

Open Access Full Text Article

Review Article

Unraveling the Therapeutic Potential of Miracle Plant 'Aftimoon' in Disease Prevention and Treatment: A Comprehensive Review

Mohd. Maruf Khan ^{1*} , Akanksha Mishra ²

1. P.G. Scholar, Ilaj Bit Tadbeer H.S.Z.H. Government Autonomous Unani Medical College, 462003, Bhopal, M.P.

2. JRF, Centre of Excellence in Biotechnology, M.P. Council of Science and Technology, 462003, Bhopal, M.P.

Article Info:

Article History:

Received 26 Feb 2024

Reviewed 14 April 2024

Accepted 03 May 2024

Published 15 May 2024

Cite this article as:

Khan MM, Mishra A, Unraveling the Therapeutic Potential of Miracle Plant 'Aftimoon' in Disease Prevention and Treatment: A Comprehensive Review, Journal of Drug Delivery and Therapeutics. 2024; 14(5):198-204

DOI: <http://dx.doi.org/10.22270/jddt.v14i5.6602>

*Address for Correspondence:

Mohd. Maruf Khan, P.G. Scholar, Ilaj Bit Tadbeer H.S.Z.H. Government Autonomous Unani Medical College, 462003, Bhopal, M.P.

Abstract

Aftimoon (*Cuscuta reflexa*), a member of Convolvulaceae family is a miraculous parasitic plant with a rich history of utilization in traditional medicine. It has been extensively employed in the Unani treatments all over the world, particularly in the Indian subcontinent, to treat and prevent a variety of illness. Over the years, numerous research findings have documented its diverse therapeutic effects including antioxidant, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective activities. It is utilized as a single medication (*mufrad*) in powder, mixture, and decoction form and as compound formulations (*murakkab*) to treat a variety of ailments, which includes hepatitis, palpitations, varicose veins, mental ailments such as epilepsy and depression as well as dermatological conditions such as vitiligo and pityriasis. A number of biologically active compounds with therapeutic potential have been recognized and isolated from this wonder plant which includes amarbelin, sterol glycosides, cuscutalin, bergenin, and others. The synergistic actions of its constituents contribute to its multifaceted healing properties. This review explores the therapeutic potential of *Aftimoon*, shedding light on its pharmacological properties, traditional uses, and emerging research. By synthesizing traditional knowledge with modern scientific insights, this review aims to illuminate the diversified healing properties of *C. reflexa* and inspire further research and foster its integration into mainstream healthcare practices.

Keywords: *Aftimoon*; *Cuscuta reflexa*; Therapeutic potential; Unani medicines

Graphical Abstract

1. Introduction

Plant-based remedies have been fundamental components of diverse cultures worldwide since ancient times. Plant products, or natural products, play a significant role in preventing and treating diseases by boosting antioxidant activity, inhibiting the bacterial growth, and modulating the genetic pathways. It is acknowledged that allopathy-based medications are costly and have harmful effects on both normal tissues and a variety of biological processes. Owing to plant's lower side effects and affordable characteristics, many plant's medicinal potential in the management of disease is being enthusiastically analyzed.^{23,81} Numerous sacred texts, notably the Bible and Quran, have also endorsed the use of herbs in various disease treatment and prevention. The Prophet Mohammed (PBUH) has advised using a variety of plants and fruits to treat ailments, and the Islamic viewpoint likewise supports the use of herbs in healthcare.⁴ The ingredients of *Aftimoon* have been widely used in the traditional Indian medical practices (Unani, Homeopathy, Ayurveda) and modern medicine for the treatment of various ailments, infections, metabolic abnormalities and malignant diseases. *Aftimoon* (*Cuscuta reflexa*), is a widespread species in India, Ceylon, Bangladesh and Pakistan^{46,58,62}, indicates therapeutic implications in disease heal and treatment formulation, as it is commonly employed to address a variety of health issues. *Cuscuta reflexa* contains a complex of phytochemicals such as cuscutin, stigmasterol, kaempferol, dulcitol, myricetin, and coumarin^{7,42}, and coumarin from stems⁷⁶. Studies have shown its potential as an α -glucosidase inhibitor⁷ and its methanolic extract exhibits anti-steroidogenic, antiviral, and anticonvulsant properties²⁸. Additionally, it has been reported to possess antioxidant²⁹, anti-inflammatory³⁵, antimicrobial^{16,49,67}, antispasmodic, hemodynamic²⁷, antihypertensive activity, and act as muscle relaxant, and cardiotonic drug⁶⁸. In the Unani Medicinal system, it is regarded as an anticancer or anti-tumor agent⁴⁵. This review sums up the function of *Aftimoon* and its active constituents in the management and prevention of different diseases through the modulation of many biological pathways.

2. Habitat, Distribution and Botanical Description

TABLE 1: Taxonomic position of *Cuscuta reflexa* (*Aftimoon*)

Kingdom	Plantae
Sub Kingdom	Tracheobionta
Super division	Spermatophyta
Division	Angiosperms
Class	Eudicots
Subclass	Asterids
Order	Solanales
Family	Cuscutaceae
Genus	Cuscuta
Species	<i>C. reflexa</i>

C. reflexa is a parasitic, leafless and rootless, perennial climber that belongs to Cuscutaceae family. It is rampant in tropical and sub-tropical areas of the world with huge species diversity, but is rarely found in the temperate regions.^{77,79}

It is distributed throughout the plains in India,^{10,24} and climbs to an elevation of 3000 meters throughout the Himalayas¹⁰. The stem is long, slender, thread-like which appears yellow or green in color. The plant lacks chlorophyll therefore cannot produce its own food through photosynthesis. It heavily relies on host for nutrition. The medicinal properties acquired also depends on the host plant. The flower is hermaphrodite,

pentamerous, either solitary or clustered in racemes. It produces tiny, spherical capsules containing black, glabrous seeds. These seeds are dispersed via water or wind facilitating the spread of plant to new host plant, hence facilitating *Aftimoon's* development. The Taxonomical position of *C. reflexa* (*Aftimoon*) is mentioned in Table 1⁷⁹ and the Vernacular names in Table 2.

TABLE 2: Vernacular names of *Cuscuta reflexa* (*Aftimoon*)

LANGUAGE	VERNACULAR NAME	REFERENCES
Arabic	<i>Shajar-ul-Zibagh, Aftimoon</i>	11,19,30,59
English	Dodder	9-12,19
Gujarati	Akaswel, Amarbel	10,11
Hindi	Amarbel, Akashbel	10,11,19,59
Marathi	Nirmuli	53
Persian	<i>Darakht-e-pechan</i>	11
Sanskrit	Amarvela, Asparsa	53
Telugu	Sitamapurgonalu	10,11
Unani	<i>Aftimoon, Kashus, Kasoos</i>	9,10,12,19
Urdu	<i>Aftimoon, Aftimoon Hindi</i>	10,11

3. Active Chemical compounds of *Cuscuta reflexa* (*Aftimoon*)

Numerous chemical constituents isolated, have been identified to bear therapeutic potential. These include cuscutin, cuscutalin^{1,63,78,80}, benzopyrones, dulcitol, quercetin¹¹. In addition, it contains a large number of flavonoids^{1,10,80}, glucopyranoside⁶⁴, alkaloids, glycosides, resin, tannin and carbohydrate¹⁰. Stem contain the compound 5-hydroxy-7-methoxy-6-(2,3-epoxy-3-methyl butyl)-flavanone, reflexin⁷⁴ and some steroids, glycoside. Sitosterol and cuscutin, stigmasterol were isolated from the roots and have reported to display anti-inflammatory and anti-bacterial activity.

4. *Aftimoon's* Unani description and key formulations

As per the renowned Unani physician, the *Aftimoon* has hot and dry temperament (*Mizāj*) with variation in degree of its hotness and dryness.^{10,11,14,19,30,36,59} The aerial parts of the plant, its stem and seed are used in Unani Medicine in form of drug to treat various ailments.^{10,11} The dosage prescribed by physicians vary depending upon its usage in dry form (3-5gm or 4-6gm) or fresh(14-21gm).^{10,11,15,26,36,59} It is highly toxic for people with *Safrawi Mizāj* (hot temperament)^{15,19,26}, since it results in nausea, irritability. *Aftimoon's* basic temperament (*Mizāj*) causes thirst, mouth dryness. Certain correctives (*Muslih*) are advised in order to counter the adverse effects which includes *Kateera* (gum of *Cochlospermum religiosum L.*), *Samagh-e-Arabi* (gum of *Acacia arabica*), *Kasni* (*Cichorium intybus*), *Zafran* (*Crocus sativus*), and almond oil (oil of *Prunus amygdalus*).^{14,15,18,26,30,36} The Classical Unani text throws a light on *Aftimoon's* several pharmacological properties, which includes *Mushil-i-Sawdā* (purgative of black bile)^{10,19,30,59,79}, *Mushil-i-Balgham* (purgative of phlegm)^{10,11,30,59}, *Muhallil-i-Waram* (inflammation reduction)^{10,11,30,65}, *Mudirr-i-Bawl* (Diuretic)^{11,65}, *Amrād-i-Jild* (skin disorder, anti-fungal activity)^{26,40,50,51,61}, *Muqawwi-i-Jigar* (Hepatotonic)^{11,38,39,53}, *Musaffi-i-Dam* (Blood purifier)¹¹.

Aftimoon (*C. reflexa*) has long been utilized by Unani experts to cure various illness, including varicose veins^{37,43}, muscular dystrophy⁴⁴, neurological disorders notably schizophrenia, epilepsy, and melancholia¹⁹. The renowned Unani physician Hakeem Muhammad Saeed, who founded the Hamdard Foundation in Pakistan, frequently prescribed it to cure cancer.⁴¹ In Unani System of Medicine, numerous compound

formulations—which contain multiple ingredients are employed as premade formulations to treat a range of illnesses. There are variety of dosage forms accessible based on the need, the fundamentals of pharmacy, and the treatment plan. Numerous pharmacopoeia and formularies have been recognized by the Indian government to make and dispense ready-made medications in a range of dosage formats. Following are some of the Key formulations that contain *Aftimoon* as an ingredient - *Sikanjabeen-e-Aftimooni*, *Sharbat-e-Deenar*, *Itrifal-e-Aftimoon*^{10,11}, *Habbe Aftimoon*¹³, *Arq-e-MusaffiKhoon*, *Sharbat-e-Aftimoon*, *Majoon-e-Najah*, *Sharbat-e-Dinar*, *Majoon-e-Chobchini*, and *Sharbat-e-Kasoos*,etc.³³

5. Traditional Medicinal uses of various parts of *C. reflexa* (*Aftimoon*)

Due to their abundance of different phytochemicals, *Aftimoon* is widely used in traditional healthcare systems. It is used to treat illness, itching, as well as diuretic, anthelmintic, purgative, and tonic disorders. The entire plant, its stem, and its seeds are used as prescription drugs for treating ailments. Medicinal uses of various parts of *C. reflexa* (*Aftimoon*) is displayed below in (Figure 1).

Figure1: Traditional Medicinal uses of various parts of *C. reflexa* (*Aftimoon*)

6. Therapeutic Implications of *Aftimoon* (*Cuscuta reflexa*) and Its different Ingredients in Treating Health Conditions

Research studies reveal the role of *Aftimoon*'s active constituents in curing the diseases via wide range of biological activities notably the activation of the antioxidative enzyme, acting as chemoprotective by regulating the cellular pathways, etc. Pharmacological activities of *Aftimoon* is discussed as follows (Figure2).

6.1 Anti-oxidant activity - One of the primary agents responsible for the development of many ailments is the free radical or reactive oxygen species. Neutralizing free radical activity, however, is a crucial step in preventing disease. Antioxidants help to activate antioxidative enzymes, which in turn reduce the harm that reactive oxygen species and free radicals can cause. Additionally, they often neutralize and eliminate free radicals earlier than they strike sites in biological cells.⁴⁸ There have been reports of antioxidant activity in medicinal plants⁵⁴. Plants are useful in avoiding disease because of the amount of antioxidants found in their seeds, fruits, oil, foliage, bark, and roots.

Numerous researchers have used a variety of qualitative and quantitative methods to identify antioxidants in different *Cuscuta* species. The study investigated the levels of phenolics and flavonoid content in stem obtained from a variety of hosts and retrieved with multiple solvents, including water, n-hexane, 100% methanol, 80% methanol, and 100% ethanol. Their antioxidant capacity was assessed using an array of procedures, such as reducing power, DPPH scavenging action, percentage restriction of linoleic acid peroxidation, and δ -tocopherol. Antioxidant capacity and total phenolic content were shown to be closely connected.⁸

Reports have indicated that *C. reflexa* possesses antioxidant properties^{47,71}. The ability of the *C. reflexa* methanolic extract to scavenge free radicals was assessed using DPPH and reducing power assays. The IC₅₀ value of the DPPH experiment showed that its antioxidant activity was 359.48 μ g/ml, which was higher than the value of 9.22 μ g/ml for ascorbic acid, which was employed as a standard. It was discovered that the extract's reducing power was dose-dependent and rose with concentration⁶. The *C. reflexa* ethanolic extract's ethyl acetate fraction exhibited a notable antioxidant effect. Alpha tocopherol, rutin, and flavonoids—all of which were identified by preliminary phytochemical screening—may be associated with activity.³¹

Figure 2: Pharmacological activities of *Cuscuta reflexa* (*Aftimoon*) in disease prevention and management by modulating various biological activities.

6.2 Hepatoprotective activity -When it comes to hepatoprotection without any negative side effects, medicinal plants and their constituents play a crucial role. The efficacy of *C. reflexa* to mitigate liver damage caused by medications such as isoniazid, ethanol, rifampicin, paracetamol, cisplatin, carbon tetrachloride, and others has been investigated by numerous researchers. Biochemical parameters including ALP, ALT, AST, and total bilirubin were determined prior to and following the administration of the *C. reflexa* extract. It improved liver function by significantly reducing serum ALT, AST, and ALP in afflicted rats that were comparable to standard. The findings are corroborated by the liver section's histopathological analysis.^{5,17,70} On Hep-3B, RAW-264.7, and HEK-293 cell lines, the chloroform extract of *C. reflexa* has demonstrated an anti-hepatocellular carcinoma activity.⁵²

6.3 Anti-diabetic activity- Owing to a sedentary lifestyle's role in lowering physical activity levels and increasing obesity rates, the development of diabetes has evolved into a bigger risk for a significant portion of the population in almost every nation on the globe.⁶⁶ Significant hypoglycemic efficacy was shown using methanolic and chloroform extracts of the whole *C. reflexa* plant at dosages of 50, 100, and 200 mg/kg body weight. The impact on glucose-loaded Long Evans rats⁵⁵ was estimated using the oral glucose tolerance test. When mice injected with glucose were given a methanolic extract of *C. reflexa*, the results demonstrated significant drops in blood glucose and enhanced metabolic changes, supporting the traditional folkloric claims of the plant.^{2,57}

6.4 Anti-inflammatory activity- Inflammatory responses are critical at various stages of the cancer pathogenesis. There is a possibility that anti-inflammatory medications cause malignant cells to undergo apoptosis and that they can serve as both a prophylactic measure and a therapeutic intervention.⁷³

In a carrageenan-induced paw swelling model in rats, the anti-inflammatory actions of ibuprofen were contrasted with the anti-inflammatory activity of alcohol and water extracts of *C. reflexa* stem. Before injecting carrageenan, these extracts were ingested orally at dosages of 100, 200, and 400 mg/kg bd. Wt. In comparison to the standard medication Ibuprofen, which reduced the swelling volume by 96.36%, the medium and higher doses of the extracts, 200 mg/kg and 400 mg/kg, respectively, reduced the swelling volume by 47.27%, 72.72%, and 57.72%, 80.00% at 5 hours. As a result, this study found that the chosen *C. reflexa* isolates significantly reduced inflammation in a rat model of carrageenan-induced paw swelling.³⁴

6.5 Anti-Cancer or Anti- proliferative activity- *C. reflexa* (*Aftimoon*) is the commonly prescribed antitumor medication in the Unani medicinal system. Chloroform and ethanol extract demonstrated significant antitumor effect in Ehrlich ascites carcinoma-bearing mice when combined with standard 5-fluorouracil.²¹ The anti-tumor effect of *C. reflexa* extracts in ethanol and chloroform has been indicated, and they have also been found to prolong the lives of tumor-bearing mice by inhibiting EAC cells. The host observed improvements in hematological markers and a decrease in tumor volume.^{22,75} *C. reflexa* extracts in ethanol and chloroform have demonstrated a favorable antiproliferative action in EAC-bearing mice.²¹

In colorectal cell lines HCT116, *C. reflexa* displayed mild antiproliferative properties.⁶⁰ Hep-3B cell line proliferation was shown to be dose- and time-dependently inhibited by the chloroform extract of *C. reflexa* via the intrinsic mitochondrial apoptotic mechanism.⁵²

6.6 Anti-microbial activity- Gram +ve and Gram -ve bacteria have been proven to be susceptible to the antimicrobial properties of *C. reflexa*'s ethanol extract. *E. Coli* was suppressed, at a dosage of 200 mg/mL, and at the conc. of 500

mg/mL maximum antibacterial activity was observed against *E. coli*.⁶⁹ Methanol extract of *C. reflexa* stem demonstrated broad-spectrum antibacterial activity against *S. aureus*, *P. aeruginosa*, and *E. coli* at dose ranges of 25–125 mg/ml and 50–150 mg/ml.⁴⁹

Gram -ve bacteria like *E. coli* linked to fungal strains like *Penicillium citrinum* were more effectively inhibited by the ethanolic extract of *C. reflexa*³². Quercetin demonstrated both antiviral and antibacterial properties.⁶⁴

6.7 Anti-arthritic and Nephroprotective activity- In vitro protein denaturation methods, in vivo and in vitro formaldehyde and turpentine oil-induced arthritis models were used to assess the antiarthritic action of *C. reflexa* aqueous and methanol extracts. AMECR, at 600 mg/kg, effectively decreased acute muscle and paw swelling, peaking at 71.22% for turpentine oil at the 6th hour and 76.74% for formaldehyde on the 10th day. Furthermore, studies carried out in vitro show that, in a concentration-dependent way, protection against denaturation of both egg albumin (93.51%) and bovine serum albumin (89.30%) can be considerably enhanced at 800 g/mL. According to this study, AMECR offers defense against two medical conditions that phytoconstituents might trigger: nephrotoxicity and arthritis.³

6.8 Anti-pyretic activity- Antipyretic medications reduced body temperature in fever scenarios. It has been proven that *C. reflexa* works well as an antipyretic medication for rats that have yeast-induced pyrexia. Both the ethanolic and aqueous extracts were demonstrated to be effective and to lower rectal temperature after a three-hour treatment. Compared to the standard medication (96.5%, Paracetamol), a dose of 400 mg/kg weight reduced the elevated temperature by approximately 83.8% (ethanolic) and 79% (aqueous) after 6 hours of treatment.²⁰

6.9 Wound Healing activity- Many plants and their components are crucial to the process of wound healing in the Rat model, wounds gained recovery after being exposed to 400 mg/kg and 200 mg/kg ethanolic as well as aqueous extracts of *C. reflexa* stem.²⁵ Research analysis finds *C. reflexa* to be more effective than betadine in healing the wounds.⁵⁶

6.10 Hypoglycemic activity- At dosages of 50, 100, and 200 mg/kg body weight, respectively, both the methanol and chloroform isolates of *C. reflexa* showed hypoglycemic effect in oral glucose tolerance tests conducted in Long Evans rats and Swiss albino mice.⁷⁹ The methanol fraction of *C. reflexa* stems caused a statistically meaningful and dose-responsive drop in serum glucose levels in rats fed glucose orally.⁵⁵

6.11 Anti-HIV activity- The combination of several chemicals with distinct mechanisms of action has resulted in the Crude aqueous extract of *C. reflexa* exhibiting anti-HIV activity. Methanol fraction from *C. reflexa* showed antibacterial and free radical scavenging effects.⁴¹

6.12 Anti-anxiolytic activity- According to the study, the 400 mg/kg methanol isolate of *C. reflexa* considerably lowered the frequency of avenues into the closed arms and raised the duration of time occupied in the open arms. In both rats, the 400 mg/kg extract substantially lowered anxiety as compared to the 200 mg/kg extract. The 400 mg/kg effect was similar to the mean. As a result, the methanol isolate from *C. reflexa* has the potential to be used as an anxiolytic and to help create plant-based anxiety medications.⁷²

7. Conclusion

Natural products and their related substances are gaining immense popularity in the global fight against disease. *Aftimoon* has a wide variety of important chemical components in abundance which have been utilized

traditionally throughout history, particularly in the Indian Subcontinent, and has long been regarded as a miraculous plant with a wide range of therapeutic benefits. It is abundant in volatile oils, resin glycosides, polysaccharides, alkaloids, lignans, and flavonoid. In traditional medical systems, decoctions, extracts, pastes, powders, juices, and infusions made from various plant parts are significant herbal medicines. Clinical research has verified that *Aftimoon* is essential for preventing a wide range of illnesses. The regulation of many cell signaling pathways has been observed in tumors, indicating the function of active components as chemo-preventive agents. However, further research is warranted to explore the long-term efficacy and specific therapeutic mechanisms underlying *Aftimoon*. Additionally, efforts should be made to adapt and tailor this intervention to diverse populations and clinical settings to maximize its accessibility and effectiveness.

References

1. Agarwal RDS. Chemical Examination of *Cuscuta reflexa* Roxb. Part I. The Constituents. *Journal of Indian Chemical Society*. 1935;1:384-388.
2. Akter MH AMRM. Synergistic antihyperglycemic activity of *Coccinia grandis* leaves and *Cuscuta reflexa* stems. *J Pharm Pharm Sci*. 2016;5:236-243.
3. Alamgeer NSUQMAH. Appraisal of anti-arthritic and nephroprotective potential of *Cuscuta reflexa*. *Pharm Biology*, 2017;55(1):792-798.
<https://doi.org/10.1080/13880209.2017.1280513>
PMid:28103731 PMCID:PMC6130659
4. Al-Bukhari MI SAB. The collection of authentic sayings of Prophet Mohammad (peace be upon him), division 71 on medicine. In: *Hilal Yayınları*; 1976.
5. Amareesh P SRDPAMBGKBN. Hepatoprotective activity of whole part of the plant *Cuscuta reflexa* Roxb (Convolvulaceae) in chloroform, ethanol and paracetamol induced hepatotoxic rat models. *Int J Pharm Clin Res*. 2014;6:127-132.
6. Amol P VPKCVPRC. In vitro free radicals scavenging activity of stems of *Cuscuta reflexa*. *J Pharm Res*. 2009;2:58-61.
7. Anis E AIASMGMAANHSSUHS and CMI. Alpha-Glucosidase Inhibitory Constituents from *Cuscuta reflexa*. *Chem Pharm Bull Tokyo*, 2002;50:112-114. <https://doi.org/10.1248/cpb.50.112>
PMid:11824569
8. Anjum F BSSMASAMAN. Comparative evaluation of antioxidant potential of parasitic plant collected from different hosts. *J Food Process Technology*. 2013;4:1-6. <https://doi.org/10.4172/2157-7110.1000228>
9. Anonymous. Medicinal Plants In Folklores of Orissa, . In: Vol 2. CCRUM, Ministry of Health and Family Welfare, Govt. of India; 2006:118.
10. Anonymous. Standardization of Single Drugs of Unani Medicine. In: 1st ed. CCRUM, Ministry of Health and Family Welfare, Govt. of India; 1992:7-13.
11. Anonymous. The Unani Pharmacopoeia of India. Part-I. In: CCRUM, Ministry of Health and Family Welfare, Govt. of India; 2007:1-2.
12. Anonymous. Unani Medicine Plants of Dindigul District Tamil Nadu. In: CCRUM, Ministry of Health and Family Welfare, Govt. of India; 2012:60.
13. Arzani A. Qarabadeen Qadri. CCRUM, Ministry of Health and Family Welfare, Govt. of India, (New Delhi, India: Dept. of AYUSH); 2009.
14. Avicenna. Al Qanoon, Vol 1. (Idara Matbuate Sulaimani, ed.); 1998.
15. Baghdadi. H. Kitab-Al-Mukhtarat-Fil-Tib. CCRUM, Ministry of Health and Family Welfare, Govt. of India. 2005;2:51.

16. Bais N KAMVK. Comparative Evaluation of Antibacterial Study on Methanolic Extract of *Cuscuta reflexa* Grown on *Cassia Fistula* and *Ficus benghalensis*. *Int J Pharm Sci Heal Care*. 2014;3:45-51.

17. Balakrishnan BR SBBVH. Effect of methanol extract of *Cuscuta reflexa* aerial parts on hepatotoxicity induced by antitubercular drugs in rats. *Int J Appl Res Nat Prod*. 2010;3:18-22.

18. Baskar RKALRYKWWYeh. Cancer and Radiation Therapy: Current Advances and Future Directions. *Int J Med Sci*. 2012;9(3):193-199. <https://doi.org/10.7150/ijms.3635> PMid:22408567 PMCid:PMC3298009

19. Baytār I. Al-Jame Al-Mufradat-wal-Adviawal Aghziyah (Urdu Translation) . In: Vol 2. CCRUM, Ministry of Health and Family Welfare, Govt. of India; 2000:94-97.

20. Bhattacharya S RB. Preliminary investigation on antipyretic activity of *Cuscuta reflexa* in rats. *J Adv Pharm Technol Res*. 2010;1:83-87.

21. Chatterjee D SRJADJ. Evaluation of Antitumor Activity of *Cuscuta reflexa* Roxb. (Cuscutaceae) against Ehrlich Ascites Carcinoma in Swiss Albina Mice. *Trap J Pharm Res*. 2011;10(4):447-454. <https://doi.org/10.4314/tjpr.v10i4.10>

22. Dandopani CRSAKJD. Evaluation of Antitumor Activity of *Cuscuta reflexa* Roxb. (Cuscutaceae) Against Ehrlich Ascites Carcinoma in Swiss Albino Mice. *Tropical Journal of Pharmaceutical Research*. 2011;10(4):447-454. <https://doi.org/10.4314/tjpr.v10i4.10>

23. Efferth T, Koch E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. *Curr Drug Targets*. 2011;12(1):122-132. doi:10.2174/138945011793591626 <https://doi.org/10.2174/138945011793591626> PMid:20735354

24. Evans WC. *Trease, and Evans Pharmacognosy*. . 16th ed. Elsevier; 2009.

25. Gautam T TVG V. Phytochemical Screening and Wound Healing Potential of *Cuscuta reflexa* Roxb. *Int J Pharm Life Sci*. 2018;9:21. <https://doi.org/10.22376/ijpls.2018.9.4.p21-28>

26. Ghani N. Khazanul Advia, In: *Idara Kitab-Us-Shifa*,. 3rd ed.; 2011:242-243.

27. Gilani AUH AK. Pharmacological Action of *Cuscuta reflexa*. *Int J Pharmacog*. 1992;30(4):296-302. <https://doi.org/10.3109/13880209209054017>

28. Gupta M MUPD and BS. Anti-Steroidogenic Activity of Methanolic Extract of *Cuscuta reflexa* Roxb. Stem and *Corchorus Olitorius* Linn. Seed in Mouse Ovary. *Indian J Exp Biol*. 2003;41:641-644.

29. Gupta V SS. Plants as Natural Antioxidants. *Indian J Nat Prod Resour*. 2006;5:326-334.

30. Hakim M.A. Bustanul Mufradat. *Idara Kitab-Us-Shifa Kcha Chelan*. In: ; 2002:85-86.

31. Hussain SA FSSTTAHSKR. Evaluation of anticonvulsant and antioxidant activity of selected medicinal plants. *World J Pharm Pharm Sci*. 2017;6:1899-1914. <https://doi.org/10.20959/wjpps20178-9844>

32. Inamdar FB ORC V. In vitro antimicrobial activity of *Cuscuta reflexa* Roxb., *Int Res J Pharm*. 2011;2(4):214-216.

33. Kabiruddin H; Makhzanul Mufradat, . Ijaz Publishing House,; 2007.

34. Katiyar NS SAGA and RNV. Evaluation of carrageenan induced anti-inflammatory activity of stem extracts of *Cuscuta reflexa* (roxb) in rats. *Int J of Res in Pharmand Chem*. 2015;5(2):322-326.

35. Katiyar NS SAGARNV. Evaluation of Hepatoprotective Activity of Stem Extracts of *Cuscuta reflexa* (Roxb.) in Rats. *Int J Pharm Pharm Sci*. 2015;7:231-234.

36. Khan HMA. Muhit-i Azam. .CCRUM, Ministry of Health and Family Welfare, Govt of India., 2012;2:354-357.

37. Khan MM, Begum M, Anees A, Mishra A. Vein Unveiled: An Overview of Varicose Vein. *World Journal of Current Medical and Pharmaceutical Research*. Published online April, 2024:47-52. <https://doi.org/10.37022/wjcmpr.v6i.1.319>

38. Khan S MKAM. Development of RAPD Markers for Authentication of Medicinal Plant *Cuscuta reflexa* .*Eurasia J Biosci*. 2010;4:1-7. <https://doi.org/10.5053/ejobios.2010.4.0.1>

39. Kim EY KELHSYSYJHSNW. Protective Effects of *Cuscutae Semen* against Dimethylnitrosamine Induced Acute Liver Injury in SpragueDawley Rats. *Biol Pharm Bull*. 2007;30(8):1427-1431. <https://doi.org/10.1248/bpb.30.1427> PMid:17666798

40. Kulkarni PH AS. The Ayurvedic Plants. In: New Delhi: Sri Satguru Publications. ; 2004:128.

41. Mahmood N PSBAKAPC. Constituents of *Cuscuta reflexa* are anti-HIV Agents. *Antiviral Chemistry and Chemotherapy*,. 1997;8(1):70-74. <https://doi.org/10.1177/095632029700800108>

42. Manish D SBSVKVM. Antibacterial Activity of Biologically Synthesized Nanosilver against Drug-Resistant Bacterial Pathogens. *Int J Green Nanotechnology*. 2012;4(2):174-182. <https://doi.org/10.1080/19430892.2012.676931>

43. Maruf Khan Mohd, Begum M, Anees A, Mishra A. IMPLICATION OF LEECH THERAPY AND ASBAB-E-SITTA ZAROORIYAH IN THE PREVENTION AND TREATMENT OF VARICOSE VEINS: A COMPREHENSIVE REVIEW. *Int J Adv Res*. 2024;12(02):627-632. <https://doi.org/10.21474/IJAR01/18338>

44. Mishra A, Sairkar P, Silawat N, Maruf Khan M, Kothari A. Structural Homology Modeling of C-Terminal Domain of the Dystrophin Protein: An in-Silico Approach. *International Journal of Innovative Science and Research Technology (IJISRT)*. 2024;9(1):1987-1994. doi:10.5281/zenodo.10639763

45. Miyahara KDXWMSCYS, NT. *Chem. Pharm. Bull*. Vol 44. 3rd ed.; 1996. <https://doi.org/10.1248/cpb.44.481>

46. Nasir E and Ali SI. *Flora of Pakistan*, . In: Fakhri Printing Press,; 1972.

47. Noureen S NSGSBFAMNF et al. Seeds of giant dodder (*Cuscuta reflexa*) as a function of extract procedure and solvent nature. .Not Bot Hort Agrobot Cluj. 2018;46:653-662. <https://doi.org/10.15835/nbha46211088>

48. Nunes P. X. SSF, GRJ, AS. Biological oxidations and antioxidant activity of natural products. *Phytochemicals as Nutraceuticals- Global Approaches to Their Role in Nutrition and Health*, InTech. Published online 2012.

49. Pal DK MMSG and PA. Antibacterial Activity of *Cuscuta reflexa* Stem and *Corchorus Olitorius* Seed. *Fitoterapia*. 2006;77:589-591. <https://doi.org/10.1016/j.fitote.2006.06.015> PMid:16890386

50. Pandit S CNDVK. Effect of *Cuscuta reflexa* on Androgen Induced Alopecia. *J Cosmet Dermatol*, . 2008;7(3):199-204. <https://doi.org/10.1111/j.1473-2165.2008.00389.x> PMid:18789055

51. Patel SSVNSCVK Dixit. "An Updated Review on the Parasitic Herb of *Cuscuta reflexa* Roxb." *Journal of Chinese Integrative Medicine*. 2012;10(3):249-255. <https://doi.org/10.3736/jcim20120302> PMid:22409913

52. Praseeja RJ SPAVV. Studies on Apoptosis-Inducing and Cell Cycle Regulatory Effect of *Cuscuta reflexa* Roxb. chloroform Extract on Human Hepatocellular Carcinoma Cell Lines Hep 3B. *Int J Applied Res Nat Prod*. 2015;8(2):37-47.

53. Pullaiah T. *Encyclopaedia World Medicinal Plants*, . In: Vol 2. Regency Publications, ; 2006.

54. Rahmani A. H. ASM. *Nigella sativa* and its active constituents thymoquinone shows pivotal role in the diseases prevention and treatment. *Asian Journal of Pharmaceutical and Clinical Research*. 2015;8(1):48-53.

55. Rahmatullah M SSTTLSCMHW et al. Effect of *Cuscuta reflexa* stem and *Calotropis procera* leaf extracts on glucose tolerance in glucose-induced hyperglycemic rats and mice. *African Journal of Traditional Complementary Alternative Medicine*. 2010;7:109-112. <https://doi.org/10.4314/ajtcam.v7i2.50864> PMid:21304621 PMCid:PMC3021163

56. Ranjan K GN. Anti-Inflammatory Response of *Cuscuta reflexa*. *Journal of Poisonous and Medicinal Plants Research* . 2015;3(1):1-5.

57. Rath D KDPSML. Antidiabetic effects of *Cuscuta reflexa* Roxb in streptozotocin induced diabetic rats. *J Ethnopharmacol*. 2016;192:442-449. <https://doi.org/10.1016/j.jep.2016.09.026> PMid:27649679

58. Raza MA MFDM. *Cuscuta reflexa* and *Carthamus Oxyacantha*: Potent Sources of Alternative and Complementary Drug. Springer Plus. 2015;4:76-82. <https://doi.org/10.1186/s40064-015-0854-5> PMid:25741457 PMCid:PMC4344478

59. Razi ABMZ. *Kitabul Mansoori*, (Urdu translation), . In: CCRUM, Ministry of Health and Family Welfare, Govt. of India; 1991:314.

60. Riaz M BAAMFIFASMAA. Natural Products from *Cuscuta reflexa* Roxb. with Antiproliferation Activities in HCT116 Colorectal Cell Lines, .*Nat Prod Res*. 2016;31(5):583-587. <https://doi.org/10.1080/14786419.2016.1198349> PMid:27450325

61. Roy RK TMDVK. Development and Evaluation of Polyherbal Formulation for Hair Growth-Promoting Activity. *J Cosmet Dermatol*. 2007;6:108-112. <https://doi.org/10.1111/j.1473-2165.2007.00305.x> PMid:17524127

62. Said M. Hamdard Pharmacopeia of Eastern Medicine, . In: Hamdard Foundation, ; 1969.

63. Saini P ERMA. Parasitic Medicinal Plant *Cuscuta reflexa*, an Overview, .*Int J Sci Eng Res*. 2015;12(6):951-959.

64. Sandler HA. Managing *Cuscuta Gronovii* (Swamp Dodder) in Cranberry Requires an Integrated Approach, .*Sustainability*. 2010;2:660-683. <https://doi.org/10.3390/su2020660>

65. Sharma SHKKPSMKIJSP. Comparative Study of *Cuscuta reflexa* and *Cassytha Filiformis* for Diuretic Activity, .*Pharmacogn Res*. 2009;1(5):327-330.

66. Shaw JE SRZPZ. Global estimates of the prevalence of diabetes for 2010 and 2030. .*Diabetes Res Clin Pract*. 2010;87:4-14. <https://doi.org/10.1016/j.diabres.2009.10.007> PMid:19896746

67. Shikha S. Antimicrobial Study of *Cuscuta reflexa* Collected in Different Seasons. *IJPBS*. Published online 2013;1393-1397.

68. Singh GS GKN. Some Pharmacological Studies on *Cuscuta reflexa* Plant, .*Ind J Pharmacog*. 1973;5(2):344-345.

69. Suchana S CTNLCMAR. Antimicrobial Effects of Ethanolic Extracts from *Cuscuta reflexa* Roxb, .*Int J Pharm Phytochem Res* . 2016;8(6):930-932.

70. Taghizadieh M IEVMAFAJ. Hepatoprotective and antioxidant activity of ethanolic extract of aerial parts of *Cuscuta reflexa* Roxb on liver damage due to cisplatin in rats. .*Baltica*. 2014;27:274-279.

71. Tanruean K PPKJSNLS. Bioactive compounds content and their biological properties of acetone extract of *Cuscuta reflexa* Roxb. grown on various host plants. *Nat Prod Res*. 2017;3:1-4. <https://doi.org/10.1080/14786419.2017.1392955> PMid:29098872

72. Thomas S SSVCKAB. Evaluation of anxiolytic effect of whole plant of "Cuscuta reflexa". .*World Journal of Pharmacy and Pharmaceutical Sciences*, . 2015;4(8):1245-1253.

73. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. .*Annu Rev Immunol*. 2012;30:677-706. <https://doi.org/10.1146/annurev-immunol-020711-075008> PMid:22224761

74. Tripathi VJ YSUAK. A New Flavanone, Reflexin, from *Cuscuta reflexa* and Its Selective Sensing of Nitric Oxide. *Appl Biochem Biotechnol*. 2005;127:63-67. <https://doi.org/10.1385/ABAB:127:1:063> PMid:16186624

75. Udadant PB SS& UCD. Preliminary screening of *Cuscuta reflexa* stems for Anti-inflammatory and cytotoxic activity. *Asian Pacific Journal of Tropical Biomedicine*, . 2012;2(3):1303-1307. [https://doi.org/10.1016/S2221-1691\(12\)60405-5](https://doi.org/10.1016/S2221-1691(12)60405-5)

76. Uddin SJ SJMMBMSMNL, SSD. Swarnalin and cis-swarnalin, two new tetrahydrofuran derivatives with free radical scavenging activity, from the aerial parts of *Cuscuta reflexa*. *Nat Prod Res* .2007;21:663-668. <https://doi.org/10.1080/14786410701371405> PMid:17613825

77. Verma N YRK. *Cuscuta reflexa*: a parasitic medicinal plant. *Plant Archives*. 2018;18(2):1938-1942.

78. Versiani MA. Studies in the Chemical Constituents of *Bombax Ceiba* and *Cuscuta reflexa*. PhD Thesis, . University of Karachi,; 2004.

79. Vijikumar S RKPDB. *Cuscuta reflexa* Roxb. - A Wonderful Miracle Plant in Ethnomedicine. *Indian J Nat Sci*. 2011;11(9):676-683.

80. Yadav SB TVSRPHP. Antioxidant Activity of *Cuscuta reflexa* Stems. .*Indian Journal of Pharmaceutical Sciences*, .2000;6:477-478.

81. Zong A, Cao H, Wang F. Anticancer polysaccharides from natural resources: A review of recent research. *Carbohydr Polym*. 2012;90(4):1395-1410. <https://doi.org/10.1016/j.carbpol.2012.07.026> PMid:22944395