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Abstract 
___________________________________________________________________________________________________________________ 

Patients having cancer, infectious and other diseases suffer from drug resistance and systemic side 
effects owing to the conventional chemotherapeutics’ insolubility, toxicity, non-specificity, low 
therapeutic indices, and several limitations against biological barriers. To overcome these obstacles, 
nanotechnology-based metallic platinum nanoparticles (PtNPs) have attracted attention for targeted 
drug delivery and sustained release against the diseases for the cellular killing as antimicrobial and 
anticancer agents. PtNPs-based therapeutic systems have been utilized to avail their higher 
therapeutic efficacies with low concentrations against various diseases due to their suitable physico-
chemical features such as shape, size, high surface to volume ratio, favorable bio-stability, easy 
membrane penetration, and easy surface functionalizations with cargos, ligands, peptides, antibodies 
and polymers for the targeted and controlled therapy against diseases. PtNPs may also be conjugated 
with other metals with drugs as suitable carriers for their chemo, photothermal / photoacoustic / 
magnetic therapies against tumors. This review demonstrates mainly the synthesis, functionalization, 
mechanism of action, biomedical application and toxicity of PtNPs as suitable nanomedicinal delivery 
system against diseases.  
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Introduction 

Infectious diseases and cancer including tumors are caused by 
the exposure of pathogens, toxicants or carcinogens. In 
general, the antioxidant and the immune (innate and 
acquired) body defense systems have the ability to prevent the 
biological system from the initiation of disease and the 
subsequent development of infection 1. However, pathogens, 
contagious and virulent agents or toxicants are transmitted 
into the host body system and overpower the systemic 
defense mechanisms to initiate site-infections followed by 
their multiplications and / or host-cells-injuries, genetic 
mutations or DNA damages leading to the development and 
progression of diseases, cancer, metastatic cancer or tumors 2-

5. Conventional chemotherapy produces improper dose 
application-related drug resistance and high drug dosage-
oriented cytotoxicity to healthy cells aggravating the disease 
condition of the patients 6. Moreover, chemotherapeutics also 
face various constraints such as their insolubility, toxicity, 
non-specificity, low bio-stability, biological barriers and low 
therapeutic indexes that implicate sufferings further to 
patients 7. To overcome the obstacles, nanotechnology based 
metallic PtNPs have gained attention owing to their specific 
shape, size, large surface area, lower cytotoxicity, easy surface 
functionalization, electro-catalyzing capability (oxidation, 
hydrogenation and dehydrogenation), resistancy to corrosion 
and chemical attacks, chemical stability and resistancy to 
ionization, photothermal, photoacoustic and surface plasmon 
resonance (SPR) -related optical characteristics owing to the 
enhanced interactions of light and the free electrons on the 
nearby molecules of the metallic NPs’ surfaces causing 

collective oscillations of the conduction band electrons8-15. 
PtNPs may penetrate cell membrane causing leakage of 
membrane and interact with intracellular components leading 
to DNA or cellular damage through the release of platinum 
ions 16,17. Owing to the high ratio of electrons to particle 
surface, PtNPs may regulate oxidative stress and induct the 
apoptotic death of cancer cells via DNA damages and 
inhibiting their replications 18-22. PtNPs may function as potent 
and stable mimetics of superoxide dismutase and catalase to 
attenuate oxidative stress-induced inflammation and / or 
injury in the biological system through the scavenging of ROS 
23-25,20. PtNPs may be modified with various surface coating 
materials such as polymers (poly-lactide-co-glycolide, poly-L-
lactic acid, poly-ethylene glycol,  polyvinyl alcohol, chitosan 
and alginate) with drugs to get a long circulation half-life and 
controlled drug release for the accumulation in tumor 
region/s implicating their higher biocompatibility and reverse 
drug resistance activities through passive targeting 26-34. 
Moreover, they may be conjugated with antibodies, nucleic 
acids, peptides, targeting ligands, aptamers and drugs to 
provide the effective active targeting therapy 35-40. Hybrid 
bimetallic porous NPs such as Au-Pt, Fe-Pt NPs conjugated 
with drugs and /or ligands may exhibit their higher optical, 
magnetic and / or infrared radiation-based anticancer efficacy 
through chemo-photothermal, imaging guided photoacoustic 
or hyperthermal therapy 41-54. This review elucidates chiefly 
the PtNPs as potent drug delivery system against various 
diseases on the basis of their therapeutic biological efficacies. 
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Synthesis of platinum nanoparticles and their 
hybrid forms 

The shape and size of the chemically synthesized PtNPs may 
vary depending on the reaction temperature, the appropriate 
selection of solvents (such as ethylene glycol), concentration 
of precursors (such as H2PtCl6), and the type and 
concentration of stabilizing (such as polyvinyl pyrrolidone 
(PVP)) and reducing agents (such as sodium hydroxide) 55. 
The chemical reduction is chiefly utilized for colloidal NPs-
production in which chemical agents reduce the metallic ions 
to form metallic NPs. The chemical agents such as sodium 
borohydride (NaBH4), potassium bitartrate (KC4H5O6), 
ascorbate, trisodium citrate dehydrate (Na3C6H9O9), methoxy 
polyethylene glycol (CH3O(CH2CH2O)nH), and elemental 
hydrogen are utilized for the reduction processes. The 
spherical PtNPs with small sizes (1-2 and 2-3 nm) may be 
obtained from H2PtCl6 at a lower concentration, while with the 
increment of the amount of H2PtCl6, the sizes may increase 
and the shapes of the NPs may change to cuboid (5-6 nm), oval 
(6-8 nm), and flower (16-18 nm) 8. 

PtNPs may be prepared following the methodology 56:Firstly, 
K2PtCl4 solution (20 mM, 5 mL) is mixed with Brij 58 solution 
(0.044 M, 1 mL), followed by sonication for 10 min utilizing a 
bath sonicator. Afterthat, L-ascorbic acid solution (0.04 M, 5 
mL) is poured into the previous solution followed by 
sonication for 45 min. Then the precipitates are collected 
through centrifugations for 3 times. Following another 
methodology 57, PtNPs may be synthesized by the chemical 
reduction of the platinum salt (H2PtCl6.6H2O (2 mmol L-1)) 
with the reaction of sodium borohydride (NaBH4 (4 mmol L-1)) 
utilizing poly vinyl alcohol as the capping stabilizer agent. The 
mixture is kept under vigorous stirring for 18 h for complete 
reduction, while the color of the mixture becomes bright 
yellow indicating the colloidal formation of NPs with the 
characteristic UV-Vis spectrum absorption peak at 260 nm. 
Following other method 58, PtNPs may also be synthesized 
through the reduction of H2PtCl6 (5 mM, 19.5 mg) with 
C6Na2O6 (43.5 mM, 83 mg) for 1 h at 90◦ C.  

Hybrid Au-Pt NPs may be synthesized through the reduction 
of Na2PtCl6.6H2O by ascorbic acid 59. At first, AuNPs solution is 
heated at 90◦ C for 10 min, and Na2PtCl6.6H2O (1mM, 0.32 mg) 
and ascorbic acid (4 mM, 28 mg) are adjoined step by step at 
10 and 30 min periods. Afterthat, the reaction mixture is 
heated at 90◦ C for 30 min. The Au-Pt NPs are also 
synthesized following two synthetic methods: 1. In this 
synthetic approach, two steps of the formation of Au-Pt NPs 
are considered. Firstly, the AuNPs are synthesized and 
purified 60-64. Secondly, PtNPs are formed: 18mL Milli-Q H2O 
and 5 mL purified AuNPs are placed in a 50 mL round bottom 
flask and stirred at 100◦ C for 15 min until stabilization. Then 
1 mL trisodium citrate dihydrate (68 mM, 0.020 g) is added to 
the solution and allowed for 10 min for temperature 
homogenization. Afterthat, 1 mL potassium 
tetrachloroplatinate (II) (K2PtCl4) (4.2 mM, 0.0017 g) is added, 
while a change of color to bluish-purple is observed, and after 
3 h of the reaction, the colloidal dispersion shows a final 
purple color. The colloidal mixture is spun at 15,000 rpm (10 
min, 1 cycle), and the precipitate is isolated from the 
supernatant. The supernatant denotes the colloidal solution 
with the coveted NPs. 2. In this method, a one-step 
formulation of Au-Pt NPs is followed, while platinum-
precursor is adjoined to the flask after AuNPs are formed: 
22.75 mL Milli-Q H2O is poured in a 50 mL round bottom flask 
affixed to a condenser and 100◦ C. 250 µL aqueous solution of 
HAuCl4xH2O (25.4 mM, 0.00216 g) is added into the flask after 
stabilization of the temperature.Then 1 mL aqueous solution 

of trisodium citrate dihydrate (68 mM, 0.020 g) is added and 
allowed for homogenization of temperature. Afterthat, 1 mL 
potassium tetrachloroplatinate (II) (4.2 mM, 0.017 g) is added 
into the flask for reaction. The suspension is spun at 15000 
rpm (10 min, 1 cycle), and the precipitate is isolated from the 
supernatant. The supernatant denotes the colloidal solution 
with the wanted NPs.  

  The Fe-Pt NPs may be synthesized following different 
methodology 46: FePt NPs may be prepared following polyol 
reduction method, while a reaction mixture of Fe(CO)5, 
Pt(acac)2, dioctyl ether, 1,2-hexadecanediol, oleic acid and 
oleylamine is heated at 290◦ C and then utilizing ethanol to 
extract resultant FePt NPs. An equimolar ratio of a Fe 
precursor (Fe(acac)3) and Pt precursors (Pt(acac)2, PtCl2, 
PtCl4, and H2PtCl6.H2O) and the reducing agent (1,2-
hexadecanediol) with octyl ether may be utilized to get diverse 
sizes of Fe-Pt NPs. Fe-Pt NPs may also be prepared using 
microemulsion method in a water/glycol octyl phenyl 
ether/cyclohexane (water-in-oil) microemulsion utilizing 
FeCl2 as the Fe precursor, H2PtCl6 as the Pt precursor and 
NaBH4 as the reducing agent. 

  Bio/green synthesis of PtNPs mediated by plant-extracts 
involving plant derivatives and metal precursors at optimal pH 
and temperature requires four hypothesized essential steps 65: 
The initial activated bio-reduction of metal ions to zero-
oxidation states by plants-reducing agents; The 2nd stage 
includes the development and aggregation of produced tiny 
particles into NPs having higher thermal stability; The 3rd 
termination step involves stabilized and capped NPs by plant 
derivatives having controlled range of shapes and sizes; The 
4th stage includes cleansing and purification of the NPs 
through centrifugation. The optimization of the shape, size, 
morphology and crystallinity of the NPs may be controlled by 
regulating reaction time, pH and temperature. 

  The green synthesis of PtNPs using plant-extracts 
(derivatives such as flavonoids, antioxidants, phenolic 
compounds, gallic acids, ascorbic acids, terpenoids, amino 
acids and a few proteins used to function as reducing, 
stabilizing or capping agents) and platinum precursors such as 
H2PtCl6 is performed through the reaction at 50-100◦ C for 1-
5 h to get different optimized morphological NPs. The changes 
of color from yellow to brown confirms the formation and 
completed reduction of Pt4 ions to Pt0 NPs analyzed by UV-Vis 
spectroscopy at 477 nm 66-72. 

Surface functionalizations of platinum 
nanoparticles and their hybrid forms  

Surface functionalizations (Fig.1) such as ligand 
exchange/addition, bio or chemical conjugations are needed 
for improved biocompatibility, excellent dispersion, prolonged 
circulation, specific targeting and sustained cargo release. 
Moreover, inclusion of reactive functional groups to the 
surfaces of NPs for further conjugation may make NPs 
multifunctional. The materials used for surface modification of 
metallic NPs to enhance their specificity and efficacy with 
therapeutic and catalytic activity include organic micromolar 
compounds such as aspartic acid, citric acid, glutamic acid, 
phosphorus acid, 2-amino ethyl mercaptan, gamma 
cyclodextrin and vitamin B, organic polymer compounds such 
as starch, glucose, polyethyleneimine (PEI), polyethylene 
glycol (PEG), polypeptides, proteins, and polyvinyl alcohol 
(PVA), low-molecular-weight ligands, polyunsaturated and 
saturated fatty acids, siRNA, DNA, plasmids, antibodies, small 
molecules, tumor markers and SiO2, and inorganic 
nanomaterials such as Au and Fe 73-79. 
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Figure 1: Functionalized PtNPs via conjugation of peptides, nucleic acids, antibodies, folic acid, biomolecules, polymers, and tumor 
markers. 

 

A few functionalizations of PtNPs are described below:  

The encapsulation of PtNPs with PLGA may be performed with 
some modifications by double emulsion 80. Different amounts 
of PtNPs and PVA (0.5% w/v) are adjoined to 200 µL ultrapure 
water for forming the 1st aqueous phase. 10 mg PLGA is 
dissolved in 0.4 mL dichloromethane to prepare an organic 
phase. Afterthat, the aqueous phase is added drop by drop into 
the organic phase and emulsified for 1 min with sonication at 
25 W and 30% amplitude utilizing a sonicator. Then the first 
emulsion is added drop by drop into the PVA solution (1.6 mL, 
1% w/v). The final solution is emulsified again through the 
sonication at 25 W and 30% amplitude for 2 min (second 
emulsion). Lastly, the second emulsion is stirred overnight at 
room temperature for removing the solvent. The NPs are 
collected through centrifugation and cleansing with ultrapure 
water three times.  

  The surface modifications of PLGA encapsulated PtNPs are 
performed through the attachments of the antibody and the 
PEG, such as, cetuximab to the PLGA particles: The previously 
prepared freeze-dried particles are redispersed in 1 mL MES 
buffer solution (containing 0.4 mg EDC) and waited to react 
with EDC for 10 min at room temperature on a rotator. 
Afterthat, 20µL solution of 1.1 mg sulfo-NHS with 40 µL MES is 
added to the particle solution, vortexed and allowed to react 
for 10-15 min at room temperature on the rotator. Then the 
particles are spun at 22136 RCF for 1 h, and the supernatant is 
removed, and 1 mL PBS is adjoined for sonication. Different 
amounts of 5 kDa PEG and 3 kDa PEG-biotin are adjoined into 
the solution and allowed to react for 2 h at room temperature 
on the rotator. Lastly, for the removal of the excess amount of 
PEG, unreacted particles are cleansed 3 times through 
centrifugation at 22136 RCF for 1 h with the replacement of 
the supernatant with PBS. The biotin-labeled antibody is 

anchored to the particles via conjugation with neutravidin: A 
solution of neutravidin (10 mg) in 0.5 mL 0.1% Tween-PBS is 
added into a well on a 4-well plate with a stir-bar. The 
particles sonicated previously are adjoined drop by drop into 
the neutravidin solution and waited to react for 3 h at room 
temperature. Then the solution is spun at 22136 RCF for 1 h 
and cleansed 3 times with PBS for the removal of the 
unreacted neutravidin. Afterthat, the particles are sonicated 
and 13.3 µL of biotin-antibody is adjoined into the tube and 
allowed to react for 3 h at room temperature on a rotator. 
Finally, the particles are spun at 22136 RCF for 1 h and 
cleansed 3 times in PBS for the removal of the unreacted 
antibody. 

  Au-Pt NPs may be coated with 3-aminopropyl trimethoxy 
silane (APTMS) and loaded with drug such as quinazoline 
derivative (Qd) following the method 81: 1mL Au-Pt NPs 
colloidal solution, 8 mL methanol and 2 mL Milli-Q water are 
mixed in a 25 mL round bottom flask. 0.6 mL APTMS is 
adjoined into the reaction solution and allowed to stir for 30 
min at room temperature (RT) followed by stirring at 4◦ C of 
the colloidal yield. Afterthat, 5 mL dimethyl sulfoxide (DMSO) 
is poured into a vial containing 2-(quinazolin-4-ylamino) 
propanoic acid (Qd) (0.026 mmol, 5.56 mg) and 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) (0.020 µmol, 0.020 
mL) and sonicated until fully dissolved. On the other hand, 7.5 
mL Au-Pt-APTMS NPs is poured in a 50 mL round bottom flask 
containing 7.5 mL Milli-Q water (ratio 1:1) and dispersed 
under magnetic stirring at RT. After 5 min, the solution of 
DMSO with the Qd and the EDC is adjoined into the flask 
followed by the addition of 2-3 drops of 0.1 M NH3 until the pH 
reaches to 11, and allowed the reaction under magnetic 
stirring overnight at RT to acquire the Qd-functionalized NPs. 
The NPs obtained are purified through dialysis 63-65. The 
purified hybrid Au-Pt NPs solution may be incubated with 
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drug such as doxorubicin at pH 8 as drug loading by its 
deprotonation at basic pH 82. The PEG may be coated on the 
NPs to remove particle aggregation and enhance the colloidal 
stability 83. Additionally, the bifunctionalized PEG linkers can 
enable the nanovehicles’ active targeting characteristics 
conjugated to cRGD peptides.  

  The surface functionalizations of Fe-Pt NPs through the 
ligand exchange of fromoleic acid to aminoethanethiol (AET), 
and the conjugations of anti-Her2 antibody and / or 
cysteamine, silica and (3-aminopropyl) triethoxy silane, 
tetraglycol, 3-mercaptopropionic acid (MPA) to produce 
COOH-terminated with EDC and folic acid, poly 
(diallyldimethylammonium chloride (PDDA) and silica, 
poly(L)lysine (PLL), folate, PEG, HVGGSSV peptide and Alexa 
fluor 750 fluorescent probe, oleic acid/oleylamine and L-
cysteine, or synthesized FePt-Fe2O3 with PEG and folate, have 
been performed to get excellent water-solubility with no 
aggregation in dispersion, excellent biocompatibility and 
stability, higher photothermal transduction efficiency, higher 
specific targeting therapeutic anticancer efficiency, and 
radiation-guided targeting/imaging and drug release into the 
diseased site/s 84-90,47,51,52.  

Characterization of the platinum nanoparticles 
and their composites 

  The synthesized Pt NPs/composites may be characterized by 
various analytical techniques 55,91,92. UV-Visible spectroscopy 
is utilized for confirming the synthesis and stability of the 
metallic/colloidal NPs. High resolution transmission electron 
microscopy is used to detect the morphology, crystal core-
shell structure, size, and the quantitative and qualitative 
analysis of the prepared and internalized NPs in cells or 
tissues. Atomic force microscopy is utilized to determine the 
surface thickness of the nanomaterials. Scanning electron 
microscopy is used to measure the structure of the surface and 
dimension of the NPs. Electrophoretic light scattering 
technique is utilized for the measurement of the 
electrophoretic mobility of NPs in dispersion, or in solution. X-
ray diffractometry is used to evaluate the crystalline nature of 
the functionalized NPs. Energy-dispersive spectroscopy is 
utilized to analyze the elemental composition of metallic NPs. 
Extended X-ray absorption fine structure spectroscopy is 
utilized for the elemental analysis of inter atomic distance and 
structural disorders of the NPs. Nanoscale infrared 
spectroscopy is used to detect the elemental composition and 
the bonding arrangement of the NPs. Fourier transform 
infrared spectroscopy is used to measure the concentration of 
the chemicals, surface chemistry, functional groups and atomic 
arrangement of the NPs. Dynamic light scattering 
spectroscopy is utilized to determine the hydrodynamic 
diameter/size and the surface charge/zeta potential for 
confirming contrast PEG attachment of the NPs. The 
inductively coupled plasma-atomic emission spectroscopy is 
used to measure the proportion of Au and Pt contents of the 
hybrid NPs. For visual characterization regarding the 
attachment of the secondary antibody, nanoparticle tracking 
analysis is utilized with a 488 nm laser, in fluorescent mode 
with a 500 nm filter for antibody-conjugated NPs. Computed 
tomography imaging is utilized to examine the concentration-
dependent contrast signaling of the hybrid NPs. 

Mechanism of action of platinum nanoparticles 

The microbicidal action of PtNPs may occur through their 
attachments to microbial surfaces and penetration to cell wall 
causing their disruption and lysis. These activities are 
associated with the intercellular ROS production (.OH, O2.-) 
leading to enzyme denaturation, DNA and cellular damage 
93,94. The anti-cancer activity of PtNPs may occur through their 
passive or active targeting inside the cells causing DNA strand 

breaks via the generation of ROS leading to DNA damage, 
intracellular macromolecules (such as carbohydrates and 
proteins) damages, disruption of DNA repair mechanisms and 
inhibition of gene transcription leading to growth arrest and 
apoptosis 95-98. Free radicals such as H2O2 and O2.- generated 
into the cellular cytosol and mitochondria are regulated by the 
intrinsic enzymes such as catalase (CAT), peroxidase (POD) 
and superoxide dismutase (SOD) to arrest oxidative stress, 
while SOD dismutes O2.- into H2O2 and O2, POD decomposes 
H2O2 into H2O, and CAT reduces H2O2 into O2 and H2O. The 
PtNPs possess SOD, POD and CAT-like enzymatic antioxidant 
activities to scavenge ROS and reduce cellular oxidative 
damage without any release of .OH via the Fenton reaction 99. 

Biomedical applications of platinum 
nanoparticles and their composites 

  A few reports of different groups on therapeutic efficacy 
regarding, chiefly, on cellular killing of Pt/hybrid Pt NPs 
against different diseases/cancers based on active or passive 
targeting have been described below (Table 1): 

  A few researchers have utilized different Pt/hybrid NPs such 
as PtNPs, AgPt NPs, PtNPs, PtNPs-based microreactors, AuPt 
NPs, H2PtCl6/SiO2 and H2PtCl6/TiO2 with their various sizes to 
treat cancer cells or target in vivo animals such as A549, MDA-
MB-231, LNCaP; HDF, A375, U87; Neuro 2A; SH-SY5Y; S1, S2, 
SP56 and C6, tumor bearing male Wistar rats respectively for 
getting higher therapeutic and targeting efficacy against brain 
cancer 100-105. A few investigatorshave used several NPs such 
as PtNPs, FA-Pt NPs, AuPt NPs, FA-FePt NPs, Fe3O4-Pt NPs, 
PIMA-CIS NPs, PEG-PIMA-CIS NPs, Pt@Bi2Te3-PEG NPs, and 
PSDE-Co-LDI-Pt(IV) NPs with their different sizes against 
HeLa, MDA-MB-231, 4T1, MCF-7, SKOV3(HER2+), MDA-MB-
231(HER2-), EMT-6, SKBR3, WM-266-4, LLC and A549 (CIS 
sensitive) cells, and to treat in vivo tumor bearing animals for 
getting higher anticancer targeted efficacy to combat breast 
cancer 9,51,106-115. A few scientists have applied different NPs 
such as PEGuilada-Pt NPs, TPP-Pt NPs, FA-Pt NPs, FePt NPs 
and peptide-gHPt2.5 NPs with their various sizes to treat 
HeLa, SiHa, and vero cells for getting targeted higher anti-
cancer and antioxidant efficacy against cervical cancer 
53,103,109,116-118. A few other investigators have utilized PtNPs 
with different sizes against K562, HepG2 and HuH-7 cells and 
to treat invivo tumor xenograft animals for getting higher anti-
cancer efficacy in liver cancer 40,119,120. A few other researchers 
have applied PtNPs against Mia-Pa-Ca-2 cells to achieve higher 
therapeutic efficacy against pancreatic cancer 121. A lot of 
researchers from different groups have applied various 
Pt/hybrid Pt NPs such as PEI-PCL-PEG micelleplexes, porous 
Pt NPs, PtNPs, HA-BPEI-SS-Pt NPs, FePt-Cys NPs, liposomal 
cisplatin (CIS) NPs and PLGA-carboplatin NPs with their 
different sizes to treat lung cancer cells, NSCLC, A549, human 
non-small lung cancer cells, H1975, LLC, NCI-H596, MA148, 
NCI-ADR/RES, MDA-MB-231 cells, and in vivo tumor models 
for achieving higher anti-cancer efficacy against lung cancer 
122-130. A lot of other researchers from different groups have 
used several NPs such as PtNPs, AuPt NPs, AuPtNCs and MgO-
Pt NPs with their different sizes for treating various cells such 
as A549, HT29, human colon carcinoma cells, HCT-116, SW480 
and SW62 cells to get higher targeted therapeutic efficacy 
against colon cancer 131-136. A lot of investigators have utilized 
different Pt/hybrid Pt NPs such as PtNPs, PLGA-carboplatin 
NPs, PLGA-PEG-wortmannin-CIS NPs, CIS NPs, FePt NPs, and 
metal-organic cages NPs with their different sizes for the 
treatment of various cancer cells such as SKOV-3, PA-1, OC 
SKOV-3, PROC, A2780, human ovarian cancer cells and in vivo 
tumor models to get higher targeted therapeutic efficacy 
against ovarian cancer 121,137-143. A few investigations have 
been performed through utilization of AuPt nanoseeds and 
AuPdPt NPs with their different sizes to treat EJ and bladder 
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cancer cells for achieving higher anti-cancer efficacy against 
bladder cancer 144,145. Another investigation has been done by 
using melanin-loaded Pt(IV) NPs to treat PC3 cells and in vivo 
tumor model for getting higher therapeutic efficiency against 
prostate cancer 146. A few researchers have utilized liposomal 
cisplatin to treat squamous cell oral carcinoma and in vivo 
tumor bearing animals for achieving higher targeted 
therapeutic efficacy against oral squamous cell cancer 147. A 
few other researchers have used PtNPs to treat U20S cells to 
get higher targeted anticancer efficacy against bone cancer 148. 
A few investigators have used PtNPs and PCL-Pt NPs to treat 
U937 and HH carcinoma cells for getting higher therapeutic 

efficacy against lymphoma 149,150. Another group of 
researchers have utilized PtNPs to treat B16/F10 cancer cells 
for getting higher therapeutic efficiency against melanoma 151. 
A few researchers have used PtNPs to treat human acute 
monocytic leukemia cells to achieve higher anticancer 
efficiency against leukemia 152. A few investigations have been 
performed utilizing PVP-Pt NPs to treat Gram +ve/-ve 
bacterial strains for getting higher microbicidal efficacy 
against microbial disease 153,154. Another group of researchers 
have utilized PtNPs to treat in vivo animals for getting higher 
therapeutic efficacy against colitis 155. 

 

Table 1: A few therapeutic effects of platinum and hybrid platinum nanoparticles against various cancers/diseases/microbial strains. 

Cancers/Diseases/ 

Microbial strains 

Platinum/Hybrid 

Platinum NPs 

Particle sizes 
(nm) 

Cell lines/Animal models/ Microbial 
strains 

Ref 

Brain PtNPs 

AgPtNPs 

PtNPs 

PtNPs-based microreactors 

AuPtNPs 

H2PtCl6/SiO2 

H2PtCl6/TiO2 

20-110 

42±11 

1-21 

2 

50 

1.7 

3.1 

A549, MDA-MB-231, LNCaP 

HDF, A375, U87 

Neuro 2A 

SH-SY5Y 

S1, S2, SP56 

C6, Male Wistar rats 

 

100 

101 

102 

103 

104 

105 

 

Breast PtNPs 

PtNPs 

PtNPs 

PtNPs 

FA-PtNPs 

AuPtNPs 

FA-FePtNPs 

Fe3O4-PtNPs 

PIMA-CISNPs 

PEG-PIMA-CISNPs 

Pt@Bi2Te3-PEG 

PSDE-co-LDI-Pt(IV)NPs 

1-6 

15 

45 

20,12 

10-15 

30 

12±1.0 

4 

80-140 

80-140 

80 

156 

HeLa, MDA-MB-231 

4T1 

MCF-7 

MCF-7 

MCF-7 

SKOV3(HER2+), MDA-MB-231(HER2-) 

EMT-6 

SKBR3, WM-266-4 

LLC, 4T1 

4T1, In vivo 

4T1 

A549 (CIS sensitive), In vivo toxicity 

106 

107  

108 

9 

109 

110 

51 

111 

112 

113 

114 

115 

Cervical  

PEGuilada-PtNPs 

TPP-PtNPs 

FA-PtNPs 

FePtNPs 

Peptide- gHPt2.5NPs 

 

34.8±5.3 

30-60 

10-15 

3.11±0.53 

2.5 

 

HeLa 

SiHa 

HeLa 

Vero, HeLa 

Antioxidant activity in HeLa cells 

103 

116  

117 

109 

53 

118 

Liver PtNPs 

PtNPs 

PtNPs 

86 

20-40 

6.30±2.4 

K562,HepG2,Tumor xenograft murine model 

HepG2, In vivo 

HuH-7 

40 

119 

120 

Pancreas PtNPs  Mia-Pa-Ca-2 121 
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Table 1. Continued 1. 

Cancers/Diseases/ 

Microbial strains 

Platinum/Hybrid 

Platinum NPs 

Particle 
sizes (nm) 

Cell lines/Animal models/ Microbial 
strains 

Ref 

Lung PEI-PCL-PEG micelleplexes 

Porous PtNPs 

PtNPs 

PtNPs 

HA-BPEI-SS-PtNPs 

 
FePt-Cys NPs 

PtNPs 

Liposomal CIS NPs 

PLGA-carboplatinNPs 

160 

115.6 

20 

4-12 

160-230 

 
26.4 
 
 
120-140 
 
300 

Lung cancer cell line 

NSCLC, In vivo 

A549 

A549 

Human non-small lung cancer cells, In vivo 
tumor model 

A549, H1975, LLC, In vivo 

A549, In vivo 

NCI-H596, NSCLC 

MA148, A549, NCI-ADR/RES, MDA-MB-231 

122 

123 

124 

125 

126 

 

127 

128 

129 

130 

Colon PtNPs 

PtNPs 

PtNPs 

AuPtNPs 

AuPtNCs 

MgO-Pt NPs 

40 

100 

 

99.54 

20 

30-50, 

932.3±22 

A549 

HT29 

Human colon carcinoma cells 

HCT-116 

SW480, SW62 

A549, HT29 

131 

132 

133 

134 

135 

136 

Ovarian PtNPs 

PtNPs 

PLGA-carboplatin NPs 

PLGA-PEG-wortmannin-CIS NPs 

CIS NPs 

FePtNPs 

Metal-organic cages NPs 

30-70 

 

222±1.1 

80-200 

70±30 

80 

98±8.2 

SK-OV-3 

PA-1 

OC SKOV-3 

Pt-resistant ovarian cancer (PROC), In vivo 

SKOV3, In vivo 

A2780 

Human ovarian cancer cells 

137 

121 

138 

139 

140 

141,142 

143 

Bladder AuPtnanoseeds 

AuPdPtNPs 

10-50 

30 

EJ 

Bladder cancer 

144 

145 

Prostate Pt(IV)-Melanin NPs 73.7 PC3, In vivo 146 

Oral squamous CIS-liposome 35±0.8 Squamous cell oral carcinoma, In vivo 147 

Bone PtNPs 30 U20S 148 

Lymphoma PtNPs 

PCL-PtNPs 

 U937 

U937, HH 

149 

150 

Melanoma PtNPs 12.2±0.7 B16/F10 151 

Leukemia PtNPs 30 Human acute monocytic leukemia cells 152 

Microbial PVP-PtNPs 10-60 Gram+/- bacterial strains 153,154 

Colitis PtNPs 5,30,70 In vivo 155 

 

  A lot of reports on anti-cancer therapeutic efficacy (mainly 
cellular killing and / or growth inhibition) of PtNPs used for 
the delivery of different anti-cancer agents to treat various cell 
lines/animal models against different cancers/tumors have 
been depicted below (Table 2): 

  A few researchers have utilized different anti-cancer agents 
such as AuPt NPs/AuPtQ NPs, FePt-OA/OA-Cys NPs, and FePt-
Cys NPs with their different particle sizes to treat U87-MG, 

D54, U251, U87, H4, SGH44, and C6 cells to get higher anti-
cancer efficacy against brain cancer 156,52,49. A few scientists 
have used Pt-Au NRs, and Apt-Alb-CIS NPs with their different 
sizes to treat SW620, SW480 and HeLa cells, and in vivo 
cervical cancer model for achieving higher therapeutic efficacy 
against cervical cancer 157,158. A few investigators of different 
groups have applied DOX-Fu-Pt NPs, GO-Pt NPs, PIMA-GA-
DACH-Pt NPs, AuPt-cRGD/DOX-AuPt-PEG/DOX-AuPt-
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cRGD/NIR Laser, PEG-Pt-DOX NPs and PVP-Pt-DOX NPs, 
chitosan/zinc/silica/DOX/telmisartan-Pt NPs, and four 
Pt(II)iron oxide NPs with their different sizes for treating 
MCF-7/ADR, LNCaP, MCF-7, HepG2, HeLaB, HT29, 
HCT116,SW480, Colo 205, CP20, 4T1, MDA-MB-231 and 

IGROV-1 cells, and in vivo, in vivo 4T1-tumor model and MDA-
MB-231-xenograft models to get higher anti-cancer 
therapeutic efficiency against breast cancers/tumors 159-165, 

91,36,55.

 

Table 2. Platinum nanoparticles utilized for delivery of anti-cancer agents to various cancers/tumors. 

Cancers Anti-cancer agents Particle sizes 
(nm) 

Cell lines/Animal models Ref 

Brain AuPt NPs/AuPtQ NPs 

FePt NPs coated with oleic 
acid/oleylamine (OA/OA) and 
cysteine (Cys) 

L-Cys coated FePt (FePt-Cys) NPs 

50/100 µm 

3-8  

 

245  / 4.8±0.6  

U87-MG, D54, U251 

U87, U251, H4 

 

SGH44, C6, U251 

156 

52 

 

49 

Cervical PtAunanoraspberries (NRs) 

Apt-Alb-CIS NPs (EGFR-targeted 
albumin-cisplatin NPs with EGFR 
aptamer) 

10  

 

80  

SW620, SW480 

 

HeLa, In vivo cervical cancer model 

157 

 

158 

Breast DOX-loaded FuPtNPs (Fucoidan-
coated PtNPs) 

GOPtNPs (Graphene oxide 
functionalized with PtNPs) 

 

PIMA-GA-DACH-PtNPs 

AuPt-cRGD/DOX-AuPt-PEG/DOX-
AuPt-cRGD/NIR Laser 

PEG-Pt-DOX NPs 

PVP-Pt-DOX NPs 

Chitosan/zinc/silica 
/DOX/telmisartan-Pt NPs 
 
Four Pt(II)iron oxideNPs: 

PEG-GLU-Pt-DACH, 

PEG-Glu-Pt-EDA, 

PEG-Mal-Pt-DACH, 

PEG-Mal-PT-EDA 

33±3.4  

 

2-19  

 

80-250  

 

 

120±5  

 

 

 
27-100  

MCF-7/ADR,  In vivo 

 

LNCaP, MCF-7, HepG2, HeLaB, HT29, HCT116, 
SW480, Colo205 

CP20, 4T1, MDA-MB-231, 
In vivo 4T1 breast cancer tumor model 
 
MDA-MB-231 tumor cells/xenograft models 
 

ADR/MCF-7 

MCF-7, MDA-MB-231 

In vivo breast cancer model 

 
IGROV-1,MDA-MB-231 

159 

 

160 

 

161 

 

91 

 

36 

 

55,162 

 

163,164 

 

165 

Liver DNR-Pt NPs 

Peptide-Pt NPs 

GA-ALG-Pt NPs 

11.38±2.67  

2.5 

141.9 

HepG2/xenograft model 

HepG2 

HepG2 

40 

166 

167 

 

A few other groups of researchers have used DNR-Pt NPs, 
peptide-Pt NPs, and GA-ALG-Pt NPs with their different sizes 
to treat HepG2 cells and xenograft model for getting higher 
anti-cancer efficacy against liver cancer/tumor 40,166,167. A few 
other investigators have applied different anti-cancer agents 
such as TPGS-Pt NPs, HA-GEM/CH-Pt NPs, chitosan-Pt NPs, 
CDDP-NPs, PEG-Pt-CNPs, GP-NA, OAPI, USPtNs, and PDDA-
silica-DOX-FePt NPs with their different sizes to treat Pt-
resistant DDP/A549, NCI-H460, A5491, A549, HeLa, LLC, 
A549/U14, NCI-H1299 and RERF-A1 cells, and in vivo tumor 
cells-bearing animals to achieve higher anti-cancer efficiency 
against lung cancer 168-173,50. A few other scientists have 
utilized polyphenol-Pt NPs, LP-Pt NPs, CIS-Pt-BR NPs, and 

DACH-Pt(II)-panitumumab NPs with their different sizes to 
treat HCT-116, HT-29, Caco2 cells, and in vivo tumor cells-
bearing animal models for achieving higher anti-cancer 
efficacy against colon cancer/tumor 174-177. An investigation 
has utilized PPNPs-siRNA to treat A2780 cells to get higher 
anti-cancer efficacy against ovarian cancer 178. Another 
investigation has used Apt-polymer-Pt NPs and PLGA-b-PEG-
Apt-Pt NPs for the treatment of LNCaP and PC3 cells, and in 
vivo tumor cells-bearing animals to get higher anti-cancer 
efficacy against prostate cancer 179,180. One group of 
researchers have used PA-Pt NPs to treat PC-9 and NIH-3T3 
cells, and in vivo animal model for achieving higher anti-cancer 
efficacy against bone cancer 181.  
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Table 2. Contd.1 

Cancers Anti-cancer agents Particle sizes 

(nm) 

Cell lines/Animal models Ref 

Lung TPGS-Pt NPs 

HA-GEM/CH-Pt NPs 

Chitosan-Pt NPs 

CDDP-NPs 

PEG-Pt-CNPs 

GP-NA, OAPI, USPt Ns 

PDDA-silica-DOX-FePt NPs 

85.3 

200 

230-270 

36.7±8.1 

18.7±4.6 

165.4±2.6 

Pt-resistant DDP/A549 

NCI-H460, In vivo 

A5491, A549 

HeLa, LLC, In vivo 

A549 / U14, In vivo 

A549, NCI-H1299, In vivo 

RERF-A1 

168 

169 

170  

171 

172  

173 

50 

Colon Polyphenol-Pt NPs 

Lycopene(LP)-Pt NPs 

CIS-Pt-BR NPs 

DACH-Pt(II)-panitumumab NPs 

10-70 

<50 

192±88 

120-155 

HCT-116 

HCT-116 

HT-29,  In vivo 

HCT116, HT29,Caco2, In vivo 

174 

175 

176  

177 

Ovarian PPNPs-siRNA 110 A2780 178 

Prostate Apt polymer-Pt NPs 

PLGA-b-PEG-Apt-PtNPs 

140 

150±15 

LNCaP, PC3 

LNCaP, In vivo 

179 

180 

Bone Phytic acid(PA)-Pt NPs 1.7±1.2 PC-9, NIH-3T3, In vivo 181 

Oral squamous PtNCP (Pt- nanocomposite beads)  Oral squamous carcinoma cells, Animal tumor 

xenograft model 

182 

Melanoma PEG/DOX-Pt NPs 40-45 A549, B16F10, NIH-3T3, In vivo tumor model 183 

Choriocarcinoma Folate-Pt(IV)-SWNT (Single wall 

carbon nanotube) 

 JAR cells 184 

Gastric PDDA/silica/DOX-FePt NPs  MKN-74 50 

Leukemia CIS/DNR-Pt NPs 11.38±2.6 K562, K562 tumor-bearing mice 40 

 

Another group of researchers have utilized PtNCP to treat 
squamous carcinoma cells and animal tumor xenograft model 
for getting higher anti-cancer efficacy against oral squamous 
cancer182. PEG/DOX-Pt NPs have been utilized by some 
researchers to treat A549, B16F10 and NIH-3T3 cells, and in 
vivo tumor model to achieve higher anti-cancer therapeutic 
efficacy against melanoma 183. Folate-Pt(IV)-SWNTs have been 
used by some other researchers to treat JAR cells for getting 
higher anti-cancer efficiency against chorio carcinoma 184. 
PDDA/silica/DOX-FePt NPs have been applied by some 
investigators to treat MKN-74 cells for getting hugher anti-
cancer efficacy against gastric cancer 50. CIS/DNR-Pt NPs have 
been utilized by some other investigators to treat K562 cells, 
and K562 tumor bearing mice for achieving higher anti-cancer 
efficiency against leukemia 40.  

Toxicity of platinum nanoparticles 

The cytotoxicity of the PtNPs is generally dependent on their 
sizes, shapes and concentrations used 56 [60]. Several 
investigations have explored that PtNPs having 50 nm size 
show anti-cancer effect, while their sizes belonging to 5 and 20 
nm exhibit no anticancer effect 185. The viability of cancer cells 
(MDA-MB-231 (TNBC)) by the exposure of PtNPs (10 µg/mL) 
has been observed to 80%, whereas that value has been 
decreased to 2% by the exposure of PtNPs at 200 µg/mL after 
five days of incubation, while their cytotoxicity with healthy 
cells (NHCF-V (fibroblasts)) has exhibited no statistically 
significant differences after five days of incubation at all 
concentrations, indicating their sensitive specificity to 
cancerous cells185. Mice treated with PtNPs at higher 
concentration have shown their proinflammatory responses 
through the enhancement of various cytokines such as TNF-α, 
IL-1, IL-2, IL-4-6, and IL-12, with concomitant reduction of 
intracellular GSH 186. Mice treated with PtNPs (maximum 10 
µg/mL concentration) have exhibited no significant changes in 
the activation of T cells, T helper cells (CD3+/CD4+) and 
cytotoxic T cells (CD3+/CD8+) in the 1st 72 h and after long-
term treatment, and also no activity of natural immune killer 

cells (NK, CD49b+/Granzyme B+) after twelve weeks, 
implicating their favorable biocompatibility40. AuPt NPs 
(10,30,50 and 100 µM) treated with different cell lines such as 
HEK-293 (human embryonic kidney cells as control), U-87-MG 
and D54 (both wild type human glioblastoma cells), and U251 
(PTEN-mutant human glioblastoma cells) for 24 h have 
exhibited decreased viability indicating their in vitro 
cytotoxicity 156. FePt NPs (3,6 and 12 nm) with a concentration 
of 100mM have shown their higher cytotoxicity (75% cell 
viability), while no remarkable cytotoxicity (cell viability 
>90%) at their concentrations below 10 mM 47. 

Biodistribution and elimination 

Generally, the biodistribution profiles depend on the NPs’ size, 
coating and attachment with other ligands, concentration, 
exposure time, and route of administration, and systemic 
pathophysiological conditions. One investigation regarding 
biodistribution analysis in six-week-old male C3H/HeN mice 
has exhibited that the most of the FePt NPs (3,6 and 12 nm) 
have been accumulated chiefly within the spleen followed by 
lung and liver, and their gradual excretion from the organs 
with time (about one week), while 12 nm FePt NPs have 
shown their highest serum concentration and circulation half-
life, and 3 nm FePt NPs have shown their highest brain 
concentration 47. Another study (short term biodistribution) 
using BALB/c mice exposed with single intravenous tail-vein 
injection of Pt NPs (10 mg/kg body weight) for 24 h has 
shown the accumulation of NPs in the liver, spleen, kidney and 
lungs, but not in plasma 187. The long term biodistribution 
study has exhibited that the Pt NPs (10 mg/kg body weight) 
administered intravenously have shown their highest 
accumulation after 21 days in the liver and spleen, and 
residual in the other organs such as kidney, lungs and heart 
187. Generally, endocytosed NPs are processed to brokens 
within the phagolysosomal compartment and excreted via 
hepato-pancreatic biliary system and the small intestine as 
fecal clearance, while non-decomposed larger NPs (>6 nm) are 
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sequestered mainly in the spleen and liver for several months 
or excreted via the glomeruli (<5 nm) 188. 

Conclusions and future perspectives 

In general, PtNPs show their specific cytotoxic effect in in vitro 
diseased cell lines compared to healthy cells.  As PtNPs show 
their cytotoxicity at higher concentration and for long term 
exposure in in vivo, their surface-functionalizations with 
polymers or other ligands for applications are more suitable 
for getting higher antimicrobial/anticancer efficiency and to 
get targeted therapy for reducing systemic toxicity and 
sustained drug release accompanying antioxidant activity 
against diseases. In this concern, NPs should be optimized 
with more controllable and uniform sizes for having enhanced 
biocompatible stability regarding their synthesis, 
functionalization, and characterization, and repeated batch-to-
batch uniformity of the development of NPs before application 
to get higher suitable therapeutic efficacy. A thorough 
investigation regarding the NPs’ source of raw materials, 
method of productions, consistent scale-up process, solubility, 
biocompatibility, stability, route of in vivo administration, 
biodistribution, pharmacokinetics, elimination, accumulation, 
cell-specific targeting, controlled release and toxological issues 
to human beings with high consistency is required before 
clinical translation to consider PtNPs as drug delivery system 
as well as nanomedicine for achieving maximum biological 
effectiveness against diseases.  
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