

Pharmacological evaluation of anxiolytic activity of ethanolic extract of *Hemidesmus indicus* in rodent model

Saumya Malaiya *, Shailja Yadav, Harshita Jain, Arpit Shrivastava

Adina Institute of Pharmaceutical Sciences, Sagar (M.P), India

Article Info:

Article History:

Received 09 April 2024
Reviewed 02 June 2024
Accepted 26 June 2024
Published 15 July 2024

Cite this article as:

Malaiya S, Yadav S, Jain H, Shrivastava A, Pharmacological evaluation of anxiolytic activity of ethanolic extract of *Hemidesmus indicus* in rodent model, Journal of Drug Delivery and Therapeutics. 2024; 14(7):43-50

DOI: <http://dx.doi.org/10.22270/jddt.v14i7.6677>

*Address for Correspondence:

Saumya Malaiya, Adina Institute of Pharmaceutical Sciences, Sagar (M.P), India

Abstract

The current study uses rodent models to explore the anxiolytic properties of *Hemidesmus indicus*' ethanolic extract (EEHI). *Hemidesmus indicus*, an evergreen plant well-known for its therapeutic characteristics, has been widely used in Ayurvedic medicine to treat a variety of conditions, including anxiety. This study seeks to give scientific validation for its anxiolytic properties. The ethanolic extract was made using normal extraction processes and given to rodents in varied doses (100,200 and 400 mg/kg). The anxiolytic activity was assessed using a variety of widely recognized behavioural assays, including the Elevated Plus Maze (EPM), Open Field Test (OFT), and Light-Dark Box (LDB) test. Diazepam (2 mg/kg) served as the standard reference drug. The results revealed that EEHI significantly reduced anxiety-like behaviours in all three tests when compared to the control group. In the EPM test, EEHI-treated rodents spent more time and entered the open arms. In the OFT, ambulation, rearing and assisted rearing increased, indicating lower levels of anxiety. The LDB test supported these findings, with a significant increase in time spent in the light compartment. The study suggests that EEHI has promising anxiolytic activity and may offer a natural treatment alternative for anxiety disorders. Further research is needed to isolate specific active molecules and better understand the underlying mechanisms of action.

Keywords: *Hemidesmus indicus*, Anxiolytic activity, Rodent model, Elevated plus maze, Open field test, Light-dark box test.

INTRODUCTION

The main class of drugs that are frequently administered to alleviate anxiety are benzodiazepines. However, using them is linked to negative effects including addiction risk, potentiation of other central depressant medications, and psychomotor impairment. Numerous plants are being researched for use as supplementary and alternative anxiety medications^{1,2}. Studies have been carried out to find a different, more targeted, and affordable treatment. *Hemidesmus indicus* also known as Indian sarsaparilla in English, Anantmul in Hindi, and Ananta in Sanskrit language. It is a member of the Apocynaceae family that can be found throughout India, particularly in various territories of West Bengal. It is a thin, laticiferous, semi-erect and fragile bush, specifically known for its therapeutic properties³. It is reported that Indian traditional healers utilize it for nephritic symptoms, syphilis, and paediatric sore mouths. The decoction of roots is beneficial for skin conditions, syphilis, elephantiasis, anorexia, blood purification, and renal and urinary illnesses. It is commonly used in folk medicine and Ayurvedic and Unani preparations for treating biliousness, blood disorders, diarrhoea, skin illnesses, respiratory conditions, fever, asthma, eye diseases, burning sensation, arthritic conditions and gastric problems⁴⁻⁶. Despite many reports in scientific publications on the uses of HI, relatively little research has been done on CNS applications. Because of this, the present study was taken to evaluate the anti-anxiety activity of the ethanolic extract from the roots of *Hemidesmus indicus*.

MATERIAL AND METHOD

Collection and authentication of plant material

Root of *Hemidesmus indicus* R.Br. (locally called Anantmul) were obtained from Doctor Hari Singh Gaur Vishwavidyalaya botanical garden and authenticated from Department of Botany, Dr. H.S. Gour University, Sagar (M.P). Herbarium number: BOT/H/04/104/12

Preparation of ethanolic extract of *Hemidesmus indicus*:

Dried *Hemidesmus indicus* powder 500 grams were thoroughly extracted using 95% ethanolic in Soxhlet system for a whole day. The solvent evaporated, leaving behind a dark brown residue. It was discovered that the yield of *Hemidesmus indicus* root extract was 20.7% w/w. In preparation for their use in phytochemical and toxicological analyses, the extracts were dehydrated at normal temperature & then refrigerated at 4°C.

Animals

Adult Swiss mice (20–30 gm) of either sex were used for the study. The animals were acquired from the College of Veterinary Science and Animal Husbandry NDVSU, Mhow, Madhya Pradesh. They were housed in polypropylene cages in the air-conditioned room with the temperature maintained at $25 \pm 3^\circ\text{C}$, and 12 h alternating light and dark cycles. The mice were provided with a nutritionally adequate diet (Hindustan Lever Limited, India) and drinking water ad libitum throughout the study. Approval by the Animal Ethics Committee for the experimental procedures obtained.

Acute oral toxicity study

Studies on acute toxicity were carried out in accordance with OECD 423 criteria (OECD, 2001). After 24 h of fasting, different groups of mice were administered single oral dose (500, 1000 or 2000 mg/kg) of ethanolic extract of *H. indicus*. Three mice were used for each dose level in the study. Immediately after dosing, animals were observed for signs of toxicity during the first 0.5, 1, 2, 4, 8 and 12 h, and at every 24 h for 14 days. Behavioural parameters, tremors, lethargy, death, amount of water and feed taken were observed ⁷.

Drugs

Benzodiazepines are recognized to be anxiolytics at low dosages and induce drowsiness and muscular relaxation at greater levels⁸. We used diazepam (2 mg/kg) as a standard to evaluate anxiolytic effects. Diazepam (Calmpose 5 mg, Ranbaxy Laboratories Limited, Navi-Mumbai) was suspended in 0.5% of carboxymethyl cellulose in distilled water. Accurately weighed quantity of ethanolic extract of *Hemidesmus indicus* was separately suspended in distilled water using 1% (w/v) of gum acacia as suspending agent and administered to experimental animals.

Treatment Schedule

The anxiolytic activity was examined by using the elevated plus maze, open field test and light and dark model. A total of 30 mice of either sex were randomly divided into five groups of 6 each and treated as follows: Group 1 received vehicle (normal saline); group 2 received diazepam (2 mg/kg, p.o.); groups 3, 4 and 5 received ethanolic extract of *Hemidesmus indicus* roots (100, 200 and 400 mg/kg, p.o., respectively).

Elevated Plus-Maze Test

The plus-maze instrument, made up of two open arms (16×5 cm) and two closed arms (16×5×12 cm) with an open roof, was used to examine anxiolytic behaviour in animals. The plus-maze was elevated (25 cm) from the floor. After 1 hour of oral administration of vehicle, diazepam, and an ethanolic extract of *H. indicus*, each mouse was put on the central platform, facing the open arm. The proportion of time spent (duration) in open arms and the frequency of open arm entries were recorded for 5 minutes. All precautions were made to ensure that no external stimuli, other than the height of the plus maze, would cause anxiety in the animals. Arm entry was defined as all four paws crossing the line separating an arm and the core area. The proportion of time spent in open arms and number of open arm entries were computed using the following formulas: [100 × open/(open + enclosed)] and (100 × open/total entries), respectively ⁹⁻¹².

Open Field

This assay was used to detect both angiogenic and anxiolytic action under identical conditions. Mice were tested using a variety of open field devices. The apparatus was a wooden box measuring 60 x 60 x 60 cm. The open field area was divided into

16 squares (15 × 15 cm), with four in the centre and 12 along the walls. The experimental chamber was dark and soundproof. The open field arena was lighted with a 40-W bulb that focused on the field from a height of 75-100 cm. After 60 min of oral administration with vehicle, diazepam, and an ethanolic extract of *H. indicus* extract, mice were placed individually in one of the corner squares, and the ambulation (no. of square crossed), number of rearing (the number of times an animal stands on its hind legs, often with its forepaws raised off the ground.) and number of assisted rearing (Instances where the animal rears with the support of the arena walls, using them to balance or explore.) were recorded for 5 minutes ¹³⁻¹⁵.

Light/dark test

The device was made up of two 20 cm x 10 cm x 14 cm plastic boxes. One compartment was painted white and had bright lighting, while the other compartment was painted dark black and had red dimly illuminated light. The mice were allowed to move between boxes via an open door. The illumination in the black compartment was 50 lux, but in the white region it was raised to 1000 lux using an additional light source. After 60 min of oral treatment with vehicle, diazepam and ethanolic extract of *H. indicus* mice was placed in the light box facing the hole. The transition between the light and dark boxes, as well as the duration spent in the light box, were recorded for 5 minutes ¹⁶.

RESULTS

Result of OECD toxicity study

The OECD 423 standards were followed in conducting the acute oral toxicity research. No adverse changes and mortality were observed in animals up to the dose of 2000 mg/kg, which orally received ethanolic extract of *Hemidesmus indicus*. This indicates 2000 mg/kg is maximum safe dose. Hence, the three doses were selected as 100 mg/kg, 200 mg/kg and 400 mg/kg for studying *In vivo* antianxiety activity.

Evaluation of anti-anxiety activity

Elevated plus maze

In EPM, (Table No.1,2) all the mice were treated with three measurements of HIEE (100, 200 and 400 mg/kg) which indicated increase in open arm entries as well as time spent in open arms of EPM model which showed significantly reduce in anxiety and also, animals treated with diazepam (2 mg/kg), obviously, indicated increase in number of entries in open arms as well as time spent at open arm. Furthermore animals treated with each of the three dosages indicated reduction in number of passages in closed arms of EPM model when compared with control group. Which demonstrated decline in time spent at closed arms of EPM which was huge in vehicle treated control group. Additionally, animals treated with diazepam obviously, indicated maximum reduction in number of passages at closed arm.

Table 1: Anxiolytic activity profile on Number of entries (Mean ± SEM) in EPM apparatus of *Hemidesmus indicus* ethanolic extract.

GROUP NO.	TREATMENT GROUP	DOSE (mg/kg)	Number of entries (Mean ± SEM)		% OAE (percentage open arm entries)
			Open arm	Closed arm	
1	CONTROL	saline	7.33 ± 0.21	11.1 ± 0.47	39.77 ± 1.59
2	DIAZEPAM	2	13.8 ± 0.34***	6.5 ± 0.22***	67.98 ± 2.16***
3	HIEE	100	6.5 ± 0.22	9 ± 0.36	41.94 ± 1.82
4	HIEE	200	8.16 ± 0.30*	8.33 ± 0.36*	50.51 ± 2.61*
5	HIEE	400	10.83 ± 0.41***	7.5 ± 0.22**	59.09 ± 2.69***

Results are shown as MEAN ± SEM (n=6); *P<0.05, **P<0.01, ***P<0.001: when compared to control group by one way ANOVA followed by Dunnett multiple comparison test

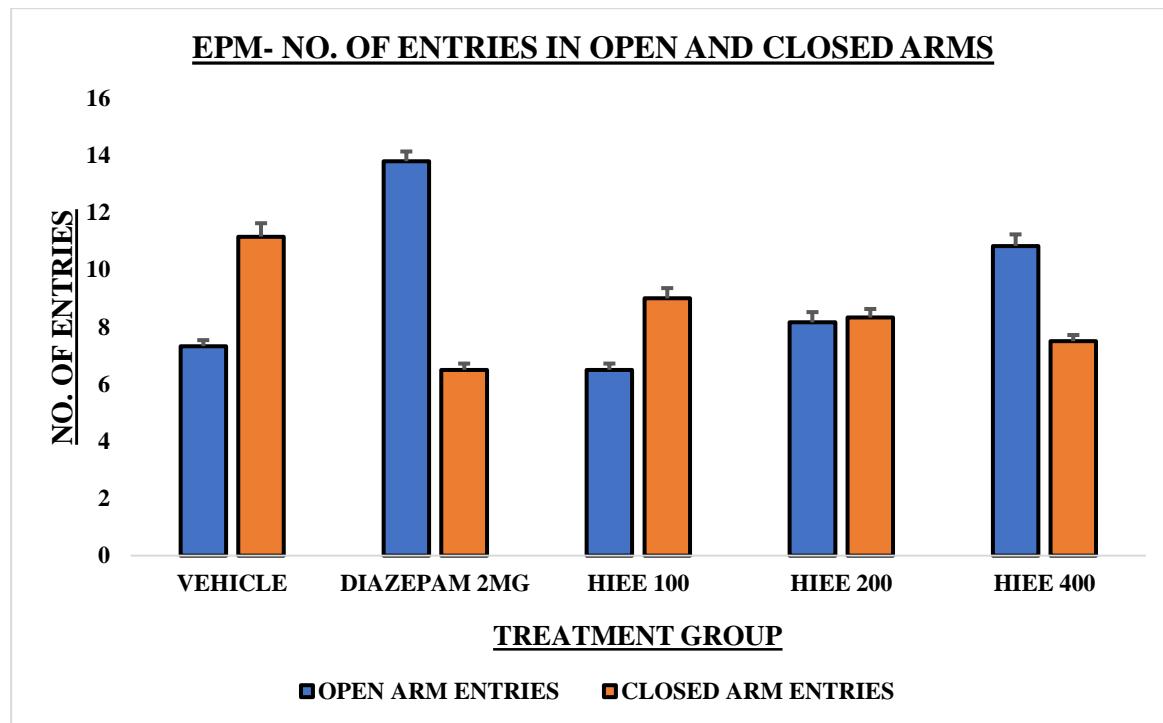


Figure 1: Graphical representation for no. of entries in open and closed arms in EPM

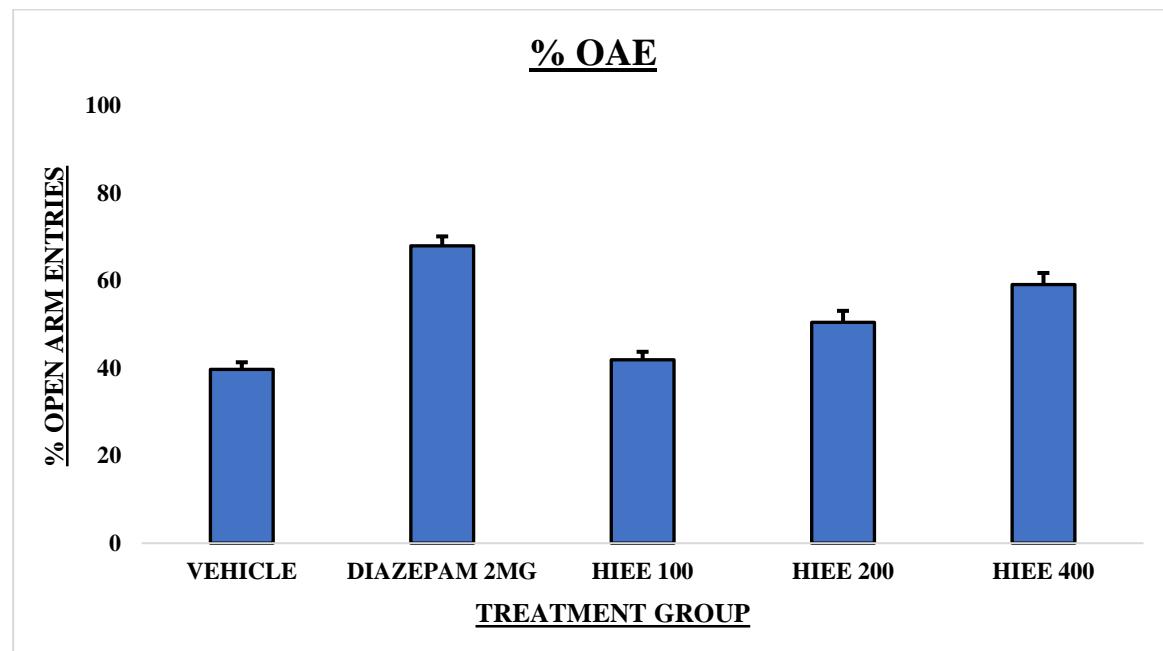


Figure 2 – Graphical representation for percentage open arm entries.

Table 2: Anxiolytic activity profile on total time spent in open and closed arms in sec (Mean \pm SEM) of *Hemidesmus indicus* ethanolic extract in EPM.

GROUP NO.	TREATMENT GROUP	DOSE (mg/kg)	Time spent in sec (Mean \pm SEM)		% TSOA (Percentage time spent in open arms)
			Open arm	Closed arm	
1	CONTROL	saline	53.33 \pm 1.64	238.16 \pm 2.48	18.27 \pm 0.59
2	DIAZEPAM	2	161.66 \pm 3.37***	130 \pm 2.12***	55.42 \pm 1.47***
3	HIEE	100	92.5 \pm 1.74*	194.16 \pm 2.08*	32.28 \pm 0.70*
4	HIEE	200	136.16 \pm 3.87**	155.33 \pm 1.89*	46.71 \pm 1.44**
5	HIEE	400	148.67 \pm 2.92***	146.83 \pm 2.65**	50.31 \pm 1.34***

Results are shown as MEAN \pm SEM (n=6); *P<0.05, **P<0.01, ***P<0.001: when compared to control group by one way ANOVA followed by Dunnett multiple comparison test

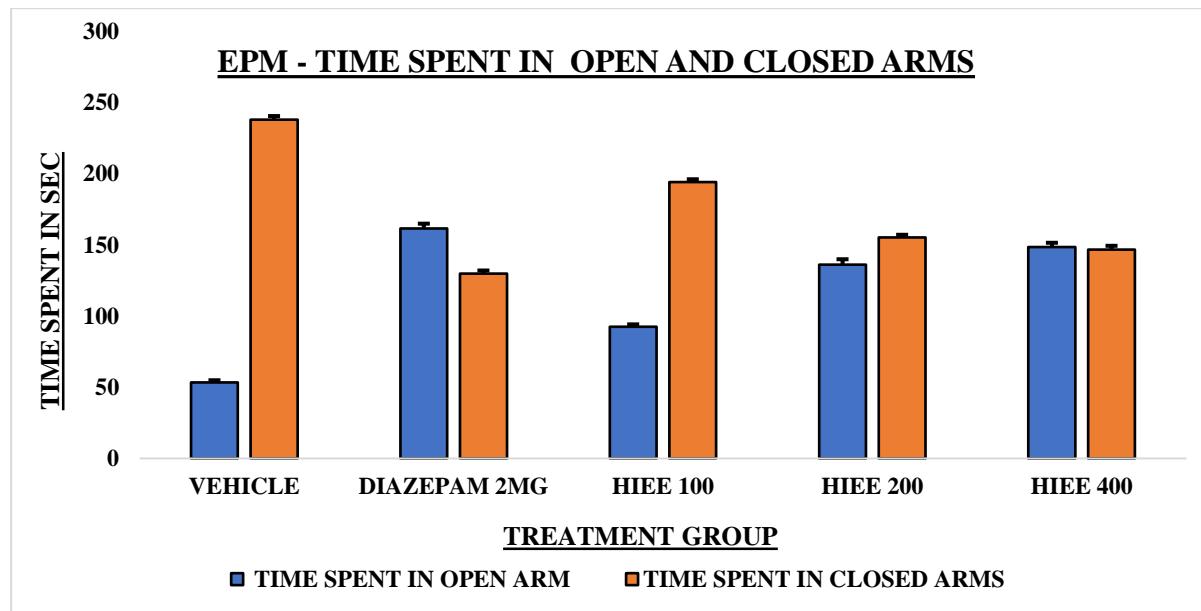


Figure 3: Graphical representation for time spent in open and closed arms in EPM

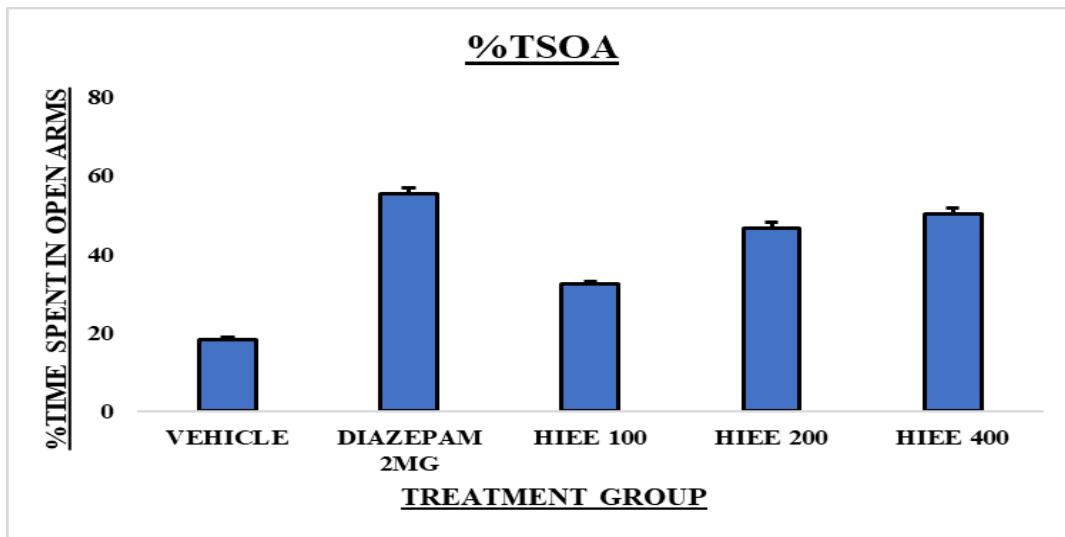


Figure 4: Graphical representation for %TSOA (Percentage time spent in open arms) in EPM

Light and dark model

In LDT, (Table No. 3) all the mice were treated with three measurements of HIEE (100, 200 and 400 mg/kg) which indicated lessened time spent in dark box with corresponding increase in time spent in light chamber when compared with controls. Essentially, animals treated with diazepam (1mg/kg) obviously demonstrated decreased time spent in dark box with

corresponding increase in time spent in light chamber. Animals treated with moderate and high dosage (200 and 400mg/kg) indicates more critical results when compared with the low dosage (100 mg/kg). In the HIEE groups, a dose-dependent increase in light entrances and time spent in light was seen. Higher doses (200 mg/kg and 400 mg/kg) produced results similar to diazepam, implying that HIEE might exhibit anxiolytic properties.

Table 3: Anxiolytic activity profile on light and dark apparatus of *Hemidesmus indicus* ethanolic extract.

GROUP NO.	TREATMENT GROUP	DOSE (mg/kg)	TIME SPENT IN SEC (Mean ± SEM)		%TSLB (Percentage time spent in light box) (Mean ± SEM)
			LIGHT	DARK	
1	CONTROL	saline	44.66 ± 1.83	254.66 ± 2.65	14.92 ± 3.10
2	DIAZEPAM	2	153.33 ± 2.73**	146.16 ± 2.104**	51.19 ± 1.78***
3	HIEE	100	78 ± 2.54*	221.33 ± 1.42*	26.05 ± 3.26**
4	HIEE	200	126.83 ± 2.84**	172.66 ± 2.77**	42.34 ± 2.24**
5	HIEE	400	138.87 ± 2.31***	160.16 ± 2.49***	46.44 ± 1.66***

Results are shown as MEAN ± SEM (n=6); a=P<0.05, b=P<0.01, c=P<0.001: when compared to control group by one way ANOVA followed by Dunnett multiple comparison test

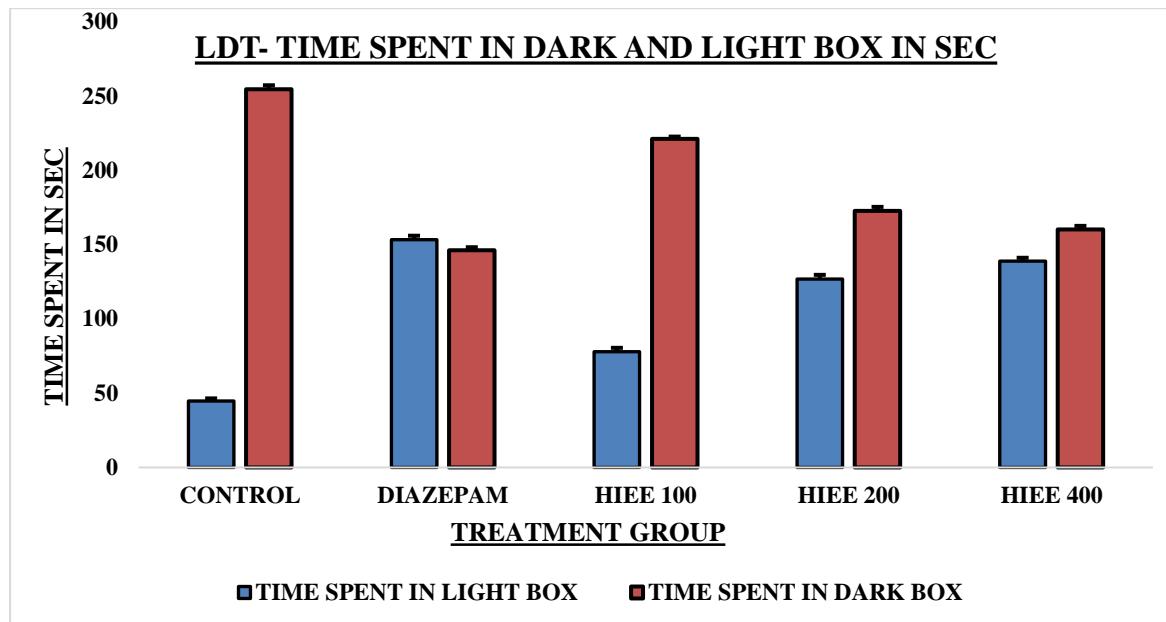


Figure 5: Graphical representation for time spent in light and dark box in LDT

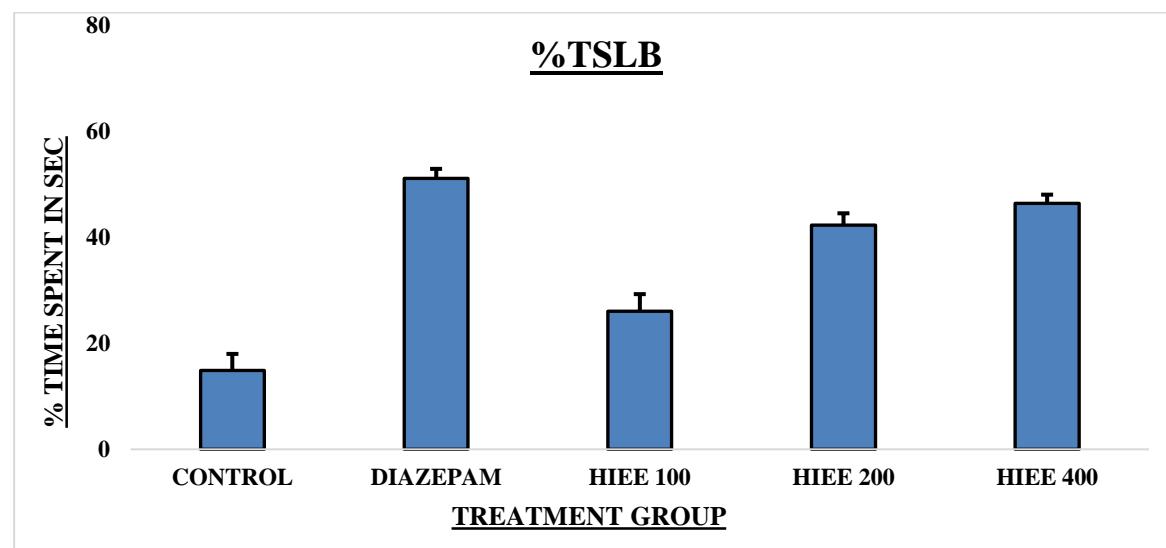


Figure 6: Graphical representation for %TSLB percentage time spent in light and dark box in LDT

Open field test

In OFT, (Table No. 4) all the mice were treated with three measurements of HIEE (100, 200 and 400 mg/kg) which indicated increase in every single exploratory parameter. The experiment assessed the effects of various doses of drugs on ambulation, rearing, and assisted rearing. The control group displayed moderate ambulation and rearing, with minimal assistance rearing. When compared to the control group, the

diazepam group had considerably higher ambulation, rearing, and assisted rearing rates. Doses of 100, 200, and 400 mg/kg among the HIEE groups resulted in varying degrees of ambulation, rearing, and assisted rearing; the highest dose led to the highest level of activity. Overall, diazepam markedly enhanced locomotor activity, while doses of HIEE indicated potential therapeutic use by showing dose-dependent effects on motor behaviour.

Table 4: Anxiolytic activity profile on open field apparatus of *Hemidesmus indicus* ethanolic extract.

GROUP NO.	TREATMENT GROUP	DOSE (mg/kg)	AMBULATION	NO. OF REARING	NO. OF ASSISTED REARING
1	CONTROL	saline	112.5 ± 1.33	8.33 ± 0.49	18.16 ± 0.47
2	DIAZEPAM	2	192.16 ± 1.57***	13.83 ± 0.307***	36.33 ± 0.61***
3	HIEE	100	139.66 ± 1.99**	9.16 ± 0.477	22.66 ± 0.91*
4	HIEE	200	171 ± 1.36***	11.41 ± 0.33**	32 ± 0.57***
5	HIEE	400	182.21 ± 1.61***	11.84 ± 0.47**	34.5 ± 0.68***

Results are shown as MEAN ± SEM (n=6); *P<0.05, **P<0.01, ***P<0.001: when compared to control group by one way ANOVA followed by Dunnett multiple comparison test

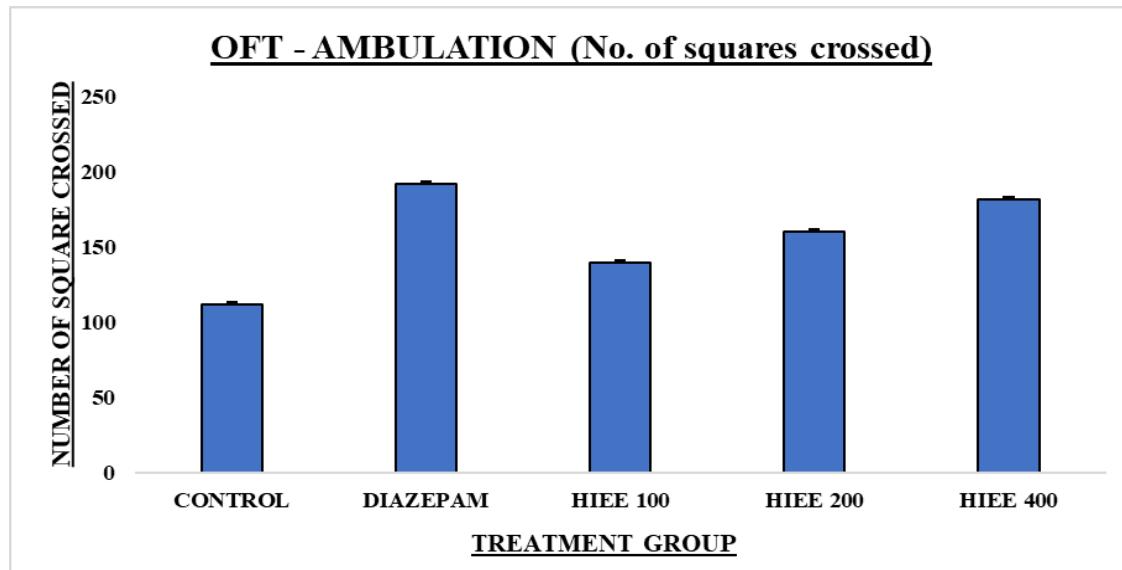


Figure 7: Graphical representation for AMBULATION (no. of square crossed) in OFT.

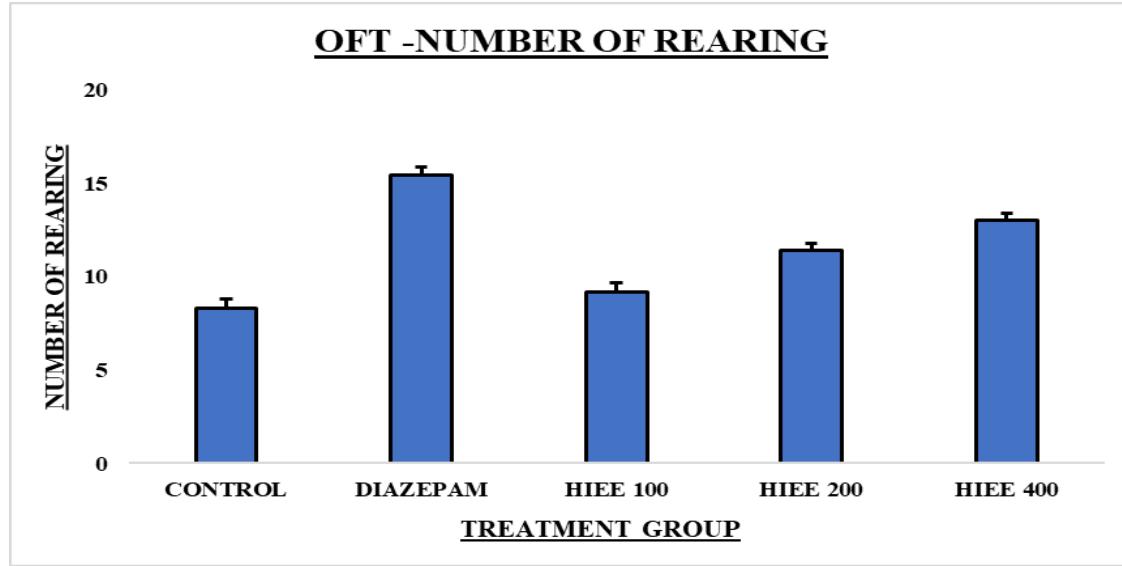


Figure 8: Graphical representation for no. of REARING in OFT.

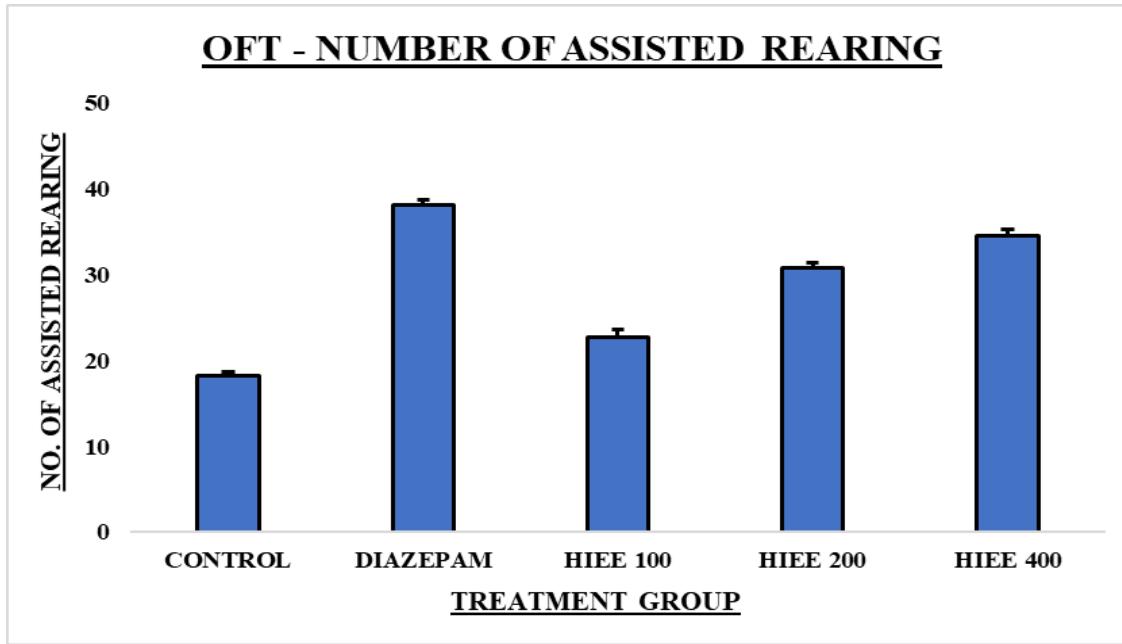


Figure 9: Graphical representation for no. of assisted rearing in OFT

DISCUSSION

Anxiety disorders are among the most common mental disorders. Anxiety is a typical reaction that includes dread, tension, high blood pressure, perspiration, and trembling. However, when it gets excessive, it has a negative impact on everyday life¹⁷. The plant includes a diverse range of bioactive chemicals, including saponins, tannins, flavonoid ds, steroids, and alkaloids, many of which have pharmacological properties relevant to the central nervous system and may contribute to anxiolytic (anti-anxiety) effects¹⁸. The elevated plus maze (EPM) is a popular behavioural assay for measuring anxiety in rodents. In our study, mice administered with the ethanolic extract of *Hemidesmus indicus* (HIEE) spent more time in the open arms and entered them more frequently than the control group. These behaviours are indicative of decreased anxiety, as rodents naturally avoid open and elevated regions due to their sensitivity to potentially dangerous places. The EPM data imply that HIEE has a relaxing impact on rodents at doses of 200mg/kg and 400mg/kg, lowering their anxiety and increasing their willingness to explore potentially dangerous locations. This experiment gave strong data supporting the anxiolytic effects of HIEE^{19,20}. In light-dark box test (LDBT) is a popular behavioural assay for detecting anxiety-like behaviours in rodents, taking use of their natural sensitivity to highly lighted environments and preference for dark, confined places²¹. In our study, mice given the ethanolic extract of *Hemidesmus indicus* (HEEI) 200mg/kg and 400mg/kg spent much more time in the light compartment than the control, indicating a decrease in anxiety levels. Furthermore, the frequency of transitions between the light and dark compartments was greater in the HIEE-treated group, indicating more exploratory activity and less fearfulness. The results of the LDBT support the anxiolytic effects of HIEE found in other behavioural tests, such as the elevated plus maze (EPM) and the open field test (OFT)^{22,23}. The open field test (OFT) results revealed significant evidence for the anxiolytic effects of *Hemidesmus indicus*' ethanolic extract (HIEE). Treated mice had a much higher number of squares crossed, indicating increased locomotor activity and decreased anxiety. Furthermore, the frequency of rearing, a measure of exploratory behaviour, was significantly higher in the EHEI group than in controls, indicating increased curiosity and decreased fearfulness. The rise in assisted raising, in which rodents explore while leaning against walls, demonstrated a balanced reduction in anxiety while remaining cautious. These behaviours underscore EHEI's anxiolytic effect, complementing the findings of the elevated plus maze (EPM) and light-dark box test (LDBT), and imply that *Hemidesmus indicus* could be a promising natural anxiety treatment²⁴. Thus, in this study, both the higher doses of HIEE (200 and 400 mg/kg) and diazepam significantly reduced the anxiety effect in mice and were proven to be effective.

CONCLUSION

The study shows that the ethanolic extract of *Hemidesmus indicus* (EHEI) has strong anxiolytic activity in mice models and has a good safety profile. These data indicate that EHEI may be a promising natural alternative or complementary therapy for anxiety disorders. However, more study is needed to investigate different extracts, understand mechanisms, optimize dose, and prove efficacy and safety through long-term and clinical investigations. If these procedures are completed successfully, *Hemidesmus indicus* may be recognized as a viable choice in the pharmaceutical management of anxiety disorders, providing a natural and effective treatment alternative.

REFERENCES

1. Spinella M. Herbal medicines and epilepsy: the potential for benefit and adverse effects. *Epilepsy & Behav.* 2001;2(6):524-32. <https://doi.org/10.1006/ebeh.2001.0281> PMid:12609386
2. Kamal M, Jawaad T. Herbal drugs in mirror of anxiety disorder-A review. *Int J Biomed Res.* 2011;2(1):62-72. <https://doi.org/10.7439/ijbr.v2i1.81>
3. Chatterjee S, Banerjee A, Chandra I. *Hemidesmus indicus*: A rich source of herbal medicine. *Med Aromat Plants* 2013;3:e155. <https://doi.org/10.4172/2167-0412.1000e155>
4. Nair SA, Sabulal B, Radhika J, Arunkumar R, Subramoniam A. Promising anti-diabetes mellitus activity in rats of β -amyrin palmitate isolated from *Hemidesmus indicus* roots. *Eur J Pharmacol.* 2014; 734:77-82. <https://doi.org/10.1016/j.ejphar.2014.03.050> PMid:24726843
5. Aminuddin GR. Pluralistic folk uses of *Hemidesmus indicus* (L.) R. Br. from south eastern India. *J Econ Taxon Bot.* 1991;15:715-8.
6. Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. *Pharmacol Biochem Behav.* 1980;13(2):167-70. [https://doi.org/10.1016/0091-3057\(80\)90067-2](https://doi.org/10.1016/0091-3057(80)90067-2) PMid:6106204
7. OECD/OCDE. Guidelines for the testing of chemicals, revised draft guidelines 423; acute oral toxicity-acute toxic class method, OECD publishing.2001.
8. Kawlni L, Bora M, Upadhyay SN, Mukherjee K, Hazra J. Pharmacological and therapeutic profile of anantamula (*hemidesmus indicus* (L.) R. Br.): a comprehensive review. *Int J Ayurveda Pharma Res.* 2017;5(11):49-57.
9. Kumar D, Kumar S. Evaluation of antianxiety activity of *Calotropis gigantea* roots. *J FundamenT Pharma Res.* 2014;2:30-7.
10. Kumar D, Kumar S. Screening of antianxiety activity of *Abies pindrow* Royle aerial parts. *Indian J Pharma Edu Res.* 2015;49(1):66-70. <https://doi.org/10.5530/ijper.49.1.9>
11. Nishino T, Takeuchi T, Takechi K, Kamei C. Evaluation of anxiolytic-like effects of some short-acting benzodiazepine hypnotics in mice. *J Pharmacol Sci.* 2008;107(3):349-54. <https://doi.org/10.1254/jphs.08107FP> PMid:18603828
12. Kulkarni SK, Verma A. Protective effect of BR-16A (Mentat), a herbal preparation on alcohol abstinence-induced anxiety and convulsions. *Indian J Exp Biol.* 1993;31(5):435-9.
13. Rauniar GP, Deo S, Bhattacharya SK. Evaluation of anxiolytic activity of tensarin in mice. *Kathmandu University Medical Journal (KUMJ).* 2007;5(2):188-94.
14. Yadav AV, Kawale LA, Nade VS. Effect of *Morus alba* L.(mulberry) leaves on anxiety in mice. *Indian J Pharmacol.* 2008;40(1):32-6. <https://doi.org/10.4103/0253-7613.40487> PMid:21264159 PMCid:PMC3023120
15. Nagaraja TS, Mahmood R, Krishna V, Thippeswamy BS, Veerapur VP. Evaluation of anxiolytic effect of *Erythrina mysorensis* Gamb. in mice. *Indian J Pharmacol.* 2012;44(4):489-92. <https://doi.org/10.4103/0253-7613.99316> PMid:23087511 PMCid:PMC3469953
16. Costall B, Jones BJ, Kelly ME, Naylor RJ, Tomkins DM. Exploration of mice in a black and white test box: validation as a model of anxiety. *Pharmacol Biochem Behav.* 1989;32(3):777-85. [https://doi.org/10.1016/0091-3057\(89\)90033-6](https://doi.org/10.1016/0091-3057(89)90033-6) PMid:2740429
17. Sastry BN. The wealth of India, raw materials. CSIR, New Delhi. 1962; 6:439.
18. Moser DK. "The rust of life": impact of anxiety on cardiac patients. *American J Crit Care.* 2007;16(4):361-9. <https://doi.org/10.4037/ajcc2007.16.4.361>
19. Lister RG. Ethologically-based animal models of anxiety disorders. *Pharmacol Therap.* 1990;46(3):321-40. [https://doi.org/10.1016/0163-7258\(90\)90021-S](https://doi.org/10.1016/0163-7258(90)90021-S) PMid:2188266
20. File SE. Factors controlling measures of anxiety and responses to novelty in the mouse. *Behav Brain Res.* 2001;125(1-2):151-7. [https://doi.org/10.1016/S0166-4328\(01\)00292-3](https://doi.org/10.1016/S0166-4328(01)00292-3) PMid:11682106
21. Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines.

Pharmacol Biochem Behav. 1980;13(2):167-70.
[https://doi.org/10.1016/0091-3057\(80\)90067-2](https://doi.org/10.1016/0091-3057(80)90067-2) PMid:6106204

22. Graeff FG, Zangrossi Jr H. Animal models of anxiety disorders. Biol Psychiatry. 2002;877-93.
<https://doi.org/10.1002/0470854871.chxix1>

23. Lepicard EM, Joubert C, Hagneau I, Perez-Diaz F, Chapouthier G. Differences in anxiety-related behavior and response to diazepam in BALB/cByJ and C57BL/6J strains of mice. Pharmacol Biochem Behav. 2000;67(4):739-48. [https://doi.org/10.1016/S0091-3057\(00\)00419-6](https://doi.org/10.1016/S0091-3057(00)00419-6) PMid:11166064

24. Mecham AO, Moran PM, Elliott MJ, Young AM, Joseph MH, Green RA. A comparison between Dark Agouti and Sprague-Dawley rats in their behaviour on the elevated plus-maze, open-field apparatus and activity meters, and their response to diazepam. Psychopharmacol. 2002; 159:188-95.
<https://doi.org/10.1007/s002130100902> PMid:11862348