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Abstract

Patients having cancer, infectious and other diseases suffer from drug resistance and systemic side
effects owing to the conventional chemotherapeutics’ insolubility, toxicity, non-specificity, low
therapeutic indices, and several limitations against biological barriers. To overcome these obstacles,
nanotechnology-based metallic platinum nanoparticles (PtNPs) have attracted attention for targeted
drug delivery and sustained release against the diseases for the cellular killing as antimicrobial and
anticancer agents. PtNPs-based therapeutic systems have been utilized to avail their higher
therapeutic efficacies with low concentrations against various diseases due to their suitable physico-
chemical features such as shape, size, high surface to volume ratio, favorable bio-stability, easy
membrane penetration, and easy surface functionalizations with cargos, ligands, peptides, antibodies
and polymers for the targeted and controlled therapy against diseases. PtNPs may also be conjugated
with other metals with drugs as suitable carriers for their chemo, photothermal / photoacoustic /
magnetic therapies against tumors. This review demonstrates mainly the synthesis, functionalization,
mechanism of action, biomedical application and toxicity of PtNPs as suitable nanomedicinal delivery

system against diseases.
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Introduction

Infectious diseases and cancer including tumors are caused by
the exposure of pathogens, toxicants or carcinogens. In
general, the antioxidant and the immune (innate and
acquired) body defense systems have the ability to prevent the
biological system from the initiation of disease and the
subsequent development of infection 1. However, pathogens,
contagious and virulent agents or toxicants are transmitted
into the host body system and overpower the systemic
defense mechanisms to initiate site-infections followed by
their multiplications and / or host-cells-injuries, genetic
mutations or DNA damages leading to the development and
progression of diseases, cancer, metastatic cancer or tumors 2
5. Conventional chemotherapy produces improper dose
application-related drug resistance and high drug dosage-
oriented cytotoxicity to healthy cells aggravating the disease
condition of the patients 6. Moreover, chemotherapeutics also
face various constraints such as their insolubility, toxicity,
non-specificity, low bio-stability, biological barriers and low
therapeutic indexes that implicate sufferings further to
patients 7. To overcome the obstacles, nanotechnology based
metallic PtNPs have gained attention owing to their specific
shape, size, large surface area, lower cytotoxicity, easy surface
functionalization, electro-catalyzing capability (oxidation,
hydrogenation and dehydrogenation), resistancy to corrosion
and chemical attacks, chemical stability and resistancy to
ionization, photothermal, photoacoustic and surface plasmon
resonance (SPR) -related optical characteristics owing to the
enhanced interactions of light and the free electrons on the
nearby molecules of the metallic NPs’ surfaces causing
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collective oscillations of the conduction band electronss8-15.
PtNPs may penetrate cell membrane causing leakage of
membrane and interact with intracellular components leading
to DNA or cellular damage through the release of platinum
ions 1617 Owing to the high ratio of electrons to particle
surface, PtNPs may regulate oxidative stress and induct the
apoptotic death of cancer cells via DNA damages and
inhibiting their replications 1822, PtNPs may function as potent
and stable mimetics of superoxide dismutase and catalase to
attenuate oxidative stress-induced inflammation and / or
injury in the biological system through the scavenging of ROS
23-2520, PtNPs may be modified with various surface coating
materials such as polymers (poly-lactide-co-glycolide, poly-L-
lactic acid, poly-ethylene glycol, polyvinyl alcohol, chitosan
and alginate) with drugs to get a long circulation half-life and
controlled drug release for the accumulation in tumor
region/s implicating their higher biocompatibility and reverse
drug resistance activities through passive targeting 26-34.
Moreover, they may be conjugated with antibodies, nucleic
acids, peptides, targeting ligands, aptamers and drugs to
provide the effective active targeting therapy 35-40. Hybrid
bimetallic porous NPs such as Au-Pt, Fe-Pt NPs conjugated
with drugs and /or ligands may exhibit their higher optical,
magnetic and / or infrared radiation-based anticancer efficacy
through chemo-photothermal, imaging guided photoacoustic
or hyperthermal therapy 41-54. This review elucidates chiefly
the PtNPs as potent drug delivery system against various
diseases on the basis of their therapeutic biological efficacies.
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Synthesis of platinum nanoparticles and their
hybrid forms

The shape and size of the chemically synthesized PtNPs may
vary depending on the reaction temperature, the appropriate
selection of solvents (such as ethylene glycol), concentration
of precursors (such as H2PtCls), and the type and
concentration of stabilizing (such as polyvinyl pyrrolidone
(PVP)) and reducing agents (such as sodium hydroxide) 55.
The chemical reduction is chiefly utilized for colloidal NPs-
production in which chemical agents reduce the metallic ions
to form metallic NPs. The chemical agents such as sodium
borohydride (NaBH4), potassium bitartrate (KCsHsO¢),
ascorbate, trisodium citrate dehydrate (Na3CsH909), methoxy
polyethylene glycol (CH30(CH2CH20)nH), and elemental
hydrogen are utilized for the reduction processes. The
spherical PtNPs with small sizes (1-2 and 2-3 nm) may be
obtained from H2PtCls at a lower concentration, while with the
increment of the amount of H2PtCle, the sizes may increase
and the shapes of the NPs may change to cuboid (5-6 nm), oval
(6-8 nm), and flower (16-18 nm) 8.

PtNPs may be prepared following the methodology 5é:Firstly,
K2PtCls solution (20 mM, 5 mL) is mixed with Brij 58 solution
(0.044 M, 1 mL), followed by sonication for 10 min utilizing a
bath sonicator. Afterthat, L-ascorbic acid solution (0.04 M, 5
mL) is poured into the previous solution followed by
sonication for 45 min. Then the precipitates are collected
through centrifugations for 3 times. Following another
methodology 57, PtNPs may be synthesized by the chemical
reduction of the platinum salt (HzPtCle.6H20 (2 mmol L))
with the reaction of sodium borohydride (NaBH4 (4 mmol L-1))
utilizing poly vinyl alcohol as the capping stabilizer agent. The
mixture is kept under vigorous stirring for 18 h for complete
reduction, while the color of the mixture becomes bright
yellow indicating the colloidal formation of NPs with the
characteristic UV-Vis spectrum absorption peak at 260 nm.
Following other method 8, PtNPs may also be synthesized
through the reduction of H2PtCle (5 mM, 19.5 mg) with
CeNaz06 (43.5 mM, 83 mg) for 1 hat 90° C.

Hybrid Au-Pt NPs may be synthesized through the reduction
of NazPtCle.6H20 by ascorbic acid 59. At first, AuNPs solution is
heated at 90 C for 10 min, and NazPtCle.6H20 (1mM, 0.32 mg)
and ascorbic acid (4 mM, 28 mg) are adjoined step by step at
10 and 30 min periods. Afterthat, the reaction mixture is
heated at 90 C for 30 min. The Au-Pt NPs are also
synthesized following two synthetic methods: 1. In this
synthetic approach, two steps of the formation of Au-Pt NPs
are considered. Firstly, the AuNPs are synthesized and
purified 60-64, Secondly, PtNPs are formed: 18mL Milli-Q H20
and 5 mL purified AuNPs are placed in a 50 mL round bottom
flask and stirred at 100> C for 15 min until stabilization. Then
1 mL trisodium citrate dihydrate (68 mM, 0.020 g) is added to
the solution and allowed for 10 min for temperature
homogenization. Afterthat, 1 mL potassium
tetrachloroplatinate (II) (K2PtCls) (4.2 mM, 0.0017 g) is added,
while a change of color to bluish-purple is observed, and after
3 h of the reaction, the colloidal dispersion shows a final
purple color. The colloidal mixture is spun at 15,000 rpm (10
min, 1 cycle), and the precipitate is isolated from the
supernatant. The supernatant denotes the colloidal solution
with the coveted NPs. 2. In this method, a one-step
formulation of Au-Pt NPs is followed, while platinum-
precursor is adjoined to the flask after AuNPs are formed:
22.75 mL Milli-Q H20 is poured in a 50 mL round bottom flask
affixed to a condenser and 100> C. 250 pL aqueous solution of
HAuClaxH20 (25.4 mM, 0.00216 g) is added into the flask after
stabilization of the temperature.Then 1 mL aqueous solution
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of trisodium citrate dihydrate (68 mM, 0.020 g) is added and
allowed for homogenization of temperature. Afterthat, 1 mL
potassium tetrachloroplatinate (II) (4.2 mM, 0.017 g) is added
into the flask for reaction. The suspension is spun at 15000
rpm (10 min, 1 cycle), and the precipitate is isolated from the
supernatant. The supernatant denotes the colloidal solution
with the wanted NPs.

The Fe-Pt NPs may be synthesized following different
methodology 46: FePt NPs may be prepared following polyol
reduction method, while a reaction mixture of Fe(CO)s,
Pt(acac)z, dioctyl ether, 1,2-hexadecanediol, oleic acid and
oleylamine is heated at 290° C and then utilizing ethanol to
extract resultant FePt NPs. An equimolar ratio of a Fe
precursor (Fe(acac)s) and Pt precursors (Pt(acac)z, PtClz,
PtCls, and H2PtCle.H20) and the reducing agent (1,2-
hexadecanediol) with octyl ether may be utilized to get diverse
sizes of Fe-Pt NPs. Fe-Pt NPs may also be prepared using
microemulsion method in a water/glycol octyl phenyl
ether/cyclohexane (water-in-oil) microemulsion utilizing
FeClz as the Fe precursor, H2PtCle¢ as the Pt precursor and
NaBHa as the reducing agent.

Bio/green synthesis of PtNPs mediated by plant-extracts
involving plant derivatives and metal precursors at optimal pH
and temperature requires four hypothesized essential steps 65:
The initial activated bio-reduction of metal ions to zero-
oxidation states by plants-reducing agents; The 2nd stage
includes the development and aggregation of produced tiny
particles into NPs having higher thermal stability; The 3rd
termination step involves stabilized and capped NPs by plant
derivatives having controlled range of shapes and sizes; The
4th stage includes cleansing and purification of the NPs
through centrifugation. The optimization of the shape, size,
morphology and crystallinity of the NPs may be controlled by
regulating reaction time, pH and temperature.

The green synthesis of PtNPs wusing plant-extracts
(derivatives such as flavonoids, antioxidants, phenolic
compounds, gallic acids, ascorbic acids, terpenoids, amino
acids and a few proteins used to function as reducing,
stabilizing or capping agents) and platinum precursors such as
H2PtCls is performed through the reaction at 50-100° C for 1-
5 h to get different optimized morphological NPs. The changes
of color from yellow to brown confirms the formation and
completed reduction of Pt* ions to Pt? NPs analyzed by UV-Vis
spectroscopy at 477 nm 6672,

Surface  functionalizations  of
nanoparticles and their hybrid forms

platinum

Surface  functionalizations  (Fig.1) such as ligand
exchange/addition, bio or chemical conjugations are needed
for improved biocompatibility, excellent dispersion, prolonged
circulation, specific targeting and sustained cargo release.
Moreover, inclusion of reactive functional groups to the
surfaces of NPs for further conjugation may make NPs
multifunctional. The materials used for surface modification of
metallic NPs to enhance their specificity and efficacy with
therapeutic and catalytic activity include organic micromolar
compounds such as aspartic acid, citric acid, glutamic acid,
phosphorus acid, 2-amino ethyl mercaptan, gamma
cyclodextrin and vitamin B, organic polymer compounds such
as starch, glucose, polyethyleneimine (PEI), polyethylene
glycol (PEG), polypeptides, proteins, and polyvinyl alcohol
(PVA), low-molecular-weight ligands, polyunsaturated and
saturated fatty acids, siRNA, DNA, plasmids, antibodies, small
molecules, tumor markers and SiO2, and inorganic
nanomaterials such as Au and Fe 73-79.
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Figure 1: Functionalized PtNPs via conjugation of peptides, nucleic acids, antibodies, folic acid, biomolecules, polymers, and tumor

markers.

A few functionalizations of PtNPs are described below:

The encapsulation of PtNPs with PLGA may be performed with
some modifications by double emulsion 80. Different amounts
of PtNPs and PVA (0.5% w/v) are adjoined to 200 pL ultrapure
water for forming the 1st aqueous phase. 10 mg PLGA is
dissolved in 0.4 mL dichloromethane to prepare an organic
phase. Afterthat, the aqueous phase is added drop by drop into
the organic phase and emulsified for 1 min with sonication at
25 W and 30% amplitude utilizing a sonicator. Then the first
emulsion is added drop by drop into the PVA solution (1.6 mL,
1% w/v). The final solution is emulsified again through the
sonication at 25 W and 30% amplitude for 2 min (second
emulsion). Lastly, the second emulsion is stirred overnight at
room temperature for removing the solvent. The NPs are
collected through centrifugation and cleansing with ultrapure
water three times.

The surface modifications of PLGA encapsulated PtNPs are
performed through the attachments of the antibody and the
PEG, such as, cetuximab to the PLGA particles: The previously
prepared freeze-dried particles are redispersed in 1 mL MES
buffer solution (containing 0.4 mg EDC) and waited to react
with EDC for 10 min at room temperature on a rotator.
Afterthat, 20pL solution of 1.1 mg sulfo-NHS with 40 pL MES is
added to the particle solution, vortexed and allowed to react
for 10-15 min at room temperature on the rotator. Then the
particles are spun at 22136 RCF for 1 h, and the supernatant is
removed, and 1 mL PBS is adjoined for sonication. Different
amounts of 5 kDa PEG and 3 kDa PEG-biotin are adjoined into
the solution and allowed to react for 2 h at room temperature
on the rotator. Lastly, for the removal of the excess amount of
PEG, unreacted particles are cleansed 3 times through
centrifugation at 22136 RCF for 1 h with the replacement of
the supernatant with PBS. The biotin-labeled antibody is
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anchored to the particles via conjugation with neutravidin: A
solution of neutravidin (10 mg) in 0.5 mL 0.1% Tween-PBS is
added into a well on a 4-well plate with a stir-bar. The
particles sonicated previously are adjoined drop by drop into
the neutravidin solution and waited to react for 3 h at room
temperature. Then the solution is spun at 22136 RCF for 1 h
and cleansed 3 times with PBS for the removal of the
unreacted neutravidin. Afterthat, the particles are sonicated
and 13.3 pL of biotin-antibody is adjoined into the tube and
allowed to react for 3 h at room temperature on a rotator.
Finally, the particles are spun at 22136 RCF for 1 h and
cleansed 3 times in PBS for the removal of the unreacted
antibody.

Au-Pt NPs may be coated with 3-aminopropyl trimethoxy
silane (APTMS) and loaded with drug such as quinazoline
derivative (Qd) following the method 81: 1mL Au-Pt NPs
colloidal solution, 8 mL methanol and 2 mL Milli-Q water are
mixed in a 25 mL round bottom flask. 0.6 mL APTMS is
adjoined into the reaction solution and allowed to stir for 30
min at room temperature (RT) followed by stirring at 4> C of
the colloidal yield. Afterthat, 5 mL dimethyl sulfoxide (DMSO)
is poured into a vial containing 2-(quinazolin-4-ylamino)
propanoic acid (Qd) (0.026 mmol, 5.56 mg) and 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) (0.020 umol, 0.020
mL) and sonicated until fully dissolved. On the other hand, 7.5
mL Au-Pt-APTMS NPs is poured in a 50 mL round bottom flask
containing 7.5 mL Milli-Q water (ratio 1:1) and dispersed
under magnetic stirring at RT. After 5 min, the solution of
DMSO with the Qd and the EDC is adjoined into the flask
followed by the addition of 2-3 drops of 0.1 M NH3 until the pH
reaches to 11, and allowed the reaction under magnetic
stirring overnight at RT to acquire the Qd-functionalized NPs.
The NPs obtained are purified through dialysis 6365, The
purified hybrid Au-Pt NPs solution may be incubated with
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drug such as doxorubicin at pH 8 as drug loading by its
deprotonation at basic pH 82. The PEG may be coated on the
NPs to remove particle aggregation and enhance the colloidal
stability 83. Additionally, the bifunctionalized PEG linkers can
enable the nanovehicles’ active targeting characteristics
conjugated to cRGD peptides.

The surface functionalizations of Fe-Pt NPs through the
ligand exchange of fromoleic acid to aminoethanethiol (AET),
and the conjugations of anti-Her2 antibody and / or
cysteamine, silica and (3-aminopropyl) triethoxy silane,
tetraglycol, 3-mercaptopropionic acid (MPA) to produce
COOH-terminated with EDC and folic acid, poly
(diallyldimethylammonium chloride (PDDA) and silica,
poly(L)lysine (PLL), folate, PEG, HVGGSSV peptide and Alexa
fluor 750 fluorescent probe, oleic acid/oleylamine and L-
cysteine, or synthesized FePt-Fe203 with PEG and folate, have
been performed to get excellent water-solubility with no
aggregation in dispersion, excellent biocompatibility and
stability, higher photothermal transduction efficiency, higher
specific targeting therapeutic anticancer efficiency, and
radiation-guided targeting/imaging and drug release into the
diseased site/s 84-9047,51,52,

Characterization of the platinum nanoparticles
and their composites

The synthesized Pt NPs/composites may be characterized by
various analytical techniques 559192, UV-Visible spectroscopy
is utilized for confirming the synthesis and stability of the
metallic/colloidal NPs. High resolution transmission electron
microscopy is used to detect the morphology, crystal core-
shell structure, size, and the quantitative and qualitative
analysis of the prepared and internalized NPs in cells or
tissues. Atomic force microscopy is utilized to determine the
surface thickness of the nanomaterials. Scanning electron
microscopy is used to measure the structure of the surface and
dimension of the NPs. Electrophoretic light scattering
technique is utilized for the measurement of the
electrophoretic mobility of NPs in dispersion, or in solution. X-
ray diffractometry is used to evaluate the crystalline nature of
the functionalized NPs. Energy-dispersive spectroscopy is
utilized to analyze the elemental composition of metallic NPs.
Extended X-ray absorption fine structure spectroscopy is
utilized for the elemental analysis of inter atomic distance and
structural disorders of the NPs. Nanoscale infrared
spectroscopy is used to detect the elemental composition and
the bonding arrangement of the NPs. Fourier transform
infrared spectroscopy is used to measure the concentration of
the chemicals, surface chemistry, functional groups and atomic
arrangement of the NPs. Dynamic light scattering
spectroscopy is utilized to determine the hydrodynamic
diameter/size and the surface charge/zeta potential for
confirming contrast PEG attachment of the NPs. The
inductively coupled plasma-atomic emission spectroscopy is
used to measure the proportion of Au and Pt contents of the
hybrid NPs. For visual characterization regarding the
attachment of the secondary antibody, nanoparticle tracking
analysis is utilized with a 488 nm laser, in fluorescent mode
with a 500 nm filter for antibody-conjugated NPs. Computed
tomography imaging is utilized to examine the concentration-
dependent contrast signaling of the hybrid NPs.

Mechanism of action of platinum nanoparticles

The microbicidal action of PtNPs may occur through their
attachments to microbial surfaces and penetration to cell wall
causing their disruption and lysis. These activities are
associated with the intercellular ROS production (:OH, 02°)
leading to enzyme denaturation, DNA and cellular damage
9394, The anti-cancer activity of PtNPs may occur through their
passive or active targeting inside the cells causing DNA strand
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breaks via the generation of ROS leading to DNA damage,
intracellular macromolecules (such as carbohydrates and
proteins) damages, disruption of DNA repair mechanisms and
inhibition of gene transcription leading to growth arrest and
apoptosis 95-9%. Free radicals such as H202 and Oz~ generated
into the cellular cytosol and mitochondria are regulated by the
intrinsic enzymes such as catalase (CAT), peroxidase (POD)
and superoxide dismutase (SOD) to arrest oxidative stress,
while SOD dismutes Oz~ into H202 and Oz, POD decomposes
Hz202 into H20, and CAT reduces H20: into Oz and H20. The
PtNPs possess SOD, POD and CAT-like enzymatic antioxidant
activities to scavenge ROS and reduce cellular oxidative
damage without any release of -OH via the Fenton reaction 9.

Biomedical applications of
nanoparticles and their composites

platinum

A few reports of different groups on therapeutic efficacy
regarding, chiefly, on cellular killing of Pt/hybrid Pt NPs
against different diseases/cancers based on active or passive
targeting have been described below (Table 1):

A few researchers have utilized different Pt/hybrid NPs such
as PtNPs, AgPt NPs, PtNPs, PtNPs-based microreactors, AuPt
NPs, H2PtCls/SiO2 and HzPtCle/TiO2 with their various sizes to
treat cancer cells or target in vivo animals such as A549, MDA-
MB-231, LNCaP; HDF, A375, U87; Neuro 2A; SH-SY5Y; S1, S2,
SP56 and C6, tumor bearing male Wistar rats respectively for
getting higher therapeutic and targeting efficacy against brain
cancer 100-105_ A few investigatorshave used several NPs such
as PtNPs, FA-Pt NPs, AuPt NPs, FA-FePt NPs, Fe304-Pt NPs,
PIMA-CIS NPs, PEG-PIMA-CIS NPs, Pt@Bi2Tes-PEG NPs, and
PSDE-Co-LDI-Pt(IV) NPs with their different sizes against
HelLa, MDA-MB-231, 4T1, MCF-7, SKOV3(HER2+), MDA-MB-
231(HER2-), EMT-6, SKBR3, WM-266-4, LLC and A549 (CIS
sensitive) cells, and to treat in vivo tumor bearing animals for
getting higher anticancer targeted efficacy to combat breast
cancer 951106-115° A few scientists have applied different NPs
such as PEGuilada-Pt NPs, TPP-Pt NPs, FA-Pt NPs, FePt NPs
and peptide-gHPt2.5 NPs with their various sizes to treat
HelLa, SiHa, and vero cells for getting targeted higher anti-
cancer and antioxidant efficacy against cervical cancer
53103109116-118, A few other investigators have utilized PtNPs
with different sizes against K562, HepG2 and HuH-7 cells and
to treat invivo tumor xenograft animals for getting higher anti-
cancer efficacy in liver cancer 40119120, A few other researchers
have applied PtNPs against Mia-Pa-Ca-2 cells to achieve higher
therapeutic efficacy against pancreatic cancer 121, A lot of
researchers from different groups have applied various
Pt/hybrid Pt NPs such as PEI-PCL-PEG micelleplexes, porous
Pt NPs, PtNPs, HA-BPEI-SS-Pt NPs, FePt-Cys NPs, liposomal
cisplatin (CIS) NPs and PLGA-carboplatin NPs with their
different sizes to treat lung cancer cells, NSCLC, A549, human
non-small lung cancer cells, H1975, LLC, NCI-H596, MA148,
NCI-ADR/RES, MDA-MB-231 cells, and in vivo tumor models
for achieving higher anti-cancer efficacy against lung cancer
122130, A lot of other researchers from different groups have
used several NPs such as PtNPs, AuPt NPs, AuPtNCs and MgO-
Pt NPs with their different sizes for treating various cells such
as A549, HT29, human colon carcinoma cells, HCT-116, SW480
and SW62 cells to get higher targeted therapeutic efficacy
against colon cancer 131-136, A ]ot of investigators have utilized
different Pt/hybrid Pt NPs such as PtNPs, PLGA-carboplatin
NPs, PLGA-PEG-wortmannin-CIS NPs, CIS NPs, FePt NPs, and
metal-organic cages NPs with their different sizes for the
treatment of various cancer cells such as SKOV-3, PA-1, OC
SKOV-3, PROC, A2780, human ovarian cancer cells and in vivo
tumor models to get higher targeted therapeutic efficacy
against ovarian cancer 121137143 A few investigations have
been performed through utilization of AuPt nanoseeds and
AuPdPt NPs with their different sizes to treat E]J and bladder
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cancer cells for achieving higher anti-cancer efficacy against
bladder cancer 144145, Another investigation has been done by
using melanin-loaded Pt(IV) NPs to treat PC3 cells and in vivo
tumor model for getting higher therapeutic efficiency against
prostate cancer 146. A few researchers have utilized liposomal
cisplatin to treat squamous cell oral carcinoma and in vivo
tumor bearing animals for achieving higher targeted
therapeutic efficacy against oral squamous cell cancer 147. A
few other researchers have used PtNPs to treat U20S cells to
get higher targeted anticancer efficacy against bone cancer 148.
A few investigators have used PtNPs and PCL-Pt NPs to treat
U937 and HH carcinoma cells for getting higher therapeutic

Journal of Drug Delivery & Therapeutics. 2024; 14(7):101-115

efficacy against lymphoma 149150, Another group of

researchers have utilized PtNPs to treat B16/F10 cancer cells
for getting higher therapeutic efficiency against melanoma 151.
A few researchers have used PtNPs to treat human acute
monocytic leukemia cells to achieve higher anticancer
efficiency against leukemia 152. A few investigations have been
performed utilizing PVP-Pt NPs to treat Gram +ve/-ve
bacterial strains for getting higher microbicidal efficacy
against microbial disease 153154, Another group of researchers
have utilized PtNPs to treat in vivo animals for getting higher
therapeutic efficacy against colitis 155.

Table 1: A few therapeutic effects of platinum and hybrid platinum nanoparticles against various cancers/diseases/microbial strains.

Cancers/Diseases/ | Platinum/Hybrid Particle sizes Cell lines/Animal models/ Microbial Ref

Microbial strains Platinum NPs (nm) strains

Brain PtNPs 20-110 A549, MDA-MB-231, LNCaP 100
AgPtNPs 42+11 HDF, A375,U87 101
PtNPs 1-21 Neuro 2A 102
PtNPs-based microreactors 2 SH-SY5Y 103
AuPtNPs 50 S1, S2, SP56 104
H2PtCls/Si02 1.7 C6, Male Wistar rats 105
HzPtCls/TiO: 3.1

Breast PtNPs 1-6 HeLa, MDA-MB-231 106
PtNPs 15 4T1 107
PtNPs 45 MCF-7 108
PtNPs 20,12 MCF-7 9
FA-PtNPs 10-15 MCF-7 109
AuPtNPs 30 SKOV3(HER2+), MDA-MB-231(HER2-) 110
FA-FePtNPs 12+1.0 EMT-6 51
Fe304-PtNPs 4 SKBR3, WM-266-4 111
PIMA-CISNPs 80-140 LLC, 4T1 112
PEG-PIMA-CISNPs 80-140 4T1, In vivo 113
Pt@Bi2Te3-PEG 80 4T1 114
PSDE-co-LDI-Pt(IV)NPs 156 A549 (CIS sensitive), In vivo toxicity 115

Cervical 103
PEGuilada-PtNPs 34.8+5.3 HeLa 116
TPP-PtNPs 30-60 SiHa 117
FA-PtNPs 10-15 HelLa 109
FePtNPs 3.11+0.53 Vero, HeLa 53
Peptide- gHPt2.5NPs 2.5 Antioxidant activity in HeLa cells 118

Liver PtNPs 86 K562,HepG2,Tumor xenograft murine model 40
PtNPs 20-40 HepG2, In vivo 119
PtNPs 6.30+2.4 HuH-7 120

Pancreas PtNPs Mia-Pa-Ca-2 121
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Table 1. Continued 1.
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Cancers/Diseases/ | Platinum/Hybrid Particle Cell lines/Animal models/ Microbial Ref
Microbial strains Platinum NPs sizes (nm) strains
Lung PEI-PCL-PEG micelleplexes 160 Lung cancer cell line 122
Porous PtNPs 115.6 NSCLC, In vivo 123
PtNPs 20 A549 124
PtNPs 4-12 A549 125
HA-BPEI-SS-PtNPs 160-230 Human non-small lung cancer cells, In vivo 126
tumor model
FePt-Cys NPs 26.4 A549, H1975, LLC, In vivo 127
PtNPs A549, In vivo 128
Liposomal CIS NPs 120-140 NCI-H596, NSCLC 129
PLGA-carboplatinNPs 300 MA148, A549, NCI-ADR/RES, MDA-MB-231 130
Colon PtNPs 40 A549 131
PtNPs 100 HT29 132
PtNPs Human colon carcinoma cells 133
AuPtNPs 99.54 HCT-116 134
AuPtNCs 20 SW480, SW62 135
MgO-Pt NPs 30-50, A549, HT29 136
932.3£22
Ovarian PtNPs 30-70 SK-OV-3 137
PtNPs PA-1 121
PLGA-carboplatin NPs 222+1.1 OC SKOV-3 138
PLGA-PEG-wortmannin-CIS NPs | 80-200 Pt-resistant ovarian cancer (PROC), In vivo 139
CIS NPs 7030 SKOV3, In vivo 140
FePtNPs 80 A2780 141,142
Metal-organic cages NPs 98+8.2 Human ovarian cancer cells 143
Bladder AuPtnanoseeds 10-50 EJ 144
AuPdPtNPs 30 Bladder cancer 145
Prostate Pt(IV)-Melanin NPs 73.7 PC3, Invivo 146
Oral squamous CIS-liposome 35+0.8 Squamous cell oral carcinoma, In vivo 147
Bone PtNPs 30 U20S 148
Lymphoma PtNPs U937 149
PCL-PtNPs U937, HH 150
Melanoma PtNPs 12.2+0.7 B16/F10 151
Leukemia PtNPs 30 Human acute monocytic leukemia cells 152
Microbial PVP-PtNPs 10-60 Gram+/- bacterial strains 153,154
Colitis PtNPs 5,30,70 In vivo 155

A lot of reports on anti-cancer therapeutic efficacy (mainly
cellular killing and / or growth inhibition) of PtNPs used for
the delivery of different anti-cancer agents to treat various cell
lines/animal models against different cancers/tumors have
been depicted below (Table 2):

A few researchers have utilized different anti-cancer agents
such as AuPt NPs/AuPtQ NPs, FePt-OA/OA-Cys NPs, and FePt-
Cys NPs with their different particle sizes to treat U87-MG,
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D54, U251, U87, H4, SGH44, and C6 cells to get higher anti-
cancer efficacy against brain cancer 1565249, A few scientists
have used Pt-Au NRs, and Apt-Alb-CIS NPs with their different
sizes to treat SW620, SW480 and HeLa cells, and in vivo
cervical cancer model for achieving higher therapeutic efficacy
against cervical cancer 157.158, A few investigators of different
groups have applied DOX-Fu-Pt NPs, GO-Pt NPs, PIMA-GA-
DACH-Pt NPs, AuPt-cRGD/DOX-AuPt-PEG/DOX-AuPt-
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cRGD/NIR Laser, PEG-Pt-DOX NPs and PVP-Pt-DOX NPs,
chitosan/zinc/silica/DOX/telmisartan-Pt NPs, and four
Pt(Il)iron oxide NPs with their different sizes for treating
MCF-7/ADR, LNCaP, MCF-7, HepG2, HelLaB, HT29,
HCT116,SW480, Colo 205, CP20, 4T1, MDA-MB-231 and
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IGROV-1 cells, and in vivo, in vivo 4T1-tumor model and MDA-
MB-231-xenograft models to get higher anti-cancer

therapeutic efficiency against breast cancers/tumors 159-165,
91,36,55,

Table 2. Platinum nanoparticles utilized for delivery of anti-cancer agents to various cancers/tumors.

Cancers Anti-cancer agents Particle sizes Cell lines/Animal models Ref
(nm)

Brain AuPt NPs/AuPtQ NPs 50/100 pm U87-MG, D54, U251 156
FePt NPs coated with oleic 3-8 U87,U251, H4 52
acid/oleylamine (OA/OA) and
cysteine (Cys)

L-Cys coated FePt (FePt-Cys) NPs 245 /48206 SGH44, C6, U251 *

Cervical PtAunanoraspberries (NRs) 10 SW620, SW480 157
Apt-Alb-CIS NPs (EGFR-targeted
giigﬁgﬂ-)cisplatin NPs with EGFR 80 HeLa, In vivo cervical cancer model 158

Breast DOX-loaded FuPtNPs (Fucoidan- 33+3.4 MCF-7/ADR, Invivo 159
coated PtNPs)
f&iﬁiﬂiﬁggﬁfgﬁep‘iﬁgs) 2-19 LNCaP, MCF-7, HepG2, HeLaB, HT29, HCT116, | 160

SW480, Colo205

80-250 CPZQ, 4T1, MDA-MB-231, 161
PIMA-GA-DACH-PtNPs In vivo 4T1 breast cancer tumor model
ﬁﬁﬁzzggggjg?gigzgfmm/l)OX- MDA-MB-231 tumor cells/xenograft models 91
PEG-Pt-DOX NPs 1205 ADR/MCF-7 %
PVP-Pt-DOX NPs MCF-7, MDA-MB-231 55,162
(/:l};lct)())(s/izl/nzqﬁ;i ;llf;t NPs In vivo breast cancer model 163164
Four Pt(Il)iron oxideNPs: 27-100 IGROV-1,MDA-MB-231 165
PEG-GLU-Pt-DACH,
PEG-Glu-Pt-EDA,
PEG-Mal-Pt-DACH,
PEG-Mal-PT-EDA

Liver DNR-Pt NPs 11.38+2.67 HepG2 /xenograft model 40
Peptide-Pt NPs 2.5 HepG2 166
GA-ALG-Pt NPs 141.9 HepG2 167

A few other groups of researchers have used DNR-Pt NPs,
peptide-Pt NPs, and GA-ALG-Pt NPs with their different sizes
to treat HepG2 cells and xenograft model for getting higher
anti-cancer efficacy against liver cancer/tumor 40166167, A few
other investigators have applied different anti-cancer agents
such as TPGS-Pt NPs, HA-GEM/CH-Pt NPs, chitosan-Pt NPs,
CDDP-NPs, PEG-Pt-CNPs, GP-NA, OAPI, USPtNs, and PDDA-
silica-DOX-FePt NPs with their different sizes to treat Pt-
resistant DDP/A549, NCI-H460, A5491, A549, Hela, LLC,
A549/U14, NCI-H1299 and RERF-A1 cells, and in vivo tumor
cells-bearing animals to achieve higher anti-cancer efficiency
against lung cancer 16817350, A few other scientists have
utilized polyphenol-Pt NPs, LP-Pt NPs, CIS-Pt-BR NPs, and
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DACH-Pt(II)-panitumumab NPs with their different sizes to
treat HCT-116, HT-29, Caco2 cells, and in vivo tumor cells-
bearing animal models for achieving higher anti-cancer
efficacy against colon cancer/tumor 174177, An investigation
has utilized PPNPs-siRNA to treat A2780 cells to get higher
anti-cancer efficacy against ovarian cancer 178, Another
investigation has used Apt-polymer-Pt NPs and PLGA-b-PEG-
Apt-Pt NPs for the treatment of LNCaP and PC3 cells, and in
vivo tumor cells-bearing animals to get higher anti-cancer
efficacy against prostate cancer 179180, One group of
researchers have used PA-Pt NPs to treat PC-9 and NIH-3T3
cells, and in vivo animal model for achieving higher anti-cancer
efficacy against bone cancer 181,
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Cancers Anti-cancer agents Particle sizes | Cell lines/Animal models Ref
(nm)

Lung TPGS-Pt NPs 85.3 Pt-resistant DDP/A549 168
HA-GEM/CH-Pt NPs 200 NCI-H460, In vivo 169
Chitosan-Pt NPs 230-270 A5491, A549 170
CDDP-NPs 36.748.1 HelLa, LLC, In vivo 171
PEG-Pt-CNPs 18.7+4.6 A549 / U14, In vivo 172
GP-NA, OAPI, USPt Ns 165.4+2.6 A549,NCI-H1299, In vivo 173
PDDA-silica-DOX-FePt NPs RERF-A1 50

Colon Polyphenol-Pt NPs 10-70 HCT-116 174
Lycopene(LP)-Pt NPs <50 HCT-116 175
CIS-Pt-BR NPs 192+88 HT-29, Invivo 176
DACH-Pt(II)-panitumumab NPs 120-155 HCT116, HT29,Caco2, In vivo 177

Ovarian PPNPs-siRNA 110 A2780 178

Prostate Apt polymer-Pt NPs 140 LNCaP, PC3 179
PLGA-b-PEG-Apt-PtNPs 150+15 LNCaP, In vivo 180

Bone Phytic acid(PA)-Pt NPs 1.7+1.2 PC-9, NIH-3T3, In vivo 181

Oral squamous PtNCP (Pt- nanocomposite beads) Oral squamous carcinoma cells, Animal tumor 182

xenograft model

Melanoma PEG/DOX-Pt NPs 40-45 A549, B16F10, NIH-3T3, In vivo tumor model 183

Choriocarcinoma | Folate-Pt(IV)-SWNT (Single wall JAR cells 184
carbon nanotube)

Gastric PDDA/silica/DOX-FePt NPs MKN-74 50

Leukemia CIS/DNR-Pt NPs 11.38+2.6 K562, K562 tumor-bearing mice 40

Another group of researchers have utilized PtNCP to treat
squamous carcinoma cells and animal tumor xenograft model
for getting higher anti-cancer efficacy against oral squamous
cancer!82, PEG/DOX-Pt NPs have been utilized by some
researchers to treat A549, B16F10 and NIH-3T3 cells, and in
vivo tumor model to achieve higher anti-cancer therapeutic
efficacy against melanoma 183, Folate-Pt(IV)-SWNTSs have been
used by some other researchers to treat JAR cells for getting
higher anti-cancer efficiency against chorio carcinoma 184,
PDDA/silica/DOX-FePt NPs have been applied by some
investigators to treat MKN-74 cells for getting hugher anti-
cancer efficacy against gastric cancer 50, CIS/DNR-Pt NPs have
been utilized by some other investigators to treat K562 cells,
and K562 tumor bearing mice for achieving higher anti-cancer
efficiency against leukemia 40.

Toxicity of platinum nanoparticles

The cytotoxicity of the PtNPs is generally dependent on their
sizes, shapes and concentrations used 5¢ [60]. Several
investigations have explored that PtNPs having 50 nm size
show anti-cancer effect, while their sizes belonging to 5 and 20
nm exhibit no anticancer effect 185. The viability of cancer cells
(MDA-MB-231 (TNBC)) by the exposure of PtNPs (10 pg/mL)
has been observed to 80%, whereas that value has been
decreased to 2% by the exposure of PtNPs at 200 ug/mL after
five days of incubation, while their cytotoxicity with healthy
cells (NHCF-V (fibroblasts)) has exhibited no statistically
significant differences after five days of incubation at all
concentrations, indicating their sensitive specificity to
cancerous cells!85, Mice treated with PtNPs at higher
concentration have shown their proinflammatory responses
through the enhancement of various cytokines such as TNF-a,
IL-1, IL-2, IL-4-6, and IL-12, with concomitant reduction of
intracellular GSH 186, Mice treated with PtNPs (maximum 10
ug/mL concentration) have exhibited no significant changes in
the activation of T cells, T helper cells (CD3+/CD4+) and
cytotoxic T cells (CD3+/CD8+) in the 1st 72 h and after long-
term treatment, and also no activity of natural immune killer
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cells (NK, CD49b+/Granzyme B+) after twelve weeks,
implicating their favorable biocompatibility4?. AuPt NPs
(10,30,50 and 100 pM) treated with different cell lines such as
HEK-293 (human embryonic kidney cells as control), U-87-MG
and D54 (both wild type human glioblastoma cells), and U251
(PTEN-mutant human glioblastoma cells) for 24 h have
exhibited decreased viability indicating their in vitro
cytotoxicity 156. FePt NPs (3,6 and 12 nm) with a concentration
of 100mM have shown their higher cytotoxicity (75% cell
viability), while no remarkable cytotoxicity (cell viability
>90%) at their concentrations below 10 mM 47.

Biodistribution and elimination

Generally, the biodistribution profiles depend on the NPs’ size,
coating and attachment with other ligands, concentration,
exposure time, and route of administration, and systemic
pathophysiological conditions. One investigation regarding
biodistribution analysis in six-week-old male C3H/HeN mice
has exhibited that the most of the FePt NPs (3,6 and 12 nm)
have been accumulated chiefly within the spleen followed by
lung and liver, and their gradual excretion from the organs
with time (about one week), while 12 nm FePt NPs have
shown their highest serum concentration and circulation half-
life, and 3 nm FePt NPs have shown their highest brain
concentration 47. Another study (short term biodistribution)
using BALB/c mice exposed with single intravenous tail-vein
injection of Pt NPs (10 mg/kg body weight) for 24 h has
shown the accumulation of NPs in the liver, spleen, kidney and
lungs, but not in plasma 187, The long term biodistribution
study has exhibited that the Pt NPs (10 mg/kg body weight)
administered intravenously have shown their highest
accumulation after 21 days in the liver and spleen, and
residual in the other organs such as kidney, lungs and heart
187, Generally, endocytosed NPs are processed to brokens
within the phagolysosomal compartment and excreted via
hepato-pancreatic biliary system and the small intestine as
fecal clearance, while non-decomposed larger NPs (>6 nm) are
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sequestered mainly in the spleen and liver for several months
or excreted via the glomeruli (<5 nm) 188,

Conclusions and future perspectives

In general, PtNPs show their specific cytotoxic effect in in vitro
diseased cell lines compared to healthy cells. As PtNPs show
their cytotoxicity at higher concentration and for long term
exposure in in vivo, their surface-functionalizations with
polymers or other ligands for applications are more suitable
for getting higher antimicrobial/anticancer efficiency and to
get targeted therapy for reducing systemic toxicity and
sustained drug release accompanying antioxidant activity
against diseases. In this concern, NPs should be optimized
with more controllable and uniform sizes for having enhanced
biocompatible  stability = regarding their  synthesis,
functionalization, and characterization, and repeated batch-to-
batch uniformity of the development of NPs before application
to get higher suitable therapeutic efficacy. A thorough
investigation regarding the NPs’ source of raw materials,
method of productions, consistent scale-up process, solubility,
biocompatibility, stability, route of in vivo administration,
biodistribution, pharmacokinetics, elimination, accumulation,
cell-specific targeting, controlled release and toxological issues
to human beings with high consistency is required before
clinical translation to consider PtNPs as drug delivery system
as well as nanomedicine for achieving maximum biological
effectiveness against diseases.
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