

Available online on 15.10.2024 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics


Open Access to Pharmaceutical and Medical Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Review Article

Coating Tablets, Compositions, Recent Advancement and Current Status: A Comprehensive Review

Raj Kumar Mandal *1 D, Paarth Saini 1 D, Rahul Pal 2 D, Prachi Pandey 3 D, Anshita Dubey 1 D

- 1*Research Scholar, ISF College of Pharmacy (ISFCP), Moga, GT Road, 142001, Punjab, India.
- ² Assistant Professor, Department of Pharmaceutics, ISF College of Pharmacy (ISFCP), Moga, GT Road, 142001, Punjab, India.
- ³ Assistant Professor, Faculty of Pharmaceutical Sciences, RAMA University, Kanpur, UP, India

Article Info:

Article History:

Received 28 July 2024 Reviewed 23 Aug 2024 Accepted 26 Sep 2024 Published 15 Oct 2024

Cite this article as:

Mandal RK, Saini P, Pal R, Pandey P, Dubey A, Coating Tablets, Compositions, Recent Advancement and Current Status: A Comprehensive Review, Journal of Drug Delivery and Therapeutics. 2024; 14(10):182-195

DOI:

http://dx.doi.org/10.22270/jddt.v14i10.6809

*Address for Correspondence:

Mr. Raj Kumar Mandal, Research Scholar, ISF College of Pharmacy (ISFCP), Moga, GT Road, 142001, Punjab, India.

Abstract

Conventional Tablets are solid oral dosage forms that contain an active pharmaceutical ingredient (API) along with excipients. These tablets are typically prepared through direct compression, wet granulation, or dry granulation. They are designed to disintegrate and release the API in a controlled or immediate manner, depending on the formulation. Tablet coating is a vital process in pharmaceutical technology, designed to improve the therapeutic efficacy, patient compliance, and stability of oral dosage forms. This comprehensive review explores the key aspects of tablet coating, including the types, compositions, and recent advancements. Coating materials such as polymers, plasticizers, and pigments are discussed in detail, along with their roles in controlling drug release, masking taste, and enhancing aesthetic appeal. The recent advancements focus on innovative coating techniques like film coatings, enteric coatings, and the application of nanotechnology to improve precision and functionality. Additionally, the current status of tablet coating is analyzed in terms of regulatory compliance and industry trends. The review highlights the future potential of personalized coatings, smart coatings, and environmentally friendly approaches, showcasing the evolving landscape of tablet coating technologies/pans in modern pharmaceutical manufacturing and development.

Keywords: Table coating; dosage form; enteric; coating pans; formulation; advancement; polymers.

1. INTRODUCTION

Tablet coating is a crucial technique in pharmaceutical development, significantly impacting the performance, stability, and aesthetic appeal of oral dosage forms. Over the years, coating technologies have evolved from traditional sugar coatings to more sophisticated approaches, such as film and enteric coatings, designed to modify drug release and enhance patient compliance

¹. Coating serves various functions, including protecting the active pharmaceutical ingredient (API) from environmental factors, masking unpleasant tastes or odors, and ensuring targeted drug delivery to specific regions of the gastrointestinal tract (GIT) ²⁻³.

The composition of tablet coatings typically involves a combination of polymers, plasticizers, colorants, and solvents. These materials are carefully selected based on the desired functionality, such as controlled-release, gastroresistance, or immediate-release properties. Recent advancements have introduced innovative materials like biodegradable polymers and

nanotechnology-based coatings, enabling more precise drug delivery and improved therapeutic outcomes⁴. In pharmaceutical science there are many different doses form which includes tablet, pills, bends, pallets etc. In which tablet is the most common pharmaceutical doses form. Due to its unique property that is easily administrable, conventional and economically. At initial level it is in powder form which is pressed to form a solid compressed dose. There are either prepared by compressing method or other method like moulding ⁵⁻⁶.

The primary benefit of tablets lies in their ability to provide a consistent dosage of the active pharmaceutical ingredient (APIs) that can be ingested. When discussing coated tablets, the term "coating" refers to a layer that is applied to the exterior of the tablet. This coating process involves enveloping the tablet in a thin layer of material, enhancing its surface ⁷. Coating is a specialized method that applies a protective layer to the outer surface of the tablet. Once the coating material is introduced into a batch of tablets within a coating pan, the tablets acquire an additional layer. The various factors, such as spray

ISSN: 2250-1177 [182] CODEN (USA):

pattern, nozzle spacing, and droplet size, influence the coating technique employed. Tablet coating is an essential process in pharmaceutical manufacturing that adds both functional and aesthetic value to the final product. From basic film coating to advanced controlled- release systems, the coating technology ensures that the therapeutic benefits of the drug are maximized while meeting industry standards for quality and consistency ⁸⁻

 9 . The each coating type and technique must be carefully optimized to meet regulatory requirements and patient needs 10

1.1. Purpose of Coating:

Tablet coating serves multiple essential purposes in pharmaceutical formulations. It masks unpleasant taste, odor, and color, while also providing physical and chemical protection from environmental factors such as oxygen, moisture, and light 11. Coating shields the drug from gastric conditions, improving its stability and enhancing patient compliance by making tablets easier to swallow, particularly for large doses. It also improves tablet appearance, aids in brand differentiation, prevents tablet sticking during manufacturing, and prolongs the shelf life of volatile ingredients. The coating follows the fine contours of embossed logos, allowing for tablet printing, and enhances the physical strength of the tablets 12-13. Additionally, it plays a critical role in modifying drug release rates, such as sustained, delayed, or repeated release, prevents drug incompatibility, and increases the efficiency of packaging processes 14.

As per the report published in 2015th nearly 178 million were spent on the drug delivery system which will targeted to increase 310 million dollar by the year 2025.

1.2. Principle of coating:

The principle of coating of tablet is crucial for the formulation of dosage form. The principle of tablet coating involves the application of a thin, uniform layer of coating material onto the surface of tablets to achieve desired functional and aesthetic outcomes ¹⁵. The process generally relies on the following key principles:

Atomization of Coating Solution: The coating material, typically in the form of a solution or suspension, is atomized into fine droplets through a spray system. This ensures uniform distribution of the coating over the tablet surface ¹⁶.

Tablet Movement: The tablets are placed in a coating pan or fluidized bed, where they are constantly agitated or tumbled to ensure even exposure to the coating spray. This movement also prevents tablet agglomeration.

Drying Process: As the atomized coating solution is sprayed onto the tablets, a heated air stream is passed over them. This facilitates the evaporation of solvents or water, leaving behind a dry, smooth coating film.

Build-up of Coating Layers: Multiple layers of coating can be applied in a controlled manner, depending on the desired thickness and functionality of the coating, such as for sustained or delayed drug release.

Adhesion: The coating material must have adequate adhesion to the tablet core, ensuring that the coating remains intact during handling, packaging, and ingestion 17-18

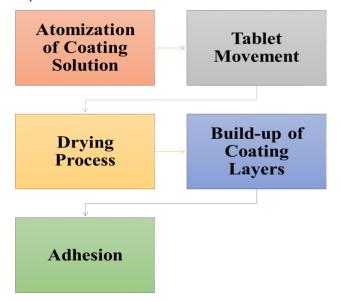


Figure 1: Representation of principle of tablet coating

These principles ensure the coating is uniform, functional, and tailored to the specific requirements of the pharmaceutical product.

1.3. Defects/Problems Associated with Tablet Coating:

The several defects and problems can arise during the tablet coating process, affecting the quality, functionality, and appearance of the final product. One common issue is picking and sticking, where tablets adhere to each other or to the coating equipment. This is usually caused by excessive coating solution or inadequate drying, resulting in uneven coatings ¹⁹. Twinning is another defect that occurs when two or more tablets stick together, often seen in flat, round tablets due to their large surface area. The orange peel effect manifests as a rough, uneven surface resembling the texture of an orange peel, typically resulting from improper atomization of the coating solution or rapid drying. Blistering, which involves the formation of bubbles or blisters under the film coat, can occur due to the rapid evaporation of solvents, leading to weak adhesion between the coating and tablet surface ²⁰. The various defects related to coating tablet describe in the given **Table 1** as below.

Table 1: List of defects/problems associated with coating of tablet and suitable example 21-22

Defect/ Problem	Causes	Remedies	Example
Picking & Sticking	High moisture content, excessive coating solution, or insufficient drying.	Optimize spray rate, increase drying air temperature, use anti-sticking agents.	Film-coated tablets with glossy surfaces.
Twinning	Flat, round tablets with large surface areas; low pan rotation.	Use biconvex tablets, increase pan rotation, reduce tackiness of coating solution.	Multivitamin tablets during film coating.
Orange Peel Effect	Improper atomization, high viscosity, or rapid solvent evaporation.	Adjust spray parameters, reduce viscosity, optimize drying conditions.	Delayed-release film-coated tablets.
Blistering	Rapid solvent evaporation or high coating temperatures.	Lower drying air temperature, adjust solvent system, increase drying time.	Enteric-coated aspirin tablets.
Cracking	Inadequate plasticizers, thick coating layers, or tablet expansion.	Use higher plasticizer content, apply thinner coatings, improve formulation.	Sustained-release tablets.
Chipping	Poor adhesion between coating and tablet, excessive mechanical stress.	Increase adhesion by adjusting binder content, improve handling and packaging processes.	Soft chewable tablets during coating.
Color Variation	Poor colorant distribution, improper mixing, or inadequate coating thickness.	Ensure uniform mixing of colorants, optimize coating thickness and application process.	Coated tablets with multiple color layers.
Erosion	Excessive coating solution or aggressive mechanical handling.	Reduce spray rate, optimize tablet hardness, minimize mechanical stress.	Thin-coated tablets sensitive to moisture.
Logo Bridging	Excessive coating thickness, poor flow of coating solution.	Adjust spray rate and solution viscosity, reduce coating thickness.	Coated tablets with brand logos.
Tablet Weight Variation	Uneven distribution of coating material due to improper spray rate or pan speed.	Calibrate spray guns, increase pan rotation speed for uniform distribution.	Large batches of coated drug tablets.

This table provides a structured overview of the common defects in tablet coating, along with their potential causes, solutions, and examples to better understand and troubleshoot the issues.

1.4. Advanced Tablet Coating Techniques:

Advanced tablet coating techniques have revolutionized the pharmaceutical industry by enhancing the functionality, precision, and efficiency of drug delivery systems. The innovation is film coating, which involves the application of a thin, polymer-based layer over tablets to modify drug release patterns, improve taste, and protect the active ingredients from environmental factors ²³. Enteric coating is another sophisticated method used to protect the drug from the acidic gastric environment, ensuring that the tablet dissolves only in the intestine, which is particularly useful for drugs sensitive to stomach acid or those that can cause gastric irritation ²²⁻²⁵.

Sustained-release and controlled-release coatings are designed to regulate the rate of drug release over time, offering extended therapeutic effects and reducing the frequency of dosing. These coatings often utilize specialized polymers that control dissolution rates. Nanotechnology-based coatings represent a cutting-edge advancement, where nanoparticles are integrated into

the coating material to achieve targeted drug delivery, enhanced bioavailability, and improved therapeutic outcomes. Electrostatic coating is an innovative technique that applies a charged coating solution to tablets using electrostatic forces, ensuring uniform application with minimal waste. This method is particularly beneficial for achieving thin, precise coatings

²⁶. Lastly, multi-layer coating techniques allow for the application of multiple functional layers on a single tablet, each with a distinct purpose, such as immediate release followed by sustained release, or combining different APIs within the same dosage form. These advanced coating techniques contribute to improved patient compliance, enhanced drug stability, and the ability to tailor drug release profiles for specific therapeutic needs ²⁷⁻²⁸.

This review provides a comprehensive analysis of tablet coating compositions, exploring both conventional materials and cutting-edge innovations. It also discusses recent advancements, the current status of coating technologies in the pharmaceutical industry, and

ISSN: 2250-1177 [184] CODEN (USA):

emerging trends that promise to shape the future of tablet coating, including personalized medicine and environmentally sustainable solutions.

2. TYPES OF COATING TABLETS AND COATING MATERIALS

Coating materials used in tablet coating serve multiple purposes, such as protecting the drug from environmental factors, controlling the release profile, masking unpleasant taste, and improving the tablet appearance. The materials include polymers like HPMC for film coatings, enteric materials like cellulose acetate phthalate to prevent drug release in the stomach, and plasticizers to enhance flexibility ²⁹. Other additives may include pigments, flavoring agents, and anti-adherents. Coated tablets benefit from these materials by having enhanced stability, improved patient compliance, and tailored drug release, ensuring effective delivery of the active pharmaceutical ingredient. These coatings are essential in modern pharmaceutical formulations, making medication more efficient and user-friendly ²⁸⁻³⁰.

2.1. Types of coating Tablet: Coating:

Tablets are solid oral dosage forms that have a thin, protective or functional layer applied to their surface. The coating is used to enhance the tablet appearance, mask unpleasant taste or odor, protect the drug from environmental factors, control the release of the drug, and improve patient compliance. The coating can also serve a functional role in protecting the tablet active ingredients from gastric acid or ensuring targeted drug delivery to specific areas in the GIT ³¹. They are generally classified as per their coating materials, these are as follows:

- Enteric Coated Tablets: Enteric coated tablets are designed to resist the acidic environment of the stomach, allowing the tablet to dissolve and release its active ingredient in the more neutral pH of the intestines. This type of coating is particularly beneficial for drugs that are sensitive to gastric acid or that can cause irritation to the stomach lining. The enteric coating is usually made from polymers that swell or dissolve at higher pH levels, ensuring that the drug is protected until it reaches the desired site of absorption. This technology improves the BA of certain drugs and enhances patient compliance by reducing gastrointestinal discomfort 32.
- 2.1.2. Film Coated Tablets: Film coated tablets have a thin polymer-based layer applied to their surface, providing several advantages over traditional coatings. This coating not only enhances the tablet's appearance but also protects the active ingredients from moisture and light. Film coatings can be designed to control the release of the drug, allowing for sustained or modified release profiles. The application process is typically more efficient than sugar coating, resulting in a more uniform and precise layer that adds minimal weight to the tablet 32-33. Additionally, film coatings can mask unpleasant tastes or odors, further improving patient compliance.

Film coating is a widely used technique in the pharmaceutical industry to enhance the functionality, stability, and appearance of tablets. It can be categorized based on the coating materials used, primarily into organic film coatings and aqueous film coatings.

Organic Film Coating: Organic film coatings are composed of synthetic polymers that are typically dissolved in organic solvents before application. These coatings provide a robust and durable protective layer around the tablet, offering advantages such as moisture resistance and improved mechanical strength. Common polymers used in organic film coatings include:

- **Hydroxypropyl Methylcellulose (HPMC):** Provides excellent film-forming properties and is widely used due to its biocompatibility.
- **Polyvinyl Alcohol (PVA):** Offers good adhesion and flexibility, making it suitable for various pharmaceutical applications.
- Methacrylate Copolymers: These are often used for enteric coatings and sustained-release formulations due to their ability to control drug release based on pH and time.

Organic film coatings are advantageous for their ability to create a uniform, glossy finish, enhance the taste masking of bitter drugs, and provide controlled release properties. However, their use of organic solvents may raise concerns regarding environmental impact and the potential for residual solvent in the final product ³⁴⁻³⁵.

- Aqueous Film Coating: Aqueous film coatings are formulated using water as the primary solvent, making them more environmentally friendly compared to organic coatings. These coatings utilize water-soluble polymers, allowing for a safer and more efficient application process. Common polymers used in aqueous film coatings include:
- **Polyvinyl Pyrrolidone (PVP):** Known for its excellent solubility and film-forming properties, often used in taste-masking applications.
- **Cellulose Derivatives:** Such as hydroxypropyl cellulose (HPC) and HPMC, which provide good film strength and flexibility.
- **Natural Gums:** Such as xanthan gum and guar gum, which are used for their biodegradability and biocompatibility ³⁶.

Aqueous film coatings offer several benefits, including reduced solvent exposure, easier processing, and the potential for better drug release profiles. They also help maintain the stability of sensitive APIs. However, the film may be less robust compared to organic coatings, depending on the formulation and processing conditions.

2.1.3. Sugar Coated Tablets: Sugar-coated tablets are among the oldest forms of tablet coatings, where a multi-layer coating of sugar, colorants, and polishing agents is applied to the tablet core. This process results in a glossy finish that enhances the aesthetic appeal of the tablet and helps mask unpleasant tastes or odors ³⁷. However, sugar coating is a labor-

intensive process that can significantly increase the size and weight of the tablet. Although they are less commonly used in modern formulations due to the efficiency of film coatings, sugar-coated tablets remain popular for certain applications, especially in over-the-counter medications aimed at a broader consumer audience.

Another, sustained or controlled release coated tablets are designed to release the drug slowly over an extended period, providing prolonged therapeutic effects by utilizing polymers and other materials that regulate the dissolution rate, thereby reducing the need for frequent dosing. Modified release coated tablets aim to alter the timing and rate of drug release, encompassing both delayed-release formulations, such as enteric-coated tablets, and extendedrelease formulations, allowing for flexible control over the absorption of the drug in the body. Additionally, compression coated tablets involve compressing a dry coating around the tablet core, offering protection and enabling controlled release, making this technique particularly useful for formulations containing two incompatible drugs or those requiring delayed release of the active ingredient ³⁸⁻³⁹.

Together, these various coating types serve essential pharmaceutical purposes, enhancing drug stability, ensuring precise drug delivery, and improving the overall patient experience.

2.2. Coating Materials:

Coating materials are essential in tablet formulation, influencing the stability, release profile, and overall performance of the final product. The primary components include polymers such as HPMC and EC, which provide film-forming properties and flexibility. Plasticizers like glycerin and triethyl citrate enhance the elasticity of the coating film. Colorants, such as titanium dioxide and iron improve the aesthetic appeal and brand oxides, differentiation of tablets. Surfactants are added to enhance wetting properties, while antioxidants protect active ingredients from degradation. Solvents, either aqueous or organic, are used to dissolve these components during the coating process 40. Together, these materials ensure effective drug delivery, improve patient compliance, and enhance the overall quality of coated tablets. The various coating materials of tablet coating mentioned in the given Table 2 as below.

Table 2: List of coating materials with suitable examples used in the tablet coating 41-42

Coating	Coating Materials	Examples
Type		
Film	- Polymers: HPMC, Polyvinyl alcohol (PVA),	- HPMC: Provides a thin, protective film for
Coating	Ethyl cellulose (EC).	controlled release.
	- Plasticizers: Glycerin, Polyethylene glycol	- PVA: Flexible, transparent film, used for taste
	(PEG), Propylene glycol.	masking.
	- Colorants: Titanium dioxide, Iron oxides.	- Titanium dioxide: Used as a white pigment for
		improving tablet appearance.
Enteric	- Polymers: Cellulose acetate phthalate (CAP),	- CAP: Used to resist stomach acid, releasing the drug in
Coating	Hydroxypropyl methylcellulose phthalate	the intestine.
	(HPMCP), Methacrylate copolymers.	- HPMCP: Offers acid protection and delayed release.
	- Plasticizers: Triethyl citrate, Dibutyl sebacate.	- Methacrylate copolymers: Common for enteric and
	- Acid-resistant agents: Methacrylic acid.	sustained release formulations.
Sugar	- Sugars: Sucrose, Glucose.	- Sucrose: Forms a thick, glossy layer to mask taste
Coating	- Colorants: Titanium dioxide, Lakes and Dyes.	and improve appearance.
	- Polishing agents: Beeswax, Carnauba wax.	- Beeswax: Adds shine and smooth finish to the
		coated tablets.
		- Titanium dioxide: Provides opacity and aesthetic
		appeal to sugar-coated tablets.

This **Table 2** illustrates the different coating materials used for film, enteric, and sugar coatings, along with their examples and specific roles in pharmaceutical applications

2.3. Steps Involved in the Tablet Coating:

Tablet coating involves several critical steps that ensure the uniform application of the coating material, leading

to the desired release characteristics, stability, and appearance of the tablets ⁴³. The several steps involved in the Tablet coating mentioned in the given **Fig. 2** as below following.

Figure 2: Representation of steps of tablet coating and tablet finished products

Initially, the coating solution is prepared by dissolving coating materials such as polymers, plasticizers, and colorants in a suitable solvent, either aqueous or organic, with adjustments made to achieve the desired viscosity and flow properties. Next, tablets are loaded into a coating pan or fluidized bed coater, allowing for even distribution of the coating solution over their surfaces. The coating solution is then sprayed onto the tablets as they rotate or are suspended, with the spray nozzle atomizing the solution into fine droplets for uniform coverage. After spraying, the coated tablets are dried to remove the solvent, with hot air circulated in coating pans or warm air passing through fluidized bed coaters to ensure proper adhesion and integrity of the coating 44. Following drying, the tablets are cooled to ambient temperature to stabilize the coating and prevent condensation. QC checks are conducted to assess the uniformity, appearance, and performance characteristics of the coating, including film thickness, adhesion, and release profile. Finally, once the tablets pass quality control, they are packaged for distribution, protecting them from environmental factors and ensuring stability during storage and transport 45-46.

3. COATING MACHINES INVOLVED IN COATING OF TABLETS

Coating machines play a vital role in the tablet coating process, ensuring uniform application of the coating material to enhance the tablet's appearance, stability, and functionality. The most commonly used machines include traditional pan coaters, where tablets rotate in a perforated or non-perforated drum while the coating solution is sprayed onto them ⁴⁷. Fluidized bed coaters are also widely used, where tablets are suspended in an air stream, allowing for even coating from all directions. Modern advancements have led to the development of automated high-efficiency coaters, which provide precise

control over coating thickness, drying time, and airflow, optimizing the entire process. These machines ensure consistent coating quality, improve production speed, and minimize wastage of coating materials ⁴⁸⁻⁴⁹.

3.1. Types of coating pans:

The various coating pans used in the coating of tablet on the basis of their coating materials as well, they are as follows:

3.1.1. Conventional Coating Pans

Conventional coating pans are one of the earliest methods used in pharmaceutical industries for coating tablets or pellets. They consist of a large rotating metal pan, usually made of stainless steel, in which the core tablets or pellets are placed. The coating solution, typically a sugar or film coating, is applied as the pan rotates, allowing the material to spread uniformly over the surfaces. Heated air is directed into the pan to dry the coated particles, ensuring proper adhesion and preventing sticking. Although effective, conventional coating pans have slower process times and may result in uneven coating compared to more modern techniques

A conventional coating pan, also known as a standard coating pan, is a circular metal pan inclined at a 40- degree angle, with diameters ranging from 8 to 60 inches. It rotates on its horizontal axis, driven by a motor. Heated air is supplied through an inlet to prevent sticking, while an exhaust removes dust. The coating solution is applied to the tablets either by ladling or spraying, and an atomizing

tablets either by ladling or spraying, and an atomizing system ensures even distribution of the coating solution across the tablet surfaces ⁵¹⁻⁵². The several coating pans used in the sugar and also used in the film coating with some modification brands as follows (**Table 3**):

Table 3: List of coating pans types, their features and limitations 52-54

Coating Pan Type	Features	Limitations	Additional Systems
PelligRini Coating Pan	- Typically used for sugar coating, with batch ranges from 10 to 1000 kg.	- Not suitable for film coating due to drying limitations.	- Glatt impression sword air handling system improves drying efficiency.
Glatt Impression Sword Coating Pan	- Two systems for hot air and exhaust: a) PLG system: Hot air inlet through sword, exhaust via plenum. b) Hot air through plenum, exhaust via two perforated swords.	- No significant limitations reported.	- Enhanced drying efficiency with air management systems.
Immersion Tube Coating Pan	 Equipped with a long tube with a spray nozzle at the tip. Hot air passes through the tube into the tablet bed, while dried air flows upward and exhausts via dust control. 	- None specified.	- Known for rapid processing of both film and sugar coatings.

Their basic design requires manual interventions, and they often face challenges with drying, especially when used for modern film coatings. However, improvements like the installation of air-handling systems (such as the Glatt impression sword) have enhanced their

functionality ⁵⁵. While they remain suitable for traditional processes, advanced coating technologies are preferred for more precise and efficient coating requirements in contemporary formulations.

3.1.2. Perforated Coating Pans

Perforated coating pans are modern systems designed to improve the efficiency and uniformity of tablet coating processes. These pans have perforations along their surface, allowing heated air to pass directly through the tablet bed during rotation. This design enhances the drying process by ensuring better airflow and reducing the risk of tablet sticking or uneven coating. Typically used for both sugar and film coatings, perforated pans offer more precise control over coating parameters and are suitable for a wide range of batch sizes. They are more efficient than conventional coating pans, providing faster and more consistent results ⁵⁶.

The perforated coating pan is another type of coating equipment featuring a partially or fully perforated drum that rotates on its horizontal axis, all while being enclosed in a sealed housing. As tablets rotate within the perforated pan, the design enhances drying efficiency. The coating solution is sprayed onto the tablets while warm air circulates through the perforations, ensuring even coating and effective drying ⁵⁷. These pans are ideal for film and enteric coatings, offering better control over coating quality and drying compared to traditional pans, making them superior for modern coating processes. The several coating pans used in the sugar and also used in the film coating with some modification brands as follows (**Table 4**):

Table 4: List of perforated coating pans with their types, features and uses 58-59

Coating Pan Type	Features	Air Flow Systems	Uses
Accela Coat Pan	 Fully perforated pan with mixing blades. Inlet air enters via a plenum in contact with the top of the pan. Exhaust air is removed through a plenum below the pan. 	- Air inlet by top plenum Exhaust by bottom plenum.	Commonly used for efficient film coating.
Dumoulin IDA.X. Coating Equipment	 Fully perforated cylindrical central section. Two air plenums for inlet/exhaust located outside the pan. A third plenum directs inlet air onto the product surface through a slotted tube. 	- Single flow Reversed single flow Double flow Direct double flow.	Film and enteric coating with customizable air flow.
Glatt Pan-Coating Equipment	 Similar to Accela Coat. Divided air plenum beneath tablet bed for inlet/exhaust. Additional air plenum above door for extra air inlet/exhaust. Expensive equipment. 	 - Air blown into/exhausted from pan through divided sections. - Additional air plenum for more control. 	Used for high- precision film and enteric coating processes.
Hi-Coater Pan	 Four perforated segments, perpendicular to each other. Perforations serve as air outlets fixed to pan's exterior. Drying air introduced through an opening at the top of the pan. 	- Air introduced through top opening Exhaust through perforations.	High-efficiency film and enteric coating.
Dria Coater	 Drying air introduced through hollow perforated baffles along the drum's inside periphery. Exhaust from the back of the pan. Multiple air flow configurations. 	- Direct flow: Air in at top, exhaust through baffles under tablet bed Reverse flow A & B for varying air direction.	Flexible air flow for various coating needs.
Hüttlin Butterfly Pan	 - Large, angled, slotted openings at the junction of cylindrical section with front/back panels. - Drying air applied by a Mear tube onto product surface. - Hinged front and back for easy access. 	- Air exhaust through large slotted openings.- Drying air applied from above.	Film and enteric coating, widely used in pharmaceutical industries.

Perforated coating pans offer a significant advancement over traditional coating pans, providing better control over the coating process, improved drying efficiency, and more uniform coating distribution. Their design allows for the effective circulation of heated air through perforations, which enhances both film and enteric coating applications ⁶⁰. These systems support a variety of air flow configurations, making them ideal for modern pharmaceutical formulations where precision and efficiency are essential.

3.1.3. Fluidized bed Coating Pans

Fluidized bed coating pans are advanced systems used in the pharmaceutical industry to apply coatings to tablets and granules. In this technique, the product is suspended in an upward-moving stream of air, creating a fluidized state that allows for uniform coating application. The coating solution is sprayed onto the fluidized particles, where it adheres evenly due to the constant movement and mixing facilitated by the air flow. This method not only ensures consistent coating thickness but also enhances drying efficiency, as the air helps evaporate the solvent quickly ⁶¹⁻⁶². Fluidized bed coating is particularly effective for film and enteric coatings, providing high- quality results in a shorter processing time compared to traditional methods.

In fluidized bed coating pans, the fluidization technique is employed, where air suspends and fluidizes tablets or granules, creating a uniform bed. As the particles move within the air stream, the coating solution is sprayed onto them, ensuring even distribution. Simultaneously, hot air dries the particles in real time, preventing agglomeration and allowing for effective coating ⁶³. This type of equipment is widely used in the pharmaceutical,

chemical, and food industries for coating granules, pellets, or powders, making it ideal for applications such as controlled-release drug formulations and protective coatings.

Principle of Operation:

- **Fluidization:** Particles to be coated are suspended in an air stream, which causes them to behave like a fluid. This ensures that each particle is evenly exposed to the coating solution.
- **Spraying:** While the particles are suspended, a coating solution (often a polymer dissolved in a solvent or water) is sprayed into the bed. The solution adheres to the particles.
- **Drying:** The hot air used for fluidization also evaporates the solvent or moisture in the coating solution, leaving behind a uniform layer on the particle surface ⁶⁴⁻⁶⁵.

Types of Fluidized Bed Coating Processes: They are as following mentioned **Table 5**.

Table 5: List of types of FBC Process and their description 65-66

Type of Fluidized Bed Coating Process	Description
Top-Spray Coating	The spray nozzle is positioned above the fluidized particles, commonly used for granulation and coating processes.
Bottom-Spray Coating	The spray nozzle is located at the bottom, applying coating as particles are pushed upwards by the air stream; ideal for controlled-release coatings.
Tangential Spray	The nozzle is positioned at an angle to the bed, used for applying high-load coatings.

3.2. Factors Affecting Tablet Coating:

Tablet coating is a critical process in the pharmaceutical industry, influencing the quality, performance, and stability of the final product. The several factors can affect the coating process, including:

- Coating Solution Properties: The viscosity, surface tension, and concentration of the coating solution impact its ability to adhere to the tablet surface and form a uniform film. A higher viscosity may lead to uneven coating, while inadequate surface tension can hinder adhesion.
- Tablet Characteristics: The size, shape, and surface roughness of the tablets influence how well the coating adheres. Tablets with irregular surfaces may require adjustments in the coating process to ensure uniformity.
- **Process Parameters:** The operational parameters such as spray rate, air flow rate, and pan speed can significantly affect coating efficiency. For instance, a higher spray rate may result in thicker coatings, while an increased air flow can enhance drying and reduce the risk of sticking.

- **Equipment Design**: The design of the coating equipment, including the type of coating pan and the spray nozzle configuration, plays a crucial role in determining the uniformity and quality of the coating.
- **Tablet Core Properties:** Tablets need to be hard and have good friability to avoid breakage during the coating process ⁶⁷⁻⁶⁸.

Fluidized bed coating pans are widely used when uniform, high-quality coatings are needed on particulate materials. The various coating technologies, such as conventional pans, perforated pans, fluidized bed systems, and modern spray-coating techniques, each offer unique advantages and can be tailored to specific coating requirements. Factors such as the properties of the coating solution, tablet characteristics, process parameters, and environmental conditions significantly influence the effectiveness and uniformity of the coating process ⁶⁹. By understanding these machines and the factors affecting coating, manufacturers can optimize production efficiency and ensure consistent product quality.

4. RECENT AND MARKEED APPROCHES ON TALET COATING

Tablet coating has evolved significantly with the advent of modern technologies and innovative materials, offering better control over drug release, stability, and patient compliance. Recent approaches in tablet coating focus on improving functional performance, such as controlled-release, taste masking, and protection from environmental factors like moisture and light 70. Techniques like enteric coating, which allows drug release in the intestines instead of the stomach, and film

coating, using polymers for uniform and fast application, have gained popularity.

4.1. Prepared Marketed Coated:

Advances in coating materials, including biodegradable polymers and nanocomposites, have further enhanced the efficiency and safety of coatings. The several prepared marketed coated tablets, with their suitable details and their characterization mentioned in the **Table 6** as below following.

Table 6: List of several brands, types of coating, uses and manufacturer

Brand	API/Drug	Coating	Application/Uses	Manufacturer	Ref.
RTCID-DSR	Rabeprozole		Peptic Ulcer	Servo Sanitus Remidie	[71]
	sod.+Domperidone				
CIRROMSAM-400	Ademetioine	Enteric coating	Treat liver Disease	Winista pharma	[72]
DUCOLAX	Bisacodyl	coating	Constipation	Mediflora Pharmacy	[73]
Mycept-S360	Mycophenolate		Immuno-suppressant	Vijay life care	[74]
Dropsid-DSR	Esomeprazol+ Domperidon		Acid reflux	Sawarag pharmaceuticals	[75]
Pivikto	Alpelisib		Breast cancer	Vijay life science	[76]
Votrient 400mg	Pazopanib HCl	Film	Anti-cancer for kidney	RRT Pharma	[77]
KRYXANA	Ribociclib	coating	Anti-cancer	Greensoul Remedies	[78]
Mofilet	Mycophenolate	Sugar	Immuno-suppressant	Medwell India Care private limited	[79]
CAPINEM	Ethomsylate & Transcinamic acid	coating	Prevent mentrual bleeding	Aileran	[80]

4.2. Characterization of Marketed Products:

Characterization of coated tablets involves a comprehensive evaluation of the physical, chemical, and mechanical properties of the tablet's coating to ensure its quality and functionality. This process is critical to determine whether the coating meets the desired specifications, such as uniformity, thickness, and adhesion ⁸¹. Various analytical techniques are employed, including microscopy for surface morphology,

spectroscopy for chemical composition, and dissolution testing to assess the release profile of the active ingredient. Mechanical tests, such as hardness and friability, ensure the coating provides adequate protection while maintaining tablet integrity 82. Additionally, thermal analysis and moisture permeability tests are used to evaluate the stability of the coating under different storage conditions. The characterization of coating tablet mentioned in the **Table 7** as below.

Table 7: List of characterization of coating tablets with specified APIs

API/Drug	Types of	Disintegration	Dissolution Rate	Hardness	Friability	Ref.
	Coating	time (min)		(kg/cm ²)	(%)	
Diclofenac Sodium (DCS)		8-10	14% in 5 hrs.	8.4	0.10	[83]
Pantoprazole	Film	8(pH 6.8)	90 min	8	0.2	[84]
Clarithromycin	coating	2.16	95.45 in 15 min	10	-	[85]
Secnidazole		18min	97.87%	5kg/cm2	Low with in rang	[86]
Diltiazem		13.33	95.12(pH6.8) 240 min	6	0.7	[87]
Azithromycin		100	120	4.58	0.5	[88]
Diclofenac sod.		4-5	96.5 in 45 min	3.5-4.5	Less than 0.6	[89]
Esomeprazole	Enteric	11.35	115.5	=	-	[90]
Placebo	coating	70.25(6.8) min	115.5+_7.5	3.5-4.5kg/m2	0.6	[91]
Mesalazine		21865+-98ml	Ph6.8 96.53%kg/cm2	6.4+_0.3kg/cm2	0.15%	[92]
p-amino salicylate Sodium		7.1+_0.41	98.3+_1.02	8.1+0.2kg/cm2	0.15	[93]

These characterization methods help in optimizing the coating process, ensuring consistency in drug delivery, and enhancing the shelf life and effectiveness of the final pharmaceutical product. Moreover, the use of automated spray coating processes and the development of coating formulations tailored for specific drug properties have made tablet coating a precise and indispensable tool in pharmaceutical manufacturing ⁹⁴. These marked innovations and characterizations ensure the tablet's therapeutic efficacy and improve patient adherence by making oral medication more effective and user-friendly.

5. CURRENT CHALLENGESS AND FUTURE PROSPECTIVE

The current challenges in tablet coating technology are multifaceted and impact the efficiency, quality, and regulatory compliance of pharmaceutical products. One significant challenge is achieving uniform coating thickness, which is crucial for consistent drug release

profiles; variations can arise from inconsistent spray techniques or equipment performance. Additionally, the development of novel coating materials often faces hurdles in scalability and reproducibility, complicating the transition from laboratory formulations to mass production ⁹⁵. The future of tablet coating technologies is set to evolve dramatically, reflecting ongoing innovations in materials science, engineering, and pharmaceutical applications (**Fig. 3**). As research continues to advance, several key trends and prospects can be anticipated in the realm of tablet coatings, compositions, and their applications:

Enhanced Drug Delivery Systems: The development of novel coating materials and techniques will lead to more sophisticated drug delivery systems, such as multi-layer coatings that can provide controlled release and targeted delivery. This will enable better management of chronic diseases, allowing for precise dosing and improved patient compliance ⁹⁶.

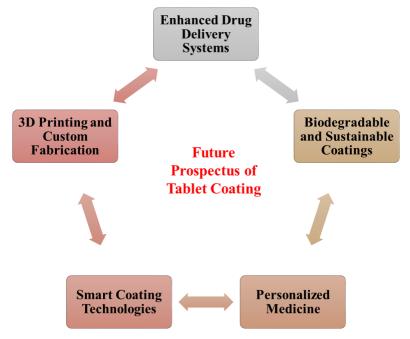


Figure 3: Representations of future prospectus of tablet coating

Biodegradable and Sustainable Coatings: As the pharmaceutical industry faces increasing pressure to adopt sustainable practices, the future will likely see a shift towards biodegradable and environmentally friendly coating materials. Innovations in natural polymers and green chemistry will reduce the environmental impact of coatings while maintaining or enhancing their performance.

Personalized Medicine: The move towards personalized medicine will significantly influence the design and application of tablet coatings. Customized coatings that adapt to individual patient profiles will facilitate tailored drug release mechanisms, optimizing therapeutic outcomes and minimizing adverse effects.

Smart Coating Technologies: The integration of smart technologies, such as stimuli-responsive coatings that

react to specific physiological conditions (e.g., pH changes or temperature variations), will enhance the functionality of coated tablets. These advancements could improve the efficacy of medications by ensuring precise release at targeted sites within the gastrointestinal tract.

3D Printing and Custom Fabrication: The application of 3D printing technology in tablet coating will revolutionize pharmaceutical manufacturing by allowing for the precise fabrication of complex geometries and personalized formulations. This could enable on-demand production of tailored coated tablets, reducing waste and improving efficiency ⁹⁷⁻⁹⁸.

The future of coating tablets encompasses a myriad of possibilities that promise to enhance drug delivery, improve patient adherence, and reduce environmental

impacts. As research and technology continue to progress, the pharmaceutical industry will be well- equipped to meet the evolving needs of healthcare, ultimately leading to better health outcomes for patients worldwide ⁹⁹⁻¹⁰⁰. Addressing these issues will require ongoing research, technological innovation, and collaboration across the pharmaceutical industry.

CONCLUSION

In conclusion, the evolution of tablet coating has significantly enhanced the pharmaceutical industry by improving drug delivery systems, ensuring stability, and enhancing patient compliance. This comprehensive review highlights the various coating compositions, from traditional sugar and film coatings to advance polymer- based and nanocomposite coatings. Recent advancements, such as targeted release formulations, improved mechanical properties, and eco-friendly coating materials, reflect the industry's commitment to innovation. The current status of tablet coating underscores its pivotal role in pharmaceutical development, offering precise control over drug release profiles and protection against environmental factors. As technology progresses, the future of tablet coating will continue to drive improvements in drug efficacy and patient care.

List of Abbreviations

API: Active Pharmaceutical Ingredients; HPMC: Hydroxypropyl methylcellulose

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Human And Animal Ethical Right

Not applicable.

Conflict of Interest

The authors declare no conflict of interest, and no funding was required to conduct these review data.

Acknowledgments

The corresponding authors would like to thank, all involved members and faculty staff for their collaboration. Special thanks are due to Mr. Rahul Pal and Ms. Prachi Pandey for their guidance and support throughout the project.

Availability of Data and Materials

The data supporting this study's findings will be available in the cited references.

Funding

The research received no external funding.

Author Contribution

All authors have equal contribution in the preparation of manuscript and compilation.

REFERENCES

- Arora R, Rathore KS, Bharakatiya M. "An overview on tablet coating." Asian Journal of Pharmaceutical Research and Development, 2019; 7(4):89-92. https://doi.org/10.22270/ajprd.v7i4.547
- Venkateswara RB, Navaneetha K, Reddy KB. "Tablet coating industry point view-a comprehensive review." Int. J. Pharm. Biol. Sci, 2013; 3.1:248-61.
- Ganguly, D, et al. "A brief review on recent advancement of tablet coating technology." Journal of Applied Pharmaceutical Research, 2022; 10(1):07-14. https://doi.org/10.18231/J.JOAPR.2022.7.14
- Nehal ASA, et al. "Tablet coating techniques: Concept and recent trends." International Journal of Pharmaceutical Sciences Review and Research, 2021, 66(1):43-53. https://doi.org/10.47583/ijpsrr.2021.v66i01.010
- Aalok B, De A, Dey S. "Techniques of tablet coating: concepts and advancements." A comprehensive review. RRJPPS, 2013; 2.4: 1-6.
- Pal R, et al. "The Pharmaceutical Polymer's; A current status in drug delivery: A Comprehensive Review." Journal of Survey in Fisheries Sciences, 2023;3682-3692.
- Seo KS, Bajracharya R, Lee SH, Han HK. Pharmaceutical application of tablet film coating. Pharmaceutics. 2020 Sep;12(9):853. https://doi.org/10.3390/pharmaceutics12090853
- Gaikwad SS, Kshirsagar SJ. Review on Tablet in Tablet techniques. Beni-Suef university journal of basic and applied sciences. 2020 Dec;9:1-7. https://doi.org/10.1186/s43088-019-0027-7
- Muliadi A, Sojka PE. A review of pharmaceutical tablet spray coating. Atomization and Sprays. 2010;20(7). https://doi.org/10.1615/AtomizSpr.v20.i7.40
- Sah AK, Jangdey MS, Daharwal SJ. Tablet coating technology: An overview. Asian Journal of Pharmacy and Technology. 2014;4(2):83-97.
- Behzadi SS, Toegel S, Viernstein H. Innovations in coating technology. Recent patents on drug delivery & formulation. 2008 Nov 1;2(3):209-30. https://doi.org/10.2174/187221108786241633
- Toschkoff G, Just S, Knop K, Kleinebudde P, Funke A, Djuric D, Scharrer G, Khinast JG. Modeling of an active tablet coating process. Journal of pharmaceutical sciences. 2015 Dec 1;104(12):4082-92. https://doi.org/10.1002/jps.24621
- Dasalkar AM, Munde VS. "A review: film coated tablets." Intl J Adv Eng Management, 2023:462-474.
- Dumpa M, Kamadi M, Vadaga A. Comprehensive Review on Tablet Coating Problems and Remedies. Journal of Pharma Insights and Research. 2024 Feb 4;2(1):042-9.
- Yuniarsih N, Kurniawati I, Mudrikah S, Amelia T, Bintang I, Pranata F, Sukandar D. Literature Review Article Effect of Tablet Coating on Drug Stability. Innovative: Journal Of Social Science Research. 2023 May 7;3(2):1072-83.
- 16. Bansari M, Vyas J, Upadhyay U. A concise review on tablet in tablet.
- Arafat M, Sakkal M, Bostanudin MF, Alhanbali OA, Yuvaraju P, Beiram R, Sadek B, Akour A, AbuRuz S. Enteric-coating film effect on the delayed drug release of pantoprazole gastro-resistant generic tablets. F1000Research. 2023;12. https://doi.org/10.12688/f1000research.140607.1
- Meruva S, Singaraju AB, Vinjamuri BP, Ternik R, Stagner WC. Current State of Minitablet Product Design: A Review. Journal of Pharmaceutical Sciences. 2024 Feb 16. https://doi.org/10.1016/j.xphs.2024.02.016
- Tran BN, Tran KL, Nguyen TT, Bui LP, Nguyen CN. A Novel Alginate Film based on Nanocoating Approach for enteric-release tablets. AAPS PharmSciTech. 2023 Apr 6;24(4):99. https://doi.org/10.1208/s12249-023-02557-0
- 20. Mute DV, Shelar TM. Tablets Manufacturing Defects and Remedies.

- Bharadia P, Pandya VM. A review on aqueous film coating technology. Indian Journal of Pharmacy and Pharmacology. 2014;1(1):64-106.
- Fernandes EC, Rondolfo N, Beraldo-de-Araújo V, Oliveira-Nascimento L. Quality deviation handling on the polymeric coating of pharmaceutical tablets. Journal of Pharmaceutical Innovation. 2019 Dec;14:332-40. https://doi.org/10.1007/s12247-018-9359-4
- 23. Kapoor D, Maheshwari R, Verma K, Sharma S, Ghode P, Tekade RK. Coating technologies in pharmaceutical product development. In Drug delivery systems 2020 Jan 1 (pp. 665-719). Academic Press. https://doi.org/10.1016/B978-0-12-814487-9.00014-4
- Zaid AN. A comprehensive review on pharmaceutical film coating: past, present, and future. Drug Design, Development and Therapy. 2020 Oct 29:4613-23. https://doi.org/10.2147/DDDT.S277439
- Feng H, Mohan S. Application of process analytical technology for pharmaceutical coating: challenges, pitfalls, and trends. AAPS PharmSciTech. 2020 Jun 28;21(5):179. https://doi.org/10.1208/s12249-020-01727-8
- Suzzi D, Radl S, Khinast JG. Local analysis of the tablet coating process: Impact of operation conditions on film quality. Chemical Engineering Science. 2010 Nov 1;65(21):5699-715. https://doi.org/10.1016/j.ces.2010.07.007
- Pandey P, Pal R, Khadam VK, Chawra HS, Singh RP. Advancement and Characteristics of Non-Ionic Surfactant Vesicles (Niosome) and their Application for Analgesics, International Journal of Pharmaceutical Investigation, 2024;14(3):616-632 https://doi.org/10.5530/ijpi.14.3.74
- 28. Dasalkar, Ankita Madhavrao, and V. S. Munde. "A review: film coated tablets." Intl J Adv Eng Management, 2023, 5.2: 462-474.
- Ubhe TS, Gedam P. A brief overview on tablet and it's types.
 Journal of Advancement in Pharmacology. 2020 Oct 27;1(1):21-31.
- Dubey A, Boukouvala F, Keyvan G, Hsia R, Saranteas K, Brone D, Misra T, Ierapetritou MG, Muzzio FJ. Improvement of tablet coating uniformity using a quality by design approach. AAPS PharmSciTech. 2012 Mar;13:231-46. https://doi.org/10.1208/s12249-011-9723-x
- Dhakar RC, Maurya SD, Sagar BPS, Bhagat S, Prajapati SK, Jain CP, Variables influencing the drug entrapment efficiency of microspheres: A pharmaceutical review, Der Pharmacia Lettre, 2010;2(5):102-116
- 32. Hussan SD, Santanu R, Verma P, Bhandari V. A review on recent advances of enteric coating. IOSR J Pharm. 2012 Nov;2(6):05-11. https://doi.org/10.9790/3013-2610511
- Felton LA, Porter SC. An update on pharmaceutical film coating for drug delivery. Expert opinion on drug delivery. 2013 Apr 1;10(4):421-35. https://doi.org/10.1517/17425247.2013.763792
- Bharadia P, Pandya VM. A review on aqueous film coating technology. Indian Journal of Pharmacy and Pharmacology. 2014;1(1):64-106.
- Cunningham C, Hansell J, Nuneviller III F, Rajabi-Siahboomi AR.
 Evaluation of recent advances in continuous film coating processes.
 Drug development and industrial pharmacy. 2010 Jan 21;36(2):227-33. https://doi.org/10.3109/03639040903410326
- 36. Ketterhagen W, Aliseda A, Am Ende M, Berchielli A, Doshi P, Freireich B, Prpich A. Modeling tablet film-coating processes. InPredictive Modeling of Pharmaceutical Unit Operations 2017 Jan 1 (pp. 273-316). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100154-7.00010-7
- 37. Korth-Bradley JM, Mayer P, Mansfield D, Tucker H, Wu D. Comparative bioavailability study of single-dose film-coated and sugar-coated ethionamide tablets in healthy volunteers. Clinical therapeutics. 2014 Jun 1;36(6):982-7. https://doi.org/10.1016/j.clinthera.2014.04.014
- 38. Basu A, De A, Dey S. Techniques of tablet coating: concepts and advancements. A comprehensive review. RRJPPS. 2013;2(4):1-6.

- 39. Pal R, Pandey P, Jha D, Dutta P, Sahoo S, Gupta R, Rizwan M, Keskar MS, Kumar V, Chawra HS. The Utilization of 32Full Factorial Design (FFD) for Optimization of Lincomycin Hydrochloride (LNH) Loaded Nanogel Involving; Design of Experiments (DoE) an Advanced Approach. Advances in Research. 2023 Dec 21;24(6):272-81. https://doi.org/10.9734/air/2023/v24i61009
- Porter, Stuart C. "Tablet coating." Drug Cosmetic Industry,1981, 128.5: 46-93.
- El-Malah Y, Nazzal S. Preparation of delayed release tablet dosage forms by compression coating: Effect of coating material on theophylline release. Pharmaceutical Development and Technology. 2010 Jun 1;15(3):305-10. https://doi.org/10.3109/10837450903188519
- 42. Ellis JR, Prillig EB, Amann AH. Tablet coating. The Theory and Practice of Industrial Pharmacy, 2nd edn., Lea & Febiger, Philadelphia, Pennsylvania, USA. 1976:359-88.
- 43. Prajapati SK, Maurya SD, Das MK, Tilak VK, Verma KK, Dhakar RC, Dendrimers in drug delivery, diagnosis and therapy: basics and potential applications, Journal of Drug Delivery and Therapeutics. 2016;6(1):67-92 https://doi.org/10.22270/jddt.v6i1.1190
- 44. Barimani S, Kleinebudde P. Monitoring of tablet coating processes with colored coatings. Talanta. 2018 Feb 1;178:686-97. https://doi.org/10.1016/j.talanta.2017.10.008
- 45. Pandey P, Pal R, Rizwan M, Saxena A, Koli M, Nogai L, Pal AK, Kumar N. The recent approaches in nano-technology with applications of 3-D printing (3DP) in diverse advanced drug delivery system (DDS). Euro. Chem. Bull. 2023;12:4444-58.
- 46. Wirges M, Funke A, Serno P, Knop K, Kleinebudde P. Monitoring of an active coating process for two-layer tablets-model development strategies. Journal of Pharmaceutical Sciences. 2013 Feb 1;102(2):556-64. https://doi.org/10.1002/jps.23383
- 47. Cole GC, May G, Neale PJ, Ridgway K. The design and performance of an instrumentation system for aqueous film coating in an industrial tablet coating machine. Drug Development and Industrial Pharmacy. 1983 Jan 1;9(6):909-44. https://doi.org/10.3109/03639048309042833
- 48. Römer M, Heinämäki J, Strachan C, Sandler N, Yliruusi J. Prediction of tablet film-coating thickness using a rotating plate coating system and NIR spectroscopy. Aaps Pharmscitech. 2008 Dec;9:1047-53. https://doi.org/10.1208/s12249-008-9142-9
- Val'ter MB. Development of the manufacture of multilayer and coated tablets. Pharmaceutical Chemistry Journal. 1975 Oct;9(10):654-61. https://doi.org/10.1007/BF00758695
- Chambliss WG. Conventional and specialized coating pans.
 InPharmaceutical pelletization technology 2022 Feb 23 (pp. 15-38). CRC Press. https://doi.org/10.1201/9781003066231-2
- Behzadi SS, Toegel S, Viernstein H. Innovations in coating technology. Recent patents on drug delivery & formulation. 2008 Nov 1;2(3):209-30. https://doi.org/10.2174/187221108786241633
- 52. Pal R, Pandey P, Nogai L, Anand A, Suthar P, SahdevKeskar M, Kumar V. The future perspectives and novel approach on gastro retentive drug delivery system (GRDDS) with currrent state. Journal of Population Therapeutics and Clinical Pharmacology. 2023 Sep 19;30(17):594-613. https://doi.org/10.53555/jptcp.v30i17.2852
- 53. Agrawal AM, Pandey P. Scale up of pan coating process using quality by design principles. Journal of pharmaceutical sciences. 2015 Nov 1;104(11):3589-611. https://doi.org/10.1002/jps.24582
- 54. Ranjan A, Adhikari P, Verma RK, Parthiban A, Singh M, Kumar A. Advances in Pharmaceutical Coatings and Coating Materials. Functional Coatings for Biomedical, Energy, and Environmental Applications. 2024 Oct 22:145.
- 55. Pandey P. Studies to investigate variables affecting coating uniformity in a pan coating device. West Virginia University; 2006.

- Behzadi SS, Toegel S, Viernstein H. Innovations in coating technology. Recent patents on drug delivery & formulation. 2008 Nov 1;2(3):209-30. https://doi.org/10.2174/187221108786241633
- Jones DM. Coating processes and equipment. InPharmaceutical Dosage Forms-Tablets 2008 Jun 3 (pp. 389-414). CRC Press. https://doi.org/10.3109/9781420020281-15
- Wang J, Hemenway J, Chen W, Desai D, Early W, Paruchuri S, Chang SY, Stamato H, Varia S. An evaluation of process parameters to improve coating efficiency of an active tablet film-coating process. International journal of pharmaceutics. 2012 May 10;427(2):163-9. https://doi.org/10.1016/j.ijpharm.2012.01.033
- Butensky IS. Automatic Coating of Tablets (Doctoral dissertation, University of Michigan).
- 60. Hadfield PJ. 3 Processing and Equipment Considerations for Aqueous Coatings. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. 2016 Sep 19:49. https://doi.org/10.1201/9781315369938-4
- Parajapati S, Maurya S, Das M, Tilak VK, Verma KK, Dhakar RC. Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update. Journal of Drug Delivery and Therapeutics. 2016;6(2):71-88 https://doi.org/10.22270/jddt.v6i2.1195
- 62. Friedman M, Donbrow M. Fluidized bed coating technique for production of sustained release granules. Drug Development and Industrial Pharmacy. 1978 Jan 1;4(4):319-31. https://doi.org/10.3109/03639047809060846
- 63. Lin SY, Krochta JM. Fluidized-bed system for whey protein film coating of peanuts. Journal of food process engineering. 2006 Oct;29(5):532-46. https://doi.org/10.1111/j.1745-4530.2006.00081.x
- 64. Abletshauser CB, Schneider R, Rupprecht H. Film coating of pellets with insoluble polymers obtained in situ crosslinking in the fluidized bed. Journal of controlled release. 1993 Nov 1;27(2):149-56. https://doi.org/10.1016/0168-3659(93)90218-T
- 65. Pal R, Pandey P, Koli M, Srivastava K, Tiwari V, Gaur AK, Dutta P. The Comprehensive Review: Exploring Future Potential of Nasopulmonary Drug Delivery Systems for Nasal Route Drug Administration. Journal of Drug Delivery and Therapeutics. 2024 Mar 15;14(3):126-36. https://doi.org/10.22270/jddt.v14i3.6444
- 66. Pal R, Pandey P, Maurya VK, Saxena A, Rizwan M, Koli M, Shakya S, Pinki K. Optimization and formulation of doxorubicin (DOX) loaded liposome well-used in chemotherapy involving quality by design (QbD): a transitory research. European Chemical Bulletin. 2023;12:4491-510. https://doi.org/10.22271/phyto.2023.v12.i6b.14779
- 67. Schreiber R, Vogt C, Werther J, Brunner G. Fluidized bed coating at supercritical fluid conditions. The Journal of supercritical fluids. 2002 Nov 1;24(2):137-51. https://doi.org/10.1016/S0896-8446(02)00029-3
- Turk M. An analysis of the mini-tablet fluidized bed coating process. Chemical Engineering Research and Design. 2018 Jun 1;134:15-25. https://doi.org/10.1016/j.cherd.2018.03.020
- Turton R, Tardos GI, Ennis BJ. Fluidized bed coating and granulation. InFluidization, solids handling, and processing 1999 Jan 1 (pp. 331-434). William Andrew Publishing. https://doi.org/10.1016/B978-081551427-5.50008-9
- Kumar S, Garg SK. Fast dissolving tablets (FDTs): Current status, new market opportunities, recent advances in manufacturing technologies and future prospects. Int J Pharm Pharm Sci. 2014;6(7):22-35.
- Sabnis SS, Dhavale ND, Jadhav VY, Gandhi SV. Column reversedphase high-performance liquid chromatographic method for simultaneous determination of rabeprazole sodium and domperidone in combined tablet dosage form. Journal of AOAC International. 2008 Mar 1;91(2):344-8. https://doi.org/10.1093/jaoac/91.2.344
- 72. Zhang J, Liu H, Tang L, Lin H, Yao Y, Tong Y, Jin M, Wang K. Pharmacokinetics and food impact assessment of ademetionine enteric-coated tablet as an endogenous substance drug in healthy

- Chinese volunteers. Journal of Clinical Pharmacy and Therapeutics. 2022 Jun;47(6):738-44. https://doi.org/10.1111/jcpt.13601
- 73. Park HJ, Jung HJ, Ho MJ, Lee DR, Cho HR, Choi YS, Jun J, Son M, Kang MJ. Colon-targeted delivery of solubilized bisacodyl by doubly enteric-coated multiple-unit tablet. European Journal of Pharmaceutical Sciences. 2017 May 1;102:172-9. https://doi.org/10.1016/j.ejps.2017.03.006
- Behrend M, Braun F. Enteric-coated mycophenolate sodium: tolerability profile compared with mycophenolate mofetil. Drugs. 2005 Jun;65(8):1037-50. https://doi.org/10.2165/00003495-200565080-00001
- Barse SA, Gosavi SA, Kasture VS. Comparative spectrophotometric analysis of simultaneous estimation of esomeprazole and domperidone in tablet dosage form. Research Journal of Pharmacy and Technology. 2011;4(9):1363-6.
- Chaurasia M, Singh R, Sur S, Flora SJ. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Frontiers in Pharmacology. 2023 Jul 28;14:1184472. https://doi.org/10.3389/fphar.2023.1184472
- Herbrink M, Groenland SL, Huitema AD, Schellens JH, Beijnen JH, Steeghs N, Nuijen B. Solubility and bioavailability improvement of pazopanib hydrochloride. International journal of pharmaceutics. 2018 Jun 10;544(1):181-90. https://doi.org/10.1016/j.ijpharm.2018.04.037
- 78. Ji Y, Abdelhady AM, Samant TS, Yang S, Rodriguez Lorenc K. Evaluation of absolute oral bioavailability and bioequivalence of ribociclib, a cyclin-dependent kinase 4/6 inhibitor, in healthy subjects. Clinical Pharmacology in Drug Development. 2020 Oct;9(7):855-66. https://doi.org/10.1002/cpdd.853
- Lertdumrongluk P, Somparn P, Kittanamongkolchai W, Traitanon O, Vadcharavivad S, Avihingsanon Y. Pharmacokinetics of mycophenolic acid in severe lupus nephritis. Kidney international. 2010 Aug 2;78(4):389-95. https://doi.org/10.1038/ki.2010.170
- Mohamed GG, Frag EY, Sedeek AA. Spectrophotometric methods for determination of tranexamic acid and etamsylate in pure form and pharmaceutical formulation. Insight Pharmaceutical Sciences. 2015;5:1-7. https://doi.org/10.5567/IPHARMA-IK.2015.1.7
- 81. Rhodes CT, Porter SC. Coatings for controlled-release drug delivery systems. Drug development and industrial pharmacy. 1998 Jan 1;24(12):1139-54. https://doi.org/10.3109/03639049809108573
- Salawi A. Pharmaceutical coating and its different approaches, a review. Polymers. 2022 Aug 15;14(16):3318. https://doi.org/10.3390/polym14163318
- 83. Chhater S, Rajesh K, Kshitij A, Nema RK. Development and evaluation of enteric coated tablet containing diclofenac sodium. International journal of pharmaceutical sciences and nanotechnology. 2009;2:443-9. https://doi.org/10.37285/ijpsn.2009.2.1.8
- Wilson B, Babubhai PP, Sajeev MS, Jenita JL, Priyadarshini SB. Sustained release enteric coated tablets of pantoprazole: Formulation, in vitro and in vivo evaluation. Acta Pharmaceutica. 2013 Mar 31;63(1):131-40. https://doi.org/10.2478/acph-2013-0002
- 85. Rajesh M, Nagaraju K, Buhary SS. Formulation and evaluation of clarithromycin immediate release film coated tablets. cellulose. 2012;4(5):352-7.
- 86. Farooqui NA, Smith AA, Sharma HK, Manavalan R. formulation and evaluation of Secnidazole Film coated tablets. Journal of Pharmaceutical science and Technology. 2011;3(2):555-8.
- 87. Salpe HG, Devhare LD, Ghugare AP, Singh N. Formulation and evaluation of hpmc coated diltiazem hel tablet and its comparison with other marketed preparation. Research chronicle in health sciences. 2016;3(1):11-7.
- 88. Patil A, Payghan SA, Disouza JI. Formulation and evaluation of enteric coated tablets of azithromycin dehydrate. Int J Chem Tech Res. 2011;3(3):1479-84.

- 89. Zaid AN, Qaddomi A. Development and stability evaluation of enteric coated Diclofenac sodium tablets using Sureteric. Pakistan journal of pharmaceutical sciences. 2012 Jan 1;25(1).
- Omari DM. Formulation and in vitro/in vivo evaluation of esomeprazole enteric coated minitablets. Journal of Drug Delivery Science and Technology. 2017 Jun 1;39:156-65. https://doi.org/10.1016/j.jddst.2017.03.025
- 91. Mauro M, Palmieri GC, Palazzini E, Barbanti M, Calanni Rindina F, Milani MR. Pharmacodynamic effects of single and repeated doses of oral sulodexide in healthy volunteers. A placebo-controlled study with an enteric-coated formulation. Current medical research and opinion. 1993 Jan 1;13(2):87-95. https://doi.org/10.1185/03007999309111537
- 92. Patel TD, Patel DM, Patel CN, Parikh BN, Gothi GD. Formulation and development of enteric coated pH dependent compression coated tablets of mesalamine. J Global Pharm Tech. 2010;2(6):118-24.
- Rasmussen S. Correlation between in vitro and in vivo disintegration times of enteric-coated tablets. Journal of Pharmaceutical Sciences. 1968 Aug 1;57(8):1360-3. https://doi.org/10.1002/jps.2600570818
- 94. Shelukar S, Ho J, Zega J, Roland E, Yeh N, Quiram D, Nole A, Katdare A, Reynolds S. Identification and characterization of factors controlling tablet coating uniformity in a Wurster coating process. Powder Technology. 2000 May 1;110(1-2):29-36. https://doi.org/10.1016/S0032-5910(99)00265-X

- Patil PB, More VN, Tour NS. Recent trends in orodispersible tablets-An overview of formulation technology and future prospects. International Journal of Pharma Sciences and Research. 2015;6(7):1056-66. https://doi.org/10.7897/2230-8407.06797
- 96. Pal R, Pandey P, Nogai L. The Advanced Approach in The Development of Targeted Drug Delivery (TDD) With Their Bio-Medical Applications: A Descriptive Review. International Neurourology Journal. 2023 Oct 7;27(4):40-58.
- Malaak FA, Zeid KA, Fouad SA, El-Nabarawi MA. Orodispersible Tablets: Novel Strategies and future challenges in Drug Delivery. Research Journal of Pharmacy and Technology. 2019;12(11):5575-82. https://doi.org/10.5958/0974-360X.2019.00966.1
- Meshram SI, Hatwar PR, Bakal RL, Raut PV. Artificial Intelligence-Assisted Fabrication of 3D Printed Technology in Pharmaceutical Development and Its Application. Journal of Drug Delivery and Therapeutics. 2024;14(8):214-222 https://doi.org/10.22270/jddt.v14i8.6735
- Tran M, Wang C. Semi-solid materials for controlled release drug formulation: Current status and future prospects. Frontiers of Chemical Science and Engineering. 2014 Jun;8:225-32. https://doi.org/10.1007/s11705-014-1429-7
- 100.Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS nano. 2024 Apr 17;18(18):11503-24. https://doi.org/10.1021/acsnano.4c00014