K. reticulata* was assessed using DPPH, superoxide anion and metal chelating assays at different concentrations. The potent extract of *K. reticulata* was tested for *in vivo* efficacy. The methanol extract exhibited potent antioxidant activity compared to known antioxidant. *In vivo* studies on potent extract of *K. reticulata* demonstrated dose dependent reduction in hepatic malondialdehyde (330.70, 279.40 and 383.79 µMmg-1 protein) with simultaneous improvement in hepatic glutathione (7.03, 18.16 and 6.88 µMmg-1 protein) and catalase levels (678.10, 787.00 and 522.00 µMmg-1 protein) respectively for 50, 100 mg/kg-1 dose and control compared to control group. Due to its natural origin and potent free radical scavenging ability *K. reticulata* could be used as a potential preventive intervention for free radical mediated diseases¹¹¹.

6.4. Antiplasmodial activity

Antiplasmodial of *K. reticulata* medicinal plants were extracted and tested for in vitro antiplasmodial activity

against chloroquine-sensitive (K67) and chloroquine-resistant (ENT36) strains of *Plasmodium falciparum*. Out of 16 extracts, 12 were active against ENT36 strain while seven were active against K67 strain, that is, IC50 < or = 50 micrograms/ml. The most active extracts on both strains were those of leaves of *K. reticulata* with IC50 < or = 10 micrograms/ml. The stem bark of *Terminalia spinosa* Engl. (Combretaceae) and the stems of *Dioscorea brazzae* Cogn. (Melastomataceae) had IC50 < or = 10 micrograms/ml for strains K67 and ENT36, respectively. A phytochemical analysis of these plants revealed the presence of different classes of primary and secondary metabolites⁸².

6.5. Antinociceptive activity

K. reticulata is used in folk medicinal practices of Bangladesh as an antinociceptive (reducing sensitivity to painful stimuli). The study was to investigate the antinociceptive activity of methanolic leaf extract of *K. reticulata* in Swiss albino mice. A model of acetic acid-induced gastric pain in mice was utilized to determine the antinociceptive effects. In writhing assays induced by acetic acid, the methanolic leaf extract showed significant inhibition compared to control. The maximum writhing inhibition (39.1%) was found at a dose of 200 mg extract/kg body weight which, however, was lesser than that of the antinociceptive drug, aspirin (50.4%), when used at a dose of 200 mg/kg body weight. Maximum tolerance (35.0%) was shown at 400 mg extract/kg body weight, compared to that of the standard drug, glibenclamide at 10 mg/kg body weight (57.8%). The methanol extract of *K. reticulata* leaves had beneficial effects as a pain reliever which validates the use of the plant in Bangladesh folk medicinal practices as a treatment for pain¹⁰⁶.

6.6. Analgesic activity

The petroleum ether, ethyl acetate, and methanol extracts of *K. reticulata* were chosen for pharmacological screening. In the acetic acid-induced writhing test, the ethyl acetate extract in doses of 150 and 300 mg/kg showed 51.23 and 65.12% inhibition of writhing, respectively. A significant elongation of tail-flick time was evident both in the ethyl acetate and the methanol extracts (42.38 and 60.49%) only at the 300 mg/kg dose level. The extracts of *K. reticulata* possess significant analgesic properties¹¹².

6.7. Antiviral activity

K. reticulata is a reputed medicinal plant used in Bangladesh and India for the treatment of gastric complaints including colic, constipation etc. The study was to evaluate the antiviral activity of this plant against hepatitis B virus (HBV) using HBsAg positive serum sample from hepatitis B virus infected patients. Two semi-purified organic fractions designated as PR1 and PR2 of the fat free ethanolic extract were tested at both lower and higher concentrations (20 mg/ml and 40 mg/ml respectively) for their anti hepatitis B virus surface antigen (anti-HBsAg) activity using an *in vitro* system by Reverse Passive Haemagglutination (R-PHA) method. SERODIA-Anti-HBsAg Diagnostic kit was used for detection of Anti-HBsAg antibody. Both fractions showed anti-HBsAg activity. But it was found the fractions have

little inhibitory action on HBsAg at lower concentration whereas at the higher concentration they have prominent inhibitory action on the antigen. To the best of our knowledge this is the first report of the antiviral activity of *K. reticulata* against HBV. The Anti-HBsAg activity observed by the fractions may be due to the binding of the agents with the antibody binding sites present on HBsAg. Thus the fractions might be the potential sources of the active principles responsible for antiviral activity⁵³.

6.8. Anti-inflammatory activities

To study pharmacognostic evaluation and anti-inflammatory activity of *K. reticulata* fruit. The hydroalcoholic extract of ripe fruits and petroleum ether, ethyl acetate, and methanolic extracts of aerial parts was also screened for anti-inflammatory activity by carrageenan induced left hind paw oedema in rat at doses of 200 mg/kg and 400 mg/kg, orally^{112,113}.

6.9. Insecticidal activities

Chemical constituents as well as insecticidal activity of the crude methanol extract from the leaves of *K. reticulata*. Were investigated. (5R*,6R*)-4, Dimethoxycarbonyl-5-[2',3',4'-trihydroxy-6'-(methoxycarbonyl) phenyl]-5,6-dihydro-2H pyran-2-one along with 3,4,3'-tri-Omethylellagic acid, and methyl gallate were isolated from the dichloromethane extract. Determination of their structures was based on spectroscopic analysis. Compound 1 possessed a very weak insecticidal activity against *Spodoptera frugiperda* (Sf9) with an IC50 value of 27.27 μ g/mL⁷⁷.

6.10. Hepatoprotective activity

Two partially purified organic fractions designated by PR1 and PR2 of the fat free ethanol (95%) extract of aerial parts of *K. reticulata* were tested for the hepatoprotective activity in rats against CCl4-induced liver damage. The rats receiving the fractions showed promising hepatoprotective activity as evident from significant changes of pentobarbital-induced sleeping time, changes in serum levels of sGPT, sGOT, sALP and bilirubin and also from histopathological changes as compared to CCl4-intoxicated rats⁸⁴.

6.11. Toxicity

The hexane and methanol extracts of *K. reticulata* leaves were inactive in the *in vitro* cytotoxicity study. The dichloromethane extract showed IC50 values of 11.89 μ g/mL in KB and 16.08 μ g/mL in MCF7, but was inactive in the NCI-H187 human tumor cell line. The dichloromethane extract was then further purified using column chromatography. Two other compounds isolated from the dichloromethane extract were identified as 3,4,3'-tri-Omethylellagic acid, and methyl-3,4,5-trihydroxybenzoate (methyl gallate) by the spectrometric methods⁷⁷.

CONCLUSION

The scientific research on *K. reticulata* suggests a huge biological potential of this plant. It is strongly believed that detailed information as presented in this review on the phytochemical and various biological properties of the

plant might provide detailed evidence for the use of this plant in different diseases. It has various traditional uses that differ from one country to another whereas some important uses for the treatment of diabetes, dysentery, fever, gonorrhoea, syphilis and stomachache and skin diseases are almost common. *K. reticulata*, a potent herbal medicine is attracting researchers since many decades due to its high therapeutic value. There is a demand to standardize the properties of *K. reticulata* and their detailed clinical trials. Pharmacological and chemical studies have demonstrated that the extracts of the plant possess various pharmacological actions viz. antiviral, anti-inflammatory antimicrobial, antidiabetic, hepatoprotective and antioxidants, antihepatitis B, and antiplasmoidal. Owing to the impressive preclinical therapeutic potential, the plant extracts have been evaluated in human trials for the treatment of HIV, AIDS, hypertension and diabetes. *K. reticulata* is reported to contain lignans, flavonoids, polyphenols, triterpenes, sterols and alkaloids. The phytochemicals exhibited different structural characteristics with various pharmacological actions. The lignans glycosides isolated from *K. reticulata* significantly inhibited alloxan induced diabetic mice. The presence of high contents of phenolic compounds in the aqueous extract of *P. reticulatus* was found to have strong and significant antioxidant activity. Triterpenoids isolated from aqueous and methanolic extract of leaves, stem bark and root bark of *K. reticulata* exhibited very high antioxidant activity. Phytochemical and phytoanalytical information appears to be very useful

and might lead to development of novel agents for various disorders and could be explored further for commercial purposes. However, there are many aspects, which need to be explored like well-controlled clinical trials using large sample size (large number of patients) for the efficacy and toxicity, the mechanism of biological activity of active constituents present in the plant. On the basis of biological activities of *K. reticulata*, crude extract and derived phytochemicals and their uses as pharmacological agents in traditional and modern research are possible but will first require more clinical trials and product development. The current evidence is largely limited to correlation between identified phytochemicals and mode of action for any pharmacological activity. Mechanism of action studies are expected to lead the way in the discovery of new agents with improved and intriguing pharmacological properties. This could be achieved by molecular modeling studies involving interaction of bioactive phytochemicals from *K. reticulata* with their respective molecular targets and the extract of *K. reticulata* could be further explored in the future as a source of useful phytochemicals for the pharmaceutical industry.

ACKNOWLEDGEMENT:

The authors are acknowledged to N.B.R.I. Lucknow (U.P), India. Providing to all literature Survey and also thanks to Institute of Pharmacy, Department of Pharmacognosy Bundelkhand University Jhansi (India), to help and supporting all time for preparation of manuscript.

REFERENCES:

- [1] Warrier PK, Nambiar VPK, Ramankutty C. Indian Medicinal Plants-a compendium of 500 species, *Orient Longman Ltd, Madras*. 2003; **4**: 264-265.
- [2] Rav MRR, Siddiqui HH. Screening of Indian plants for biological activity. *Indian J Exp Biol* 1964; **2**: 49.
- [3] Anjenenlu, ASR, Jagonmohon R, Subramanyam C. Isolation and structural elucidation of three new lignans from the leaves of *Phyllanthus niruri* Linn. *Tetrahedron* 1973; **29**: 1291.
- [4] Yoshida T, Seno K, Takama Y, Okada T. Tannins and related polyphenols of Euphorbiaceous plants. *Phytochemistry* 1982; **21**:1180.
- [5] Sherlock S. (1981). *Diseases of the liver and Biliary System*. Blackwell Scientific Publication, Oxford, London, Edinburgh, Boston, Melbourne, 6th edition, p. 244.
- [6] London WT and Blumberg BS. 1982. *Hepatology*. **2**, 105-145.
- [7] Satyavati GV, Gupta AK. *Medicinal Plants of India*. New Delhi, 1987; **2**: 345.
- [8] Unander DW, Herbert HB, Connell JL, Robert TM. Cultivation of *Phyllanthus amarus* and evaluation of variable potentially affecting yield and the inhibition of viral DNA polymerase. *Economic Botany* 1993; **47**: 79-88.
- [9] Jain R, Nagpal SI. Chemical Constituents of the roots of *Kirganelia reticulata*. *J Indian Chem Soc* 2002; **79**: 776-777.
- [10] Joshi KC, Singh P, Mehra A. Crystalline components of the roots of *Phyllanthus reticulatus*. *J Indian Chemical Soc* 1981; **58**: 102-103.
- [11] Jamal A, Nasser WA, Yaacob LBD. Triterpenoids from *Phyllanthus Reticulatus*, *Int Confer Appl Chem Pharma Sci* 2012; 19-20
- [12] Sheng ML, Xiong JM, Heng CT, Wei S, Zhu DY, Chemical Constituents of *Phyllanthus reticulatus*, *Verlag Helvetica Chimica Acta* 2010; **93**: 2276-2280.
- [13] Venkata Raju RR, Narasimhadu CL. Phytochemical constituents of *Phyllanthus* species (Euphorbiaceae) from Eastern Ghats of Andhra Pradesh, India. *Int Res J Pharma* 2012; **3**(5): 184-200.
- [14] Kathriarachchi H, Samuel R, Hoffmann P, Mlinarec J, Wurdack KJ. et al. Phylogenetics of the tribe *Phyllantheae* (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS and plastid *matK* DNA sequence data. *American J Botany* 2006; **93**: 637-655.
- [15] Kathriarachchi H, Hoffmann P, Samuel R, Wurdack KJ, Chase MW. Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid *atpB*, *matK*, 3' *ndhF*, *rbcL* and nuclear *PHYC*), *Molcul Phylogene Evolu* 2005; **36**: 112-134.
- [16] Shruthi SD, Ramachandra YL, Padmalatha RS, Shetty VA. Antibacterial potential of leaf extracts from *Kirganelia reticulata* Baill. *Int J Pharma Res develop* 2010; **2**(6): 1-7.
- [17] Whitmore TC. (1972)Tree Flora of Malaya – A Manual for Foresters Vol 1&2. Longman, Malaysia.
- [18] Turner, IM. A catalogue of the vascular plants of Malaya. Gardens' Bulletin Singapore. 1995; **47**(2):642-655.
- [19] Kritikar KR, Basu BD. (1980) *Indian Medicinal Plants*. Singh B, Singh MP, 2nd ed. Dehradun, India, pp. 2219–2220.
- [20] Kritikar KR, Basu BD. (2003) *Indian medicinal plants* 2nd ed vol. 9, International Book Distributors, Dehradun, pp. 3060.
- [21] Gopalakrishna KB. (2003) Flora of Udupi, 1st ed., Indian Naturalist, Udupi. pp. 578.
- [22] Müller J. (1866) Euphorbiaceae excl. Euphorbieae. pp. 189-1288 in *Prodromus systematis naturalis regni vegetabilis* 15th ed. Candolle Ad. **2**: 1143-1146. Paris: Masson.
- [23] Smith AR. (1987) *Euphorbiaceae (Part)*, in *Flora of tropical East Africa*; R.M. Polhill. Rotterdam and Boston :Balkema .
- [24] Welzen VPC. (1997). *Malesian Euphorbiaceae Newsletter* 6. Leiden: Rijksherbarium / Hortus Botanicus Leiden, the Netherlands. Available online at <http://www.nationaalherbarium.nl/euphorbs/> Newsletter/Newsletter6.htm.

[25] Govaerts R, Frodin DG, Radcliffe-Smith, A. (2000) World checklist and bibliography of Euphorbiaceae and Pandanaceae; Kew: *The Royal Botanical Gardens*.

[26] Balakrishnan NP, Chakrabarty T. (2007) The family Euphorbiaceae in India: Bishen Singh Mahendra Pal Singh, Dehradun.

[27] Li PT, Gilbert MG. (2009) *Phyllanthus* pp. 180-190 in *Flora of China* vol. 11, ed. Wu ZY, Raven PH, Hong DY. Beijing: Science Press; St Louis: Missouri Botanical Garden Press. Online at http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=125179.

[28] Nielsen HLB. (1979) Comments on the distribution and evolution of the genus *Phyllanthus* (Euphorbiaceae), p. 277-290. In: K. Larsen and L.B. Holm- Nielsen (Eds.). *Tropical botany*. Academic Press, New York.

[29] Webster GL. (1956-58) A monographic study of the West Indian species of *Phyllanthus*. *J. Arnold Arbor.* 37:91-122, 217-268, 340-359; 38:51-80, 170-198, 295-373;39:49-100, 111-212.

[30] Shi-Xiao L, Hans-Joachim E, Dianxiang Z, Susanne SR. Nuclear ITS Sequences Help Distangle *Phyllanthus reticulatus* (Phyllanthaceae), an Asian Species not Occurring in Africa, but Introduced to Jamaica. *Systematic Botany* 2011; **36**(1):99-104.

[31] Fawcett W. The public gardens and plantations of Jamaica. *Botanical Gazette (Chicago, Ill.)* 1897; **24**: 345 -369.

[32] Morris D. Botanical institutions of Jamaica . *Bulletin of Miscellaneous Information (Royal Gardens, Kew)* 1906; 61-68.

[33] Rizk AFM. The chemical constituents and economics plants of the Euphorbiaceae. *Botanical J Linnean Soci* 1987; **94**: 293-326.

[34] Petit GR, Cragg GM, Suffness M. Phyllanthostatin 1-phyllanthoside prthoacid rearrangement. *Journal Org Chem* 1985; **50**: 5060-5063.

[35] Venkateswaran PS, Millman I, Blumberg BS. Effects of an extract from *Phyllanthus niruri* on hepatitis and woodchuck hepatitis viruses: *in vivo* and *in vitro* studies. *Proceedings of the national Academy of science U.S.A.* 1987; **84**: 274-278.

[36] Blumberg BS, Millman I, Venkateswaran PS, Thyagarajan SP. Hepatitis B virus and hepatocellular carcinoma – treatment of HBV carriers with *Phyllanthus amarus*. *Cancer Detection and Prevention* 1989; **14**: 195-201.

[37] Thyagarajan SP, Subramanian S, Thirunelasundari T, Venkateswaran PS, Blumberg BS. Effect of *Phyllanthus amarus* on chronic carriers of Hepatitis B virus. *Lancet* 2nd 1988; 764-766.

[38] Uiso FC, Kayombo EJ, Mbwambo ZH, Mgonda Y, Mahunnah RLA, Moshi MJ. Traditional healer's knowledge on HIV/AIDS and implications to the management and control of the disease in Arusha, Tanzania. *Tanzania Health Research Bulletin* 2006; **8**(2): 95-100.

[39] Kala CP, Farooque NA, Dhar U. Prioritization of medicinal plants on the basis of available knowledge, existing practices and use value status in Uttarakhand, India. *Biodiver Conserva* 2004; **13**: 453-469.

[40] Scheinman D. 2002. The ancient and modern worlds unite to fight HIV/AIDS in Tanga, Tanzania. *Science in Africa* September 2002. www.scienceinafrica.co.za/2002/september/tanga.htm.

[41] UNAIDS/WHO. 2006. *AIDS Epidemic Update*. December 2006. Joint United Nations Programme On HIV/AIDS and the World Health Organization, Geneva, Switzerland. http://data.unaids.org/pub/epireport/2006/2006_epiupdate_en.pdf.

[42] TACAIDS, NBS, and ORC Macro. 2005. Tanzania HIV/ AIDS indicator survey 2003-04. Tanzania Commission for AIDS (TACAIDS), National Bureau of Statistics (NBS) [Tanzania] and ORC Macro, Calverton, Maryland.

[43] Kisangau DP, Lyaruu HVM, Hosea KM, Joseph CC. Use of traditional medicines in the management of HIV/AIDS opportunistic infections in Tanzania: A case in the Bukoba rural district. *Ethnobiol Ethnomed* 2007; 3:29.

[44] (NIMR) National Institute for Medical Research. 2004. *TB/HIV/Malaria: Challenges to the health systems in Africa in the era of globalization*. Proceedings of the 19th Annual joint scientific conference of the National Institute for Medical Research, Arusha International Conference Centre, March 15-17, 2004, Arusha, Tanzania.

[45] (NIH) National Institute of Health. 1994. *Fact Sheet: HIV/AIDS and Alternative Therapies*. Office of Alternative Medicine - Fact Sheet No. 7 - June 1994. www.aegis.com/pubs/cdc_fact_sheets/1994/cdc94033.html.

[46] Mhame PP, Nyigo VA, Mbogo GP, Wiketye VE, Kimaro G, Mdemu A et al.(2004). *The management of HIV/AIDS-related conditions using a traditional herbal preparation-muhanse m4® in Tanzania: A case study in Dar- es-Salaam, Tanzania*. National institute for medical research, Traditional Medicine Research Department, Dar-es-Salaam, Tanzania.

[47] (TUROT) The United Republic of Tanzania. (2003). *Kagera Region Socioeconomic Profile*. 2nd edition. National Bureau of Statistics (NBS) and Kagera Regional Commissioner's Office, Dar es Salaam.

[48] Kisangau DP, Herrmann TM, Herbert VM, Lyaruu KMH, Joseph CC, Zakaria HM et al. Traditional knowledge, Use Practices and Conservation of Medicinal Plants for HIV/AIDS care in Rural Tanzania. A Journal of plants, people and Applied Research, (*Ethnobotany Research & Applications*) 2011; **9**: 43-47.

[49] Jayaweera DMA. (1980) Medicinal Plants (Indigenous and Exotic) Used in Ceylon. Part 2. Cactaceae- Fagaceae. National Sciences Council of Sri Lanka, Colombo, pp. 228-231.

[50] Pangthong A, Kanjanapothi D, Taylor WC. Ethnobotanical review of medicinal plants from Thai traditional books, part 1st. Plants with anti-inflammatory, anti-asthmatic and antihypertensive properties. *J Ethnopharmacol* 1986; **18**: 213-228.

[51] Ghani A, (2003) *Medicinal Plants of Bangladesh with Chemical Constituents and Uses*, 2nd ed. Dhaka, Asiatic Society of Bangladesh, pp. 345.

[52] Poopatanapong L, Wongprasert T (1987): *Thai Medicinal Plants*, Part 5. Bangkok, Chutima Press, pp. 710.

[53] Das BK, Shohel M, Pavel AM, Bhattacharjee R, Das B, Yasmin T et al. Anti Hepatitis B Viral Activity of *Phyllanthus reticulatus*. *Bangladesh Pharmaceutical Journal*, 2011; **14**(1): 11-14.

[54] Nadkarni AK. Indian Materia Medica, Popular Prakashan, Bombay. 1976; **1**: pp. 948-949.

[55] Nandkarni KM. Indian Materia Medica vol. 2 (1982), p. 948.

[56] Ainslie W. (1826b) *Materia Indica*. Vol.2. Longman, Rees, Orme, Brown and Greene, London, pp. 239-241.

[57] Dymock WC. (1886) *The Materia Medica of Western India*. Bombay, pp. 699-704.

[58] Watt G. (1892) *A Dictionary of the Economic Products of India*, Vol. 6, Part 1. W.H Allen & Co., London, pp. 217-224.

[59] Dragendorff G. (1898) *Die Heilpflanzen der Verschiedenen Volker und Zeiten*. Verlag von Ferdinand Enke, Stuttgart, pp. 373-374.

[60] Caius JF. Medicinal and poisonous spurgeons of India. *Journal of the Bombay Nat Hist Soci* 1939; **40**: 265-313.

[61] Nadkarni KM, Nadkarni AK. (1954) *Indian Materia Medica*, Vol. 1. 3rd. Edn. Popular Book Depot, Bombay, pp.481-484, 947-949.

[62] Kirtikar KR. Basu BD. (1975). Indian Medicinal plants. Vol. 3. 2nd Edn. Jayyed Press, New Delhi, pp. 2217-2227.

[63] Kapur SK. (1983) Medico-botanic survey of medicinal and aromatic plants of Mawphlang (Shillong). *Indian Drugs* 21,1-5. Abstract T-9303 from Napralert, college of pharmacy, University of Illinois-Chicago, Chicago, IL.

[64] The Wealth of India, Raw Materials, New Delhi: CSIR, NISCOM. Vol. III: 34-36 (1969).

[65] Verdcourt B, Trump, EC. (1969) *Common Poisonous Plants of East Africa*, Collins, London, pp. 58-59.

[66] Kokwaro JO. (1976) *Medicinal Plants of East Africa*. East African Literature Bureau, Kampala, pp. 95-97.

[67] Sawhney AN, Khan MR, Ndaalio G, Nkunya MHH, Wevers H. Studies on the rationale of African traditional medicine.

Part 3. Preliminary screening of Medicinal plants for anti-fungal activity. *Pakistan J Scientific Indus Res* 1978; **27**: 193-196.

[68] Haerdi F. (1964) Native Medicinal Plants of Ulanga District of Tanganyika. Dissertation, Verlag fur Recht und Gesellschaft, University of Basel. Abstract A-5550 from NAPRALERT, College of Pharmacy, University of Illinois-Chicago, Chicago, IL.

[69] Begum T, Rahman MS, Rashid MA. *Dhaka Univ. J. Pharm. Sci.* 2006; **5**: 21.

[70] João BC, Santos ARS, Filho VC, Yunes RA. A Review of the Plants of the Genus *Phyllanthus*: Their Chemistry, Pharmacology, and Therapeutic Potential, John Wiley & Sons, Inc., *Med Res Rev* 1998; **18**(4): 225-258.

[71] Vaghasiya Y, Dave R, Chanda S. Phytochemical Analysis of Some Medicinal Plant from Western Region of India., *Res J Med Plant* 2011; **5**(5): 567-576.

[72] Shruthi SD, Rajeswari A, Govardhana Raju K, Pavani A, Vedamurthy AB, Ramachandra YL. Phytochemical and antioxidant analysis of leaf extract from *Kirganelia reticulata*. *Int J Pharmacy Pharma sci* 2012; **4**(3): 608-612.

[73] Chang CC, Lien YC, Liu KC, Lee SS. Lignans from *Phyllanthus urinaria*. *Phytochemistry* 2003; **63**: 825-833.

[74] Gopinath SM, Rakesh CK, Narasimha TP, Murthy KS, Dayananda. Preliminary phytochemical evaluation of leaf extracts of *Gymnema sylvestre*, *Phyllanthus amarus*, *Phyllanthus reticulatus* of Siddarabettu, Tumkur district, Karnataka, *Int J Pharmacog Phytochem Res* 2012; **4**(3): 109-111.

[75] Jain R, Shahla A, Arora R, Jain SC. Phytochemical and Bioactivity of *Kirganelia reticulata*. *Med Aromatic Plant Sci* 1998; **20**: 740-741.

[76] Hong SL, Wang CY, Chen CK, Lee SS, Chemical Investigation of *Phyllanthus reticulatus* by HPLC-SPE-NMR and Conventional Methods. *Phytochem Anal* 2007; **18**: 251-255.

[77] Pojchajongdee N, Sotanaphun U, Limsirichaikul S, Poobrasert O. Geraniinic acid derivative from the leaves of *Phyllanthus reticulatus*. *Pharma Biol* 2010; **48**(7): 740-744.

[78] Hui WH, Li MM, Wong KM (in part), A new compound, 21 α -hydroxyfriedel-4(23)-en-3-one and other triterpenoids from *Phyllanthus reticulatus*. *Phytochem* 1976; **15**(5): 797-798.

[79] Ma JX, Lan MS, Qu SJ, Tan JJ, Luo HF, Tan CH et al. Arylnaphthalene lignan glycosides and other constituents from *Phyllanthus reticulatus*. *J Asian Nat Prod Res* 2012; 0(0): 1-5.

[80] Neves AC, Neves MTC. Some determinations on the leaves of *Phyllanthus reticulatus* Poir. of Mozambique. *Bol Esc Farm Univ Coimbra* 1966; **25**: 22.

[81] Sangkasila R. 1998. Chemical Constituents and Some Bioactivities of Stem of *Phyllanthus reticulatus* Poir. MS Thesis. Bangkok, Ramkhamhaeng University.

[82] Omulokoli E, Khan B, Chhabra SC. Antiplasmodial activity of four Kenyan medicinal plants. *J Ethnopharmacol* 1997; **56**: 133-137.

[83] Kumar S, Kumar D, Deshmukh RR, Lokhande PD, More SN, Rangari VD. Antidiabetic potential of *Phyllanthus reticulatus* in alloxan-induced diabetic mice. *Fitoterapia* 2008; **79**: 21-23.

[84] Das BK, Bepary S, Bidyut K, Datta AK, Chowdhary A, Ali MS, Rouf ASS. Hepatoprotective activity of *Phyllanthus reticulatus*. *Pak J Pharm Sci* 2008; **21**(4): 333-337.

[85] Zhong XN, Otsuka H, Ide TE, Hirata TS, Takeda Y. *Phytochem* 1999; **52**: 923.

[86] Valcic S, Burr JA, Timmermann BN, Liebler DC, *Chem Res Toxicol* 2000; **13**: 801.

[87] Tian JM, He HP, Di YT, Yang XW, Gao ZL, Hao XJ. *J Asian Nat Prod Res* 2008; **10**: 228.

[88] Zhou YZ, Chen H, Qiao L, Lu X, Hua HM, Pei YH. *Helv Chem Acta* 2008; **91**: 1277.

[89] Yoshikawa K, Mimura N, Arihara S. Isolation and Absolute Structures of Enantiomeric 1,2-Bis (4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-O-Glucosides from the Bark of *Hovenia trichocarpa*. *J Nat Prod* 1998; **61**(9): 1137-1139.

[90] Ishikawa T, Sega Y, Kitajima J. *Chem Pharm Bull* 2001; **49**: 840.

[91] Yu Q, Otsuka H, Hirata E, Shinzato T, Takeda Y. Turpinionosides A-E: megastigmane glucosides from leaves of *Turpinia ternata* Nakai., *Chem Pharm Bull (Tokyo)*. 2002; **50**(5): 640-644.

[92] Chern JW, Lee HY, Huang M, Shish FJ. A novel and efficient synthesis of isoguanosine. *Tetrahedron Lett* 1987; **28**: 2151.

[93] Lan MS, Ma JX, Tan CH, Wei S, Zhu DY, Chemical Constituents of *Phyllanthus reticulatus*, *Verlag Helvetica Chimica Acta* 2010; **93**: 2276-2280.

[94] Pakrashi SC, Bhattacharyya J, Mookerjee S, Samatan TB, Vorbrüggen H. Studies on Indian medical plants -XVIII: The non-alkaloidal constituents from the seeds of *Alangium lamarckii* Thw. *Phytochem* 1968; **7**(3): 461-466.

[95] Akihisa T, Kojima S, Yokota T, Tamura T. 24-methylene-25-methylcholesterol and both C-24 epimers of 24-ethyl-22-dehydrocholesterol in a freshwater green alga *Hydrodictyon reticulatum*. *Phytochem* 1991; **30**(12): 3621-3624.

[96] Zhao M. (2005). Phytochemical studies on medicinal plants, *Alisma orientale* and *Desmodium styracifolium*. Hongkong: Chinese University of Hong Kong Press, 675-680.

[97] Jamal AK, Yaacob WA, Laily B, Din A. Chemical Study on *Phyllanthus reticulatus*. *J Phys Sci* 2008; **19**(2): 45-50.

[98] Seger, CG, Tseng LH, Spraul M, Girtler A, Sturm S, Stuppner H. LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: identification of isobaric iridoid glycoside regioisomers from *Harpagophytum procumbens*. *Anal Chem* 2005; **77**: 878-885.

[99] Wang CY, Lee SS. Analysis and identification of lignans in *Phyllanthus urinaria* by HPLC-SPE-NMR. *Phytochem Anal* 2005; **16**: 120-126.

[100] Bieri S, Varesio E, Veuthey JL, Munoz O, Tseng LH, Braumann U, Spraul M, Christen P. Identification of isomeric tropane alkaloids from *Schizanthus grahamii* by HPLC-NMR with loop storage and HPLC-UV-MS/SPE-NMR using a cryogenic flow probe. *Phytochem Anal* 2006; **17**: 78-86.

[101] Avirutnan W, Pongpan A. The antibacterial activity of some Thai flowers and plants. *Mahiodol Univ J Pharma Sci* 1983; **10**: 81-86.

[102] Bhakuni DS, Dhar ML, Dhar MN, Dhawan BN, Gupta B, Srimali RC. Screening of Indian plants for biological activity. Part 3rd. *Indian J Exp Biol* 1971; **9**: 91-102.

[103] Khan MR, Ndaalio G, Nkunya MHH, Wevers H. Studies on African medicinal plants. Part 1st. Preliminary screening of Medicinal plants for antibacterial activity. *Planta Medica Suppl* 1980; **40**: 91-97.

[104] Khan MR, Ndaalio G, Nkunya MHH, Wevers H. Studies on the rationale of African traditional medicines. Part 2nd. Preliminary screening of Medicinal plants for anti-gonococci activity. *Pakistan J Scient Indus Res* 1978; **27**: 189-192.

[105] Kumar S, Kumar D, Deshmukh RR, Rangari VD. Hypoglycemic activity of roots of *Phyllanthus reticulatus* in alloxan induced diabetic mice. *Int J Plant Sci* 2007; **2**(1): 184-187.

[106] Rahmatullah M, Khokon CG, Mamun AA, Hossain MT, Ahmed S, Rahman MA, Eva B, Rahman S, Chowdhury MH. A Pharmacological Study on Antinociceptive and Anti-hyperglycemic Effects of Methanol Extract of Leaves of *Phyllanthus Reticulatus* Poir. In Swiss Albino Mice. *Adv Nat Appl Sci* 2010; **4**(3): 229-232.

[107] Sankannavar SH, Patil CG. In Vitro studies on diversity of antibacterial activity in some species of *Phyllanthus* for human pathogenic bacteria. *Asian J Exp Biol* 2012; **3**(3): 607-612.

[108] Shruthi SD, Rai PS, Ramachandra YL. In vitro antibacterial activity of *Kirganelia reticulata* Baill. Against methicillin-resistant *Staphylococcus aureus*. *Pharmacophore* 2010; **1**(2): 123-131.

[109] Maruthappana V, Shreeb KS. *In vitro* and *in vivo* antioxidant activity of *Phyllanthus reticulatus*. *Drug Invention Today* 2010; **2**(6): 303-307.

[110] Aswatha Ram HN, Shreedhara CS, Gajera FP, Zanwar SB. *In Vitro* Free Radical Scavenging Potential of Methanol Extract of Entire Plant of *Phyllanthus Reticulatus* Poir., *Pharmacologyonline* 2008; **2**: 440-451.

[111] Maruthappan V, Shree KS. A report on the antioxidant activity of the powder of the entire plant of *Phyllanthus reticulatus* Poir. *Int J Green Pharmacy* 2010; 265-269.

[112] Saha A, Masud MA, Bachar SC, Kundu JK, Datta BK, Nahar L, Sarker S. The Analgesic and Anti-Inflammatory Activities of the Extracts of *Phyllanthus reticulatus*. *Pharmaceu Biol* 2007; **45**(5): 355-359.

[113] Kumar S, Sharma S, Kumar D, Kumar T, Arya R, Kumar K. Pharmacognostic study and anti - inflammatory activity of *Phyllanthus reticulatus* Poir. Fruit. *Asian Pac J Trop Dis* 2012; S332-S335.

[114] Dalziel JM. (1937) The Useful Plants of West Tropical Africa. Secretary of state for the colonies, Crown Agents for the colonies, London, pp 156-158. Reprinted 1948.

[115] Lewis WH, Elwin LMPF. (1977) Medicinal Botany: Plants Affecting Man's Health. John Wiley and sons, New York, pp. 38, 234.

[116] Watt JM, BreyerBrandwijk MG. (1962) The Medicinal and Poisonous Plants of Southern Africa, 2nd Edn. E & S, Livingstone, Edinburgh, pp. 426-428.

[117] Watt JM, BreyerBrandwijk M.G. (1932) The Medicinal and Poisonous Plants of Southern Africa, E & S, Livingstone, Edinburgh, p. 99.

[118] Irvine FR, (1961) Woody Plants of Ghana. Oxford University Press, London, pp.246-247.

[119] Broun AF, Massey RE. (1929) Flora of the sudan. Sudan Government office, Wellington House, Buckingham Gate, London. Cited in: Irvine (1961), Duke and Wain (1981).

[120] Dale IR, Greenway PJ. (1961) Kenya Trees and Shrubs. Buchanan's Kenya Estates, Nairobi and Hatchards, London, p. 215.

[121] Morgan WTW. Ethnobotany of the Turkana: use of plants by a pastoral people and their Livestock in Kenya. *Economic Botany* 1981; **35**: 96-130.

[122] Hedberg I, Hedberg O, Madai PJ, Mahigeni KE, Mshiu EN, Samuelsson S. Inventory of Plants used in traditional medicine in Tanzania. 2. Plants of the families Delliaceae-Opiliaceae. *J Ethnopharmacol* 1983; **9**: 105-127.

[123] Chhabra SC, Uiso FC, Mshiu EN. Phytochemical screening of Tanzanian medicinal plants. I. *J Ethnopharmacol* 1984; **11**: 157-179.

[124] Altschul Siri von Reis (1973) Drug and Foods from little-known Plants. Notes in Harvard University Herbarium. Harvard University Press, Cambridge, Massachusetts, pp. 143-145.

[125] Quisumbing E. (1951) Medicinal Plants of the Philippines. Technical Bulletin 16, Philippines Department of Agriculture and Natural Resources, Manila, pp. 527-528.

[126] Padua LSD, Lugod GC, Pancho JV. (1978) Handbook on Philippines Medicinal Plants, Vol. 2. Documentation and Information Section, University of the Philippines, Los Banos, p. 15.

[127] Perry LM, Metzger J. (1980) Medicinal plants of east and southeast Asia: attributed Properties and Uses. MIT Press, Cambridge, MA, pp.149-151.

[128] Lassak EV, McCarthy T. (1983) Australian Medicinal Plants. Methuen Australia, Sydney, pp.125, 138-139, 190.

[129] Jayaweera DMA. (1980) Medicinal Plants (Indigenous and Exotic) Used in Ceylon. Part 2. Cactaceae- Fagaceae. National Sciences Council of Sri Lanka, Colombo, pp. 228-231.

[130] Dymock, WC. (1886) The Materia Medica of Western India. Bombay, pp. 699-704.

[131] Petelot A. (1954) Plantes Medicinales du Cambodge, du Laos et du Vietnam. Tome 3(Americantacees a Selaginellacees). Centre de Recherches de Sciences et Technologie, Saigon, pp. 112, 114.

[132] Planchon G, Collin E. (1896) Drogues Simples d'Origine Vegetale. Doin, Paris, p.342.

[133] Burkill IH, Birtwistle W, Foxworthy FW, Scrivenor JB, Watson JG. (1966) A Dictionary of the Economy Products of the Malay Peninsula, Vol.2 Ministry of Agriculture and Cooperatives, *Government of Malasiya*, Kuala Lumpur, pp. 1747-1749.

[134] Chopra RN, Chopra IC, Verma BS. (1969) Supplement to glossary of Indian Medicinal Plants. Publications and Information Directorate, New Delhi. Cited in: Rizk (1987).

[135] Watt G. (1892) A Dictionary of the Economic Products of India, Vol. 6, Part 1. W.H Allen & Co., London, pp. 217-224.