

Advances in Local Anesthesia and Pain Management for Practicing Dentists: A Comprehensive Review

Manisha Rout ^{1*}, Nitin Tomar ², Mayur Kaushik ³, Soundarya Singh ⁴

¹ MDS-Postgraduate, Subharti Dental College & Hospital; Swami Vivekananda Subharti University-Meerut UP; 250005

² Professor, Subharti Dental College & Hospital; Swami Vivekananda Subharti University-Meerut UP; 250005

³ Professor & Head, Subharti Dental College & Hospital; Swami Vivekananda Subharti University-Meerut UP; 250005

⁴ Assistant Professor, Subharti Dental College & Hospital; Swami Vivekananda Subharti University-Meerut UP; 250005

Article Info:

Article History:

Received 02 March 2024

Reviewed 06 April 2024

Accepted 28 April 2024

Published 15 May 2024

Cite this article as:

Rout M, Tomar N, Kaushik M, Singh S, Advances in Local Anesthesia and Pain Management for Practicing Dentists: A Comprehensive Review, Journal of Drug Delivery and Therapeutics. 2024; 14(5):174-179

DOI: <http://dx.doi.org/10.22270/jddt.v14i5.6572>

*Address for Correspondence:

Manisha Rout, Department of Periodontology, Subharti Dental College & Hospital; Swami Vivekananda Subharti University-Meerut UP; 250005

Abstract

One of the most frequent problems that patients bring to a dental clinic is pain in the orofacial region or within the tooth. To identify and solve the issue, a proficient practitioner needs to be equipped with the necessary information and resources. Comprehending the history of pain control in dentistry can provide valuable understanding into the development of the present techniques. Newer and more effective pain management treatments have been created as dentistry continues to advance. Several modalities have been developed to reduce and eliminate this, including pharmacological and non-pharmacological treatment modalities. The goal of the present review of the literature's findings is to provide dentists with reliable information regarding the application of contemporary local anesthetics, alternative methods, and strategies to reduce pain during anesthesia administration, thereby improving patient comfort.

Keywords: Local Anesthesia, Anesthetic Agents, NSAIDS, Lignocaine, Management, Pain Control

Introduction

One of the most frequent problems that patients bring to a dental clinic is pain in the orofacial region or within the tooth. To identify and solve the issue, a proficient practitioner needs to be equipped with the necessary information and resources. The ability to administer local anesthesia (LA) safely and effectively is the most crucial skill needed by all dentists. Getting a local anesthetic injected is perhaps the most frightening thing for patients ^{1,2}, and dentists are still quite concerned about their patients' incapacity to get enough pain relief with the least amount of discomfort ^{3,4}. A thorough understanding of the agents being employed, the neuroanatomy involved, and the best available techniques and devices are all necessary to achieve excellent local anesthetic.

Comprehending the history of pain control in dentistry can provide valuable understanding into the development of the present techniques. Since pain is one of the most frequent reasons why patients seek dental care, a dentist needs to be well-versed in treating pain in order to treat it effectively. Management of the dental emergency can be systematically approached using "Three-Dimensional" (3-D) principle, which incorporates: Diagnosis, definitive treatment (removal of etiology) with proper local anesthesia, and assignment of a drug regimen that contributes analgesic and anti-inflammatory mechanisms ⁵.

Today's practitioners have a variety of choices for efficiently managing the pain associated with dental operations thanks to the agents and anesthetic delivery systems that are available. The present review focuses mainly upon safety of analgesics, antibiotics, anesthetic agents, anesthetic delivery devices along with advancements in LA administration techniques.

Pain Management in Orofacial Region

According to the International Association for the Study of Pain (IASP), "Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage" ⁶.

The intensity, character, duration, pathophysiologic origins, and interpretations of pain vary greatly. A diagnosis is not complete if the aetiology of a disease or condition cannot be established. The cause may be straightforward (such as carious teeth and pulpal disorders) and only need normal dental care, or it may be complicated (medical reason) and necessitate therapy beyond dentistry. Identifying the disease's source is crucial since treating the underlying cause of the illness is an essential element of managing it, especially in the early stages ⁵.

Etiology of Orofacial Pain:

Orofacial discomfort can be caused by a variety of pathological disorders and diseases, some of which may have an association with the body's neurological or somatic systems. Both soft and hard tissue disorders can result in pain in the orofacial region, which fascinates dentists. It can arise from several reasons, primarily damage to the tooth or tissues during and following oral surgery^{7,8}. Pain that originates in the tissues supporting the teeth, the mucosa, gingiva, maxilla, mandible, or periodontal membrane is referred to as odontogenic pain. However, inflammation brought on by infections, tumors, or trauma that induce facial pain are non-odontogenic in nature.

Toothache is most often caused by dental caries, which starts with inflammation in the dental pulp. Periodontal disease is the second most common infection. It is a painless condition that includes chronic *Mycobacterium* infections like leprosy. These two bacteria are particularly likely to be the cause of *Aggressive Periodontal Disease*. *Porphyromonas gingivalis* and *Actinomyces actinomycetemcomitans* have been related to periodontal pockets and resistance to standard gum disease therapy⁸. Dental diseases involved in orofacial pain are enumerated in TABLE 1.

Table 1: Management of Pain can be either by using pharmacological agents or by using local anesthetic agents which is briefly elaborated below.

Involving Hard tissues	Involving Soft tissues
Dental caries involving Enamel /dentin/cementum	Pulpitis
Dentin Hypersensitivity	Gingivitis
Dry Socket	Periodontitis
Osteomyelitis	Pericoronitis

Pharmacological Management:

In dentistry, analgesic drugs are prescribed for the management of intraoperative discomfort as well as for the management of acute, postoperative, and chronic pain. Furthermore, these drugs can be administered prior to surgery in order to minimize the need for postoperative medications and to reduce postoperative pain.

The two main medications used in dentistry to treat acute pain are *opioids* and *non-steroidal anti-inflammatory drugs* (NSAIDs). Because opioids are highly addictive, their usage is often limited. Three of the most often prescribed medications in dentistry are *acetaminophen*, *ibuprofen*, and *aspirin*¹⁰.

Ibuprofen offers faster and better analgesic efficacy without any increased safety risk for the routine treatment of moderate to severe acute pain in the general population, even though COX-2 inhibitors may offer a therapeutic advantage for patients needing chronic NSAID therapy who are at increased risk of developing gastrointestinal (GI) adverse events. Adults' postoperative dental pain has been shown to be safely and effectively relieved by ibuprofen¹¹.

Mechanism of NSAID's:

NSAIDs work primarily by inactivating cyclooxygenase, an enzyme that transforms arachidonic acid into eicosanoids such as prostaglandins and leukotrienes, which has an analgesic effect [Figure 1]. It is known that there are two types of cyclooxygenase: COX-1, which is constitutive and found in the kidneys, intestines, stomach, and platelets, and COX-2, which is expressed during the inflammatory process. Ibuprofen is a cyclooxygenase inhibitor that is nonselective and is distributed as both an over-the-counter (OTC) and prescription drug¹².

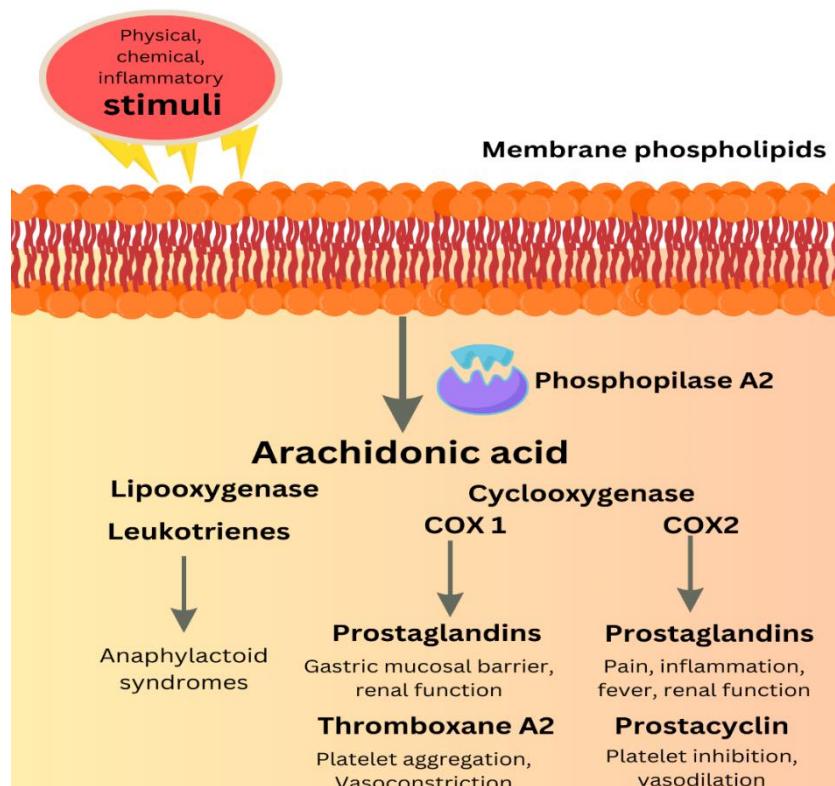


Figure 1: Mechanism of Action of Non-Steroidal Anti-Inflammatory Drugs [NSAID's]¹²

Management by Local Anaesthetics:

According to Malamed, "local anaesthesia is defined as a transient loss of sensation in a circumscribed area of the body caused by depression of excitation in nerve endings or an inhibition of the conduction process in peripheral nerves" ¹³. The improvements in agents and techniques for local anaesthesia are possibly the most important advances in dental science to have occurred in the past 100 years. The agents currently available in dentistry have most of the characteristics of an ideal local anesthetic:

- 1) Administration is nonirritating
- 2) Anesthetic has little or no allergenicity
- 3) Rapid onset and adequate duration of anesthesia
- 4) Provides completely reversible anesthesia
- 5) Minimal systemic toxicity
- 6) Selective to nociception (pain) pathways

Two classes of drugs are encountered during dental local anaesthesia. These are the anaesthetic agents and vasoconstrictors.

Local Anesthetic drugs are classified by their chemical structure into two types:

- **Amides**
- **Esters.**

Topical Local Anesthetics:

In dentistry, local anesthetic is often administered topically or via injectional blocks. A local anesthetic's half-life is

determined by two factors: *its ability to attach to proteins and its redistribution*. There are many different formulations of topical anesthetics, such as sprays, ointments, creams, gels, and solutions. Additionally, flavours like bubble gum, mint, and cherry can be added to them. Topical anesthetic drugs are typically employed at concentrations higher than those of injectable agents; nevertheless, their onset of action is not as rapid ¹⁴.

The FDA states that a mixture of 18% benzocaine and 15% tetracaine is the most effective. Customized drugs are typically used for periodontal treatments, orthodontic treatments, and the placement of temporary anchoring devices in juvenile patients. They are more effective and contain a higher dosage of the anesthetic ingredient. A common example is EMLA, a eutectic combination of local anesthetic that comprises 2.5% lignocaine and 2.5% prilocaine. A eutectic mixture is created by combining these two components. It comes in a gel form and is intended to be applied to intact skin ¹⁵.

Mechanism of action of local anaesthesia:

Anesthetic agents work by reversibly binding to sodium channels, thereby obstructing the entry of sodium into the cells and inhibiting the transmission of nerve impulses [Figure 2]. As a result, the patient is unable to experience pain because nociceptive impulses linked to unpleasant stimuli are not sent to the brain ¹⁶. This is advantageous because it prevents the brain's higher processing centers from receiving the action potential of a painful input, such as during root canal therapy, Subgingival ultrasonic scaling, extraction of grossly decayed teeth, etc. allowing for the relatively painless completion of intolerable treatments ¹⁷.

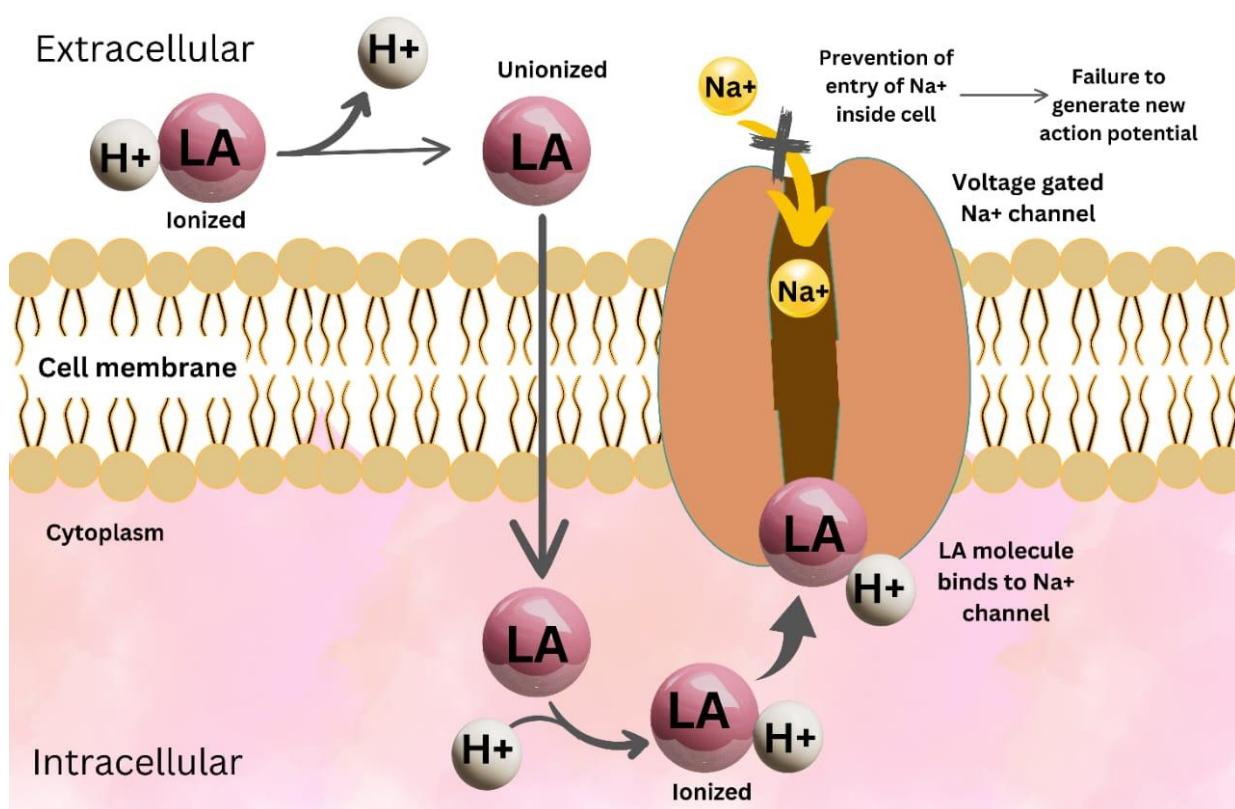


Figure 2: Mechanism of Action of Local Anesthesia ¹⁷

Non-Pharmacological:

The concept of behaviour management, which is the foundation of many pain theories, strengthens non-pharmacological treatments. These aid in lowering patient anxiety, which is crucial because anxiety reduces the threshold for pain and causes the patient to become irrational. While several of these modalities may also be employed with adult patients, pediatric children receive substantial usage of them. Among the techniques employed are the tell-show-do methodology, transcutaneous electrical nerve stimulation, plant extracts, acupuncture, ice treatment, music therapy with white noise to reduce tension, and relaxing breathing exercises. To reduce postoperative discomfort in patients undergoing craniofacial operations¹⁸.

Alternatives to conventional local anesthetic techniques available:

The tolerance of dental patients for a dentist who causes them pain is declining. An ongoing difficulty is managing pain during and after surgery. The last three decades seem to have seen an acceleration in efforts to improve success rates, in the mandible with its dense, infiltration-resistant cortical bone.

Some of the most recent advances in anesthetic techniques that provide alternatives to conventional methods include: Single Tooth Anesthesia (STA) lingual infiltration, periodontal ligament injections, intraosseous anesthesia, intrapulpal, computer-controlled injections, Laser analgesia, Virtual anaesthesia, Cryoanesthesia and Electronic Dental Anesthesia.

Laser Analgesia: It is possible to obtain a low-energy-level irradiation form of laser analgesia, a non-invasive, non-destructive, and non-thermal bio-modulating approach that can lessen or suppress painful feelings. The aim of this laser application is the suppression of nerve and nociceptor activities, processes creating a lack of pain perception and diminishing dental pulp and soft tissue reactivity¹⁹.

Virtual Anesthesia: The concept of distraction is the basis for VR analgesia. It takes patients' minds off their painful therapies by immersing them in a computer-generated environment. During VR distraction, functional brain imaging studies have revealed decreased activity in pain perception areas and increased activity in cortical areas linked to attention and pain modulation. minimizes drug use, accelerates postoperative recovery, enhances patient experience²⁰.

Cryoanesthesia: The use of ice or refrigerant spray on the anesthetic site prevent pain from being transmitted to the nerves is known as cryoanesthesia. Patients get distracted from their discomfort physiologically and psychologically from the application of ice²¹.

Electronic Dental Anesthesia (EDA): In dentistry, EDA is a non-invasive technique used to control discomfort during dental operations. Modified TENS units created especially for intraoral usage are called EDA devices. They are appropriate for dental applications since they function at higher frequencies and lower current levels. The EDA unit is a portable, battery-operated device that uses electrodes to send electric currents through subcutaneous tissues (or pads). By attaching these electrodes or pads to the location that has to be treated, they block the surrounding nerves or trunks, preventing pain and the anxiety that goes along with it²².

Single Tooth Anesthesia: It works on dynamic pressure sensing technology. Offers benefits such as reduced anxiety, minimal physical pain, and precise control over anesthesia dosage. It's a promising approach for enhancing paediatric patient comfort during dental procedures²³.

Advances in Local Anesthetic delivery devices:

Vibrotactile devices are the newer local anesthesia delivery systems that use the gate control theory, which is the theory of pain that proposes that pain can be lessened by nerve fiber activation through vibration²⁴.

Vibrajects are small attachments that can be fixed in the syringe. It helps deliver a sustained vibration that the patient can feel²⁵.

Dental Vibe is a system that works on the gate control theory principle. It is a battery-operated hand-held system that produces micro-oscillations stimulating sensory receptors at the injection site, which helps block the painful sensation of injection²⁶.

Accupal is a cordless gadget that preconditions the oral cavity's mucosa by vibration and pressure. It shuts the pain channels around the injection site, 360 degrees proximal to the point of needle penetration. It is battery-operated and uses a AAA battery²⁷.

Computer-controlled local anesthesia delivery systems are a newer modality incorporating computer technology to control the anesthetic agent's flow rate through the needle. A controlled flow would ensure only an adequate solution is injected, preventing complications such as overdose and toxicity. Several CCLAD systems are available, including the Wand/CompuDent™ system, Comfort Control Syringe™, QuickSleeper™ and Both the Comfort Control Syringe and the Anaject regulate the speed of injection, starting slowly and accelerating the speed of injection to minimize pain²⁸.

Jet Injectors use mechanical energy to push a solution through a small orifice forcefully. This can penetrate soft tissues that use a needle and can help eliminate patient anxiety and fear. For example: Madajet/Syrijet^{14,29}

Applications

The following is a list of some of the clinical uses employed with the Jet Injector:

- 1) Extraction of deciduous teeth.
- 2) Curettage and scaling.
- 3) Minor gingivectomies.
- 4) Exposed pulp anesthesia.
- 5) Removal of residual spicules.
- 6) Pre-injection anesthesia in maxillary and mandibular areas

Safety Dental Syringes

In both medicine and dentistry, there has been a movement in recent years toward the creation and adoption of "safety" syringes. Using a safety syringe reduces the chance that a dental health professional administering LA could accidentally stick themselves with a tainted needle. When the needle is removed from the patient's tissues, the sheath of these syringes "locks" over it, eliminating inadvertent needle sticks³⁰.

There is still a need for safety syringes that will protect providers from needle-stick injury, and some are available on the market.

- Ultra Safety Plus XL syringe (Septodont, Lancaster, PA, USA)
- UltraSafe Syringe
- HypoSafety Syringe
- SafetyWand™
- RevVac™ safety syringe

Conclusion:

Good local analgesia requires highly skilled dental professionals to apply, coupled with a detailed understanding of the anatomical complexities to provide advanced pain management for dental patients.

The device manufacturers' efforts to standardize delivery procedures are probably to be responsible for the upsurge of interest in these more routes and local anesthetic delivery methods. Each strategy has advantages and drawbacks, as the information above demonstrates. We must always base our treatments on reliable scientific knowledge in accordance with the movement toward evidence-based dentistry. As a result, the practitioner must be aware beyond the marketing hype that typically surrounds each novel item when deciding to expand his or her arsenal of local anesthetics.

Failure to achieve anesthesia is a significant problem in the day-to-day practice of dentistry. Therefore, a good understanding of conventional anesthetic techniques as well as alternative anesthetic techniques is important. But the practitioner also needs to have a broad armamentarium of injection strategies available for the "difficult to anesthetize cases".

This trend is changing as education, research and instrumentation reduce the cognitive and emotional barriers in the dentist's and child's perceptions of the local anesthesia experience. Child's emotions surrounding injections are some of the most powerful feelings that dentists routinely encounter in daily dentistry. Alternative technique can add to the dentist's skills in treating patients with comfort and efficiency. Careful selection of an effective analgesic regimen should be based on the type and amount of pain the patient is expected to experience. This strategy can prevent the stress and anxiety associated with intensity of pain.

Clinical Significance:

A very secure and efficient way of pain management is local analgesia. This review highlights many of the important biological and pharmacological advances made. One of the foundational tenets of contemporary dentistry practice is its application. The degree of the patient's pain, the medication's pharmacological characteristics, any history of systemic disease, and any drug interactions should all be taken into account when a dentist recommends analgesics at a dental clinic. Acute dental pain has been proven to respond well to non-opioid analgesics, and there is little overall risk associated with their usage in dentistry. Acetaminophen, ibuprofen, and naproxen seem to be the safest non-opioid medications when taking into account the evidence for gastrointestinal and cardiovascular safety.

Authors contribution:

Concept and design: Manisha Rout, Nitin Tomar

Drafting of the manuscript: Manisha Rout, Nitin Tomar

Acquisition, analysis, or interpretation of data: Manisha Rout, Nitin Tomar, Mayur Kaushik

Critical review of the manuscript for important intellectual content: Manisha Rout, Nitin Tomar, Mayur Kaushik.

Supervision: Manisha Rout, Nitin Tomar, Soundarya Singh.

Conflicts of Interest:

The authors have declared that no competing interests exist.

References:

- Milgrom P, Weinstein P, Getz T. 2nd ed. Seattle (WA): Continuing Dental Education, University of Washington; 1995. Treating fearful dental patients. A patient management handbook.
- Al-Omari WM, Al-Omri MK. Dental anxiety among university students and its correlation with their field of study. *J Appl Oral Sci.* 2009;17:199-203. <https://doi.org/10.1590/S1678-77572009000300013> PMid:19466251 PMCid:PMC4399532
- Kaufman E, Weinstein P, Milgrom P. Difficulties in achieving local anesthesia. *J Am Dent Assoc.* 1984;108:205-8. <https://doi.org/10.14219/jada.archive.1984.0470> PMid:6584494
- Grace EG, Barnes DM, Reid BC, Flores M, George DL. Computerized local dental anesthetic systems: Patient and dentist satisfaction. *J Dent.* 2003;31:9-12. [https://doi.org/10.1016/S0300-5712\(02\)00130-6](https://doi.org/10.1016/S0300-5712(02)00130-6) PMid:12615014
- Hargreaves K, Abbott PV. Drugs for pain management in dentistry. *Aust Dent J.* 2005, 50:S14-22. <https://doi.org/10.1111/j.1834-7819.2005.tb00378.x> PMid:16416713
- Raja SN, Carr DB, Cohen M, et al: The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. *Pain.* 2020, 161:1976-82. <https://doi.org/10.1097/j.pain.0000000000001939> PMid:32694387 PMCid:PMC7680716
- Ghlichloo I, Gerriets V: Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). StatPearls Publishing, Treasure Island, FL; 2023.
- Renton T: Dental (odontogenic) pain. *Rev Pain.* 2011, 5:2-7. <https://doi.org/10.1177/204946371100500102> PMid:26527224 PMCid:PMC4590084
- Donaldson M, Goodchild JH. Appropriate analgesic prescribing for the general dentist. *Gen Dent.* 2010;58(4):291-7.
- Dave P, The Challenges of Chronic Wound Care and Management, Asian Journal of Dental and Health Sciences 2024; 4(1):45-50 <https://doi.org/10.22270/ajdhs.v4i1.70>
- Pozzi A, Gallelli L: Pain management for dentists: the role of ibuprofen. *Ann Stomatol (Roma).* 2012, 2:3-24.
- Cryer B, Feldman M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. *Am J Med.* 1998;104:413-421. [https://doi.org/10.1016/S0002-9343\(98\)00091-6](https://doi.org/10.1016/S0002-9343(98)00091-6) PMid:9626023
- Malamed SF: Handbook of Local Anesthesia. Elsevier, New York; 2014.
- Ogle OE, Mahjoubi G: Local anesthesia: agents, techniques, and complications. *Dent Clin North Am.* 2012;56:133-48 <https://doi.org/10.1016/j.cdcn.2011.08.003> PMid:22117947
- Friedman PM, Mafong EA, Friedman ES, Geronemus RG: Topical anesthetics update: EMLA and beyond. *Dermatol Surg.* 2001;27:1019-1026. <https://doi.org/10.1046/j.1524-4725.2001.01855.x> PMid:11849263
- Reed KL, Malamed SF, Fonner AM. Local anesthesia part 2: technical considerations. *Anesth Prog.* 2012;59:127-36 <https://doi.org/10.2344/0003-3006-59.3.127> PMid:23050753 PMCid:PMC3468291
- DE Becker, KL. Reed:Essentials of local anesthetic pharmacology *Anesth Prog.* 2006;53,98-110. [https://doi.org/10.2344/0003-3006\(2006\)53\[98:EOLAP\]2.0.CO;2](https://doi.org/10.2344/0003-3006(2006)53[98:EOLAP]2.0.CO;2) PMid:17175824
- An overview of dental anxiety and the non-pharmacological management of dental anxiety. Hare J, Bruj-Milasan G, Newton T. *Prim Dent J.* 2019;7:36-39. <https://doi.org/10.1177/205016841800700409>
- Chow, R.T.; David, M.A.; Armati, P.J. 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: Implications for the analgesic effects of 830 nm laser. *J. Peripher. Nerv. Syst.* 2007;12, 28-39. <https://doi.org/10.1111/j.1529-8027.2007.00114.x> PMid:17374099

20. Teh, J.J., Pascoe, D.J., Hafeji, S. et al. Efficacy of virtual reality for pain relief in medical procedures: a systematic review and meta-analysis. *BMC Med* 2024;22,64. <https://doi.org/10.1186/s12916-024-03266-6> PMid:38355563 PMCid:PMC10865524
21. Greenstein G. Therapeutic efficacy of cold therapy after intraoral surgical procedures: a literature review. *J Periodontol*. 2007;78(5):790-800. <https://doi.org/10.1902/jop.2007.060319> PMid:17470011
22. Johnson ME. The use and relative effectiveness of electronic dental anesthesia (EDA) for reduction of dental pain. *Dentistry* 1996;16:8-9,32
23. Giannetti L, Forabosco E, Spinas E, Re D, Murri Dello Diago A. Single tooth anaesthesia: a new approach to the paediatric patient. A clinical experimental study. *Eur J Paediatr Dent*. 2018;19:40-43.
24. Kakigi R, Watanabe S: Pain relief by various kinds of interference stimulation applied to the peripheral skin in humans: pain-related brain potentials following CO₂ laser stimulation. *J Peripher Nerv Syst*. 1996;1:189- 198.
25. Hutchins HS Jr, Young FA, Lackland DT, Fishburne CP: The effectiveness of topical anesthesia and vibration in alleviating the pain of oral injections. *Anesth Prog*. 1997;44:87-89.
26. Ching D, Finkelman M, Loo CY: Effect of the DentalVibe injection system on pain during local anesthesia injections in adolescent patients. *Pediatr Dent*. 2014;36:51-55.
27. Saxena P, Gupta SK, Newaskar V, Chandra A: Advances in dental local anesthesia techniques and devices: an update. *Natl J Maxillofac Surg*. 2013;4:19-20. <https://doi.org/10.4103/0975-5950.117873> PMid:24163548 PMCid:PMC3800379
28. Kwak EJ, Pang NS, Cho JH, Jung BY, Kim KD, Park W: Computer-controlled local anesthetic delivery for painless anesthesia: a literature review. *J Dent Anesth Pain Med*. 2016;16:81-88. <https://doi.org/10.17245/jdapm.2016.16.2.81> PMid:28879299 PMCid:PMC5564086
29. Clark TM, Yagiela JA: Advanced techniques and armamentarium for dental local anesthesia. *Dent Clin North Am*. 2011;54:757-768. <https://doi.org/10.1016/j.cden.2010.06.017> PMid:20831937
30. Cuny E, Fredekind RE, Budenz AW. Dental safety needles' effectiveness: Results of a one-year evaluation. *J Am Dent Assoc*. 2000;131:1443-1448. <https://doi.org/10.14219/jada.archive.2000.0055> PMid:11042983