

Available online on 15.04.2024 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Review Article

Withania somnifera: A potential rejuvenator of medicinal system for healthcare

Vibhuti Sharma, Rutika Sehgal and Reena Gupta *

Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla 171005, INDIA

Article Info:

Article History:

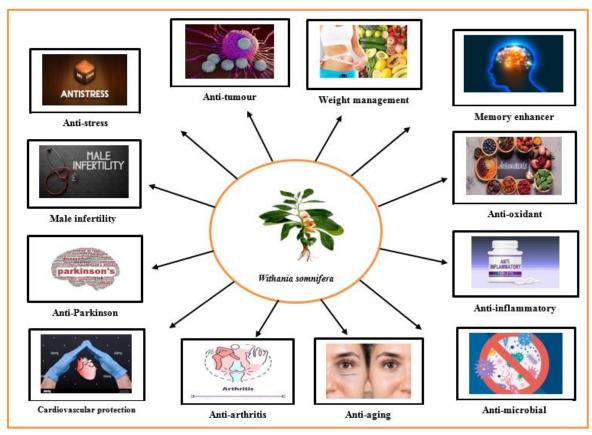
Received 08 Feb 2024 Reviewed 04 March 2024 Accepted 01 April 2024 Published 15 April 2024

Cite this article as:

Sharma V, Sehgal R, Gupta R, *Withania somnifera*: A potential rejuvenator of medicinal system for healthcare, Journal of Drug Delivery and Therapeutics. 2024; 14(4):145-154

DOI: http://dx.doi.org/10.22270/jddt.v14i4.6536

*Address for Correspondence:


Dr. Reena Gupta, Professor, Department of Biotechnology, Himachal Pradesh University, Summerhill, Shimla – 171005, INDIA

Abstract

Medicinal herbs have been used since the time of the Vedas. The plants have therapeutic qualities in every part. Secondary metabolites of extensive variety are present in medicinal plants and are utilised in the production of medications as well as in the treatment of many different ailments. Withania somnifera is a medicinal plant, have various properties. 'Ashwagandha' is the popular name of Withania somnifera. It is offered as churna, a finely sieved powder that can be combined with ghee, water or honey. It has memory-enhancing, anti-oxidant, anti-stress, anti-venom, anti-inflammatory and anti-tumor effects. It is employed to treat a variety of clinical problems. In addition to being used as a suppressant in HIV/AIDS patients, Withania somnifera is used to treat ulcers, emaciation, colds, coughs, diabetes, conjunctivitis, insomnia, senile dementia, epilepsy, leprosy, Parkinson's disease, nervous disorders, rheumatism, arthritis, intestinal infections, bronchitis and asthma. The review article concentrates on the Withania somnifera plant's different pharmacological qualities.

Keywords: Withania somnifera, Ayurveda, Anti-oxidant, Anti-inflammatory, Anti-tumour

Graphical abstract

ISSN: 2250-1177 [145] CODEN (USA): JDDTAO

Introduction

From the beginning of time, medicinal plants have been utilised to heal a variety of ailments. The World Health Organization (WHO) estimates that around 70–80 percent of the world's population currently relies on traditional medicine for their basic healthcare requirements¹. The creation of indigenous medicines and the utilisation of medicinal plants to treat a variety of ailments have significant economic advantages. Most people, especially those in rural areas, are still obliged to use traditional treatments for their common ailments because there are not many communication options, very few educational opportunities, less money and lack of new medical facilities².

Withania somnifera (WS) inhabits the most powerful position among the plants of ayurvedic rasayana. It is a xerophytic plant that is employed medicinally and grows over a large range, from the Atlantic Ocean to South East Asia and from the Mediterranean region to South Africa³. It is a member of the Solanaceae family. It develops into a small shrub that is 35 to 75 cm long with a central stem from which the branches radiate outward in the shape of stars (a feature known as stellation). The tomentose surface, which is made up of many thick woolly hairs, covers the entire plant. WS has tiny, green blooms and its mature fruit has an orange-red tint. Because the roots of the plant smell like a wet horse, it is known as ashwagandha. WS is a late-rainy-season kharif crop. It may be grown as a rain-fed crop in semitropical locations with 500 to 800 mm of rainfall. Root growth is improved by one or two rainfalls throughout the winter. The growth season for WS must be somewhat dry. It can withstand temperatures between 20 and 38°C and also as low as 10°C. The plant may be found 1500 metres above sea level. Fig. 1 depicts the sections of the Withania somnifera plant (ashwagandha)4.

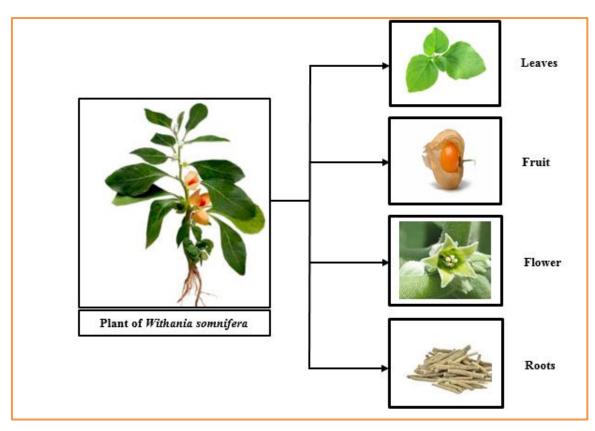


Figure 1: Plant of Withania somnifera

WS occupies the most influential position among the ayurvedic rasayana plants. It has been used for more than three thousand years in both Ayurveda and indigenous medical traditions as one of the key herbs. It is one of the 32 therapeutically important plants of India listed by National Bank for Agriculture and Rural Development (NABARD)5. By boosting the body's cell-mediated immunity, it strengthens the body's defences against illness⁶. Additionally, it has strong antioxidant qualities that guard against cellular damage brought on by free radicals. Rasayana is one of the eight sub-disciplines of Ayurveda. It is asserted that rasayana medications help to revitalise the tissues and even the mentality, maintaining human health. Rasayana is a metallic or herbal mixture that inspires pleasure, youthful mental and physical health. It possesses the potential to promote wellness and survival by boosting disease defence, slowing down the ageing process, improving the person's capacity to endure harmful

environmental impacts, revitalising the body in poor situations and cultivating a feeling of mental well-being⁷.

Chemical constituents of Withania somnifera

WS has a variety of chemical components that are pharmacologically active, including steroidal substances such withasomniferin-A, withaferin A, steroidal lactones, withanolides A-y, withasomidienone, withasomniferols A-C, withanone, etc, alkaloids such as cuscohygrine, ashwagandhine, tropine, anahygrine, etc. and other components including withanolides with a glucose at carbon number 27 (sitoindoside IX and X) and saponins with an extra acyl group (sitoindoside VII and VIII)8. It contains a significant quantity of iron as well as chemical components including withaniol, acylsteryl glucosides, starch, hantreacotane, ducitol and a variety of amino acids like proline, tyrosine, aspartic acid, alanine, glycine, and cystine. Table 1 lists the different chemical components of *Withania somnifera*.

 Table 1 Chemical constituents of Withania somnifera

Chemical component	Types	References
Alkaloids	Withania somniferaine	9
	Cuscohygrine	
	Anahygrine	
	Tropine	
	Withanine	
	Withasomnine	
	Visamine	
	Scopoletin	
	Pseudotropine	
	Cuscohygrine	
	Pseudowithanine	
	Tropeltigloate	
Steroids	Steroidallactones	10
	Withaferin-A	
	Withasomidienone	
	A-y Withanolides,	
	Withasomniferin-A,	
	Withanone	
	Withasomniferols A-C	
	Cholesterol	
	Diosgenin	
Saponins	VII Sitoindoside	11
	VIII Sitoindoside	
	IX Sitoindoside	
	X Sitoindoside	
Amino acids	Glycine	12
	Proline	
	Cystine	
	Tyrosine	
	Alanine	
	Aspartic acid	
	Glutamic acid	
	Tryptophan	
Flavonoids	Kaempferol	13
	Quercetin	
Glycosides	Sitondisides VII and VIII	13
Trace elements	Withanol	13
	Somnisol	
	Somnitol	

Humans rely on plants for their energy needs, which include carbohydrates, proteins, fibers, calcium, iron, etc. These nutrients are present in $With ania\ somnifera$ in sufficient amount. The various nutrients present in $With ania\ somnifera$ are shown in Fig. 2^3 .

ISSN: 2250-1177 [147] CODEN (USA): JDDTA0

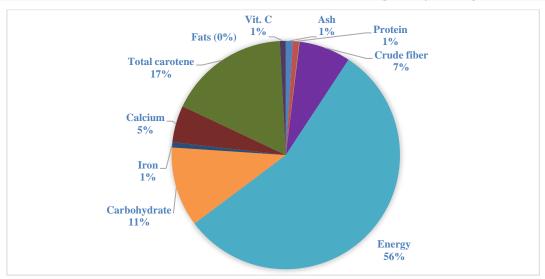


Figure 2: The nutrients in percent (w/v) present in Withania somnifera

Pharmacological properties of Withania somnifera

In Indian medicine systems, WS is a major herbal component of geriatric tonics¹⁴. In 'Ayurvedic system', this plant is declared to possess strong stimulating, life sustaining and reviving properties. Generally, it has regenerative and stimulating qualities and thus is used for treatment of skin problems, nervous exhaustion, insomnia, memory related conditions, potency issues, fatigue and coughing. It enhances memory capacity and learning ability¹⁵.

Traditionally, the plant, WS was used to enhance energy, strength, endurance, youthful vigour, improves health, increase

cell production, key body fluids like semen muscle fat, lymph, blood and nourish the body's physiological components¹⁶. It helps in preventing dehydration, weakness, thirst, debility, long-term fatigue, loose teeth, impotency, bone weakness, convalescence, muscle tension and emaciation due to early ageing. It helps in reviving the reproductive organs and energize the body⁶. There are variety of pharmacological properties of different parts of WS. The presence of various alkaloids, steroids and other compounds contribute to its pharmacological characteristics. Some of the pharmacological properties of *Withania somnifera* are shown in Fig. 3 and described as follows

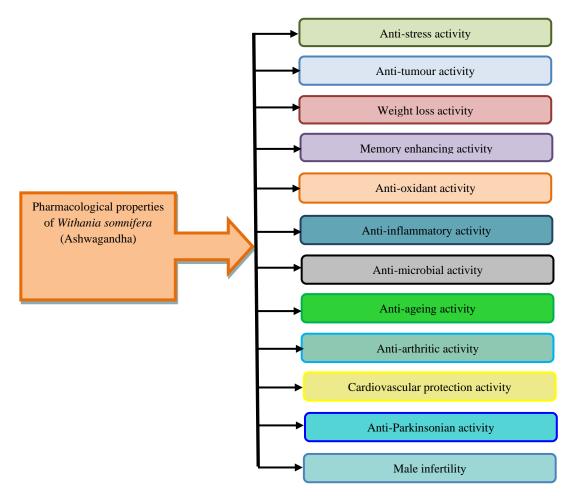


Figure 3: Various pharmacological properties of Withania somnifera 17

ISSN: 2250-1177 [148] CODEN (USA): JDDTAO

1. Anti-stress activity

Today's lifestyle is particularly frustrating owing to the hectic schedules of everyone from school-age children to the elderly. As a result, there is a sizable market for pharmaceuticals that treat stress and psychosis globally. Stress is a major contributor to a wide range of illnesses, from psychological conditions to endocrine problems including, diabetes mellitus, hypothyroidism, male sexual dysfunction, hypertension, ulcerative colitis, peptic ulcer, etc. Chronic stress may have extremely negative impacts on our health, but acute stress can be exhilarating and keep us attentive and active 18.

The plant, *Withania somnifera* shows activities like Gamma-aminobutyric acid (GABA), which may contribute for the anti-anxiety and anti-stress effects of herbs^{19,5}. Neuronal excessive activity may lead to insomnia and restlessness; however, GABA inhibits a large number of brain nerve cells that gets activated. The function of GABA is to lessen the activity of neurons and to inhibit the nerve cells from over activating, which further generates a soothing impact. It uplift mood, induce sleep and reduce stress and anxiety²⁰. The anti-stress activities of WS have demonstrated to be highly efficient in boosting stamina (physical endurance) (Fig. 4).

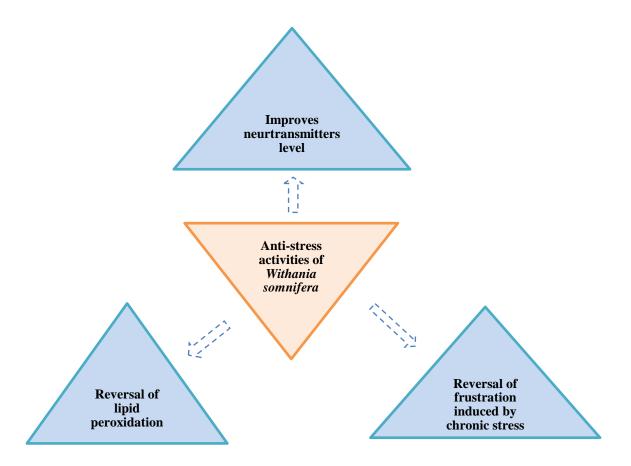


Figure 4: Anti-stress activities of Withania somnifera21

The vast research on the anti-stress and adaptogenic effects of WS in biological model animals has demonstrated its effectiveness in strengthening the stamina and minimizing stress induced stomach ulcer, hepatotoxicity induced by carbon tetrachloride (CCl₄) and chances of death²². Taking 240 mg of WS extract daily can lessen the 'Hamilton anxiety rating scale (HAM-A) (DASS-21)' and stress scale-21. In a recent study, dehydro-epiandrosterone and morning cortisol levels were also found to be decreased. Men only showed a little rise in testosterone in relation to this study²³.

2. Anti-tumour activity

Cancer incidences are increasing at a very high pace and need a very efficacious quick fix for its proper management. A lot of anti-cancerous drugs are used today and are derived from plants which specifically target tumour cells rather than

healthy ones. In India, 'Ayurveda' is one of the safe ancient science branches of medicinal practices, with clinical outcomes and minimum side effects. WS, being an ayurvedic plant, has been tested in different studies and found to exhibit considerable anti-tumor properties targeting a number of factors that enhance tumor formation²⁴. It works in a pleiotropic manner, concurrently attacking many carcinogenic pathways which help cancer patients to live better. The active components of the plant specifically target the oncogenic mediators MMP-9, NF-kB, PI3K/Akt pathway, MMP-2 and JAK/STAT system, all of which contribute to the activation of epithelial to mesenchymal transition (EMT) and hence encourage invasion and metastasis²⁵. Fig. 5 depicts the antitumor efficacy of *Withania somnifera*.

ISSN: 2250-1177 [149] CODEN (USA): JDDTAO

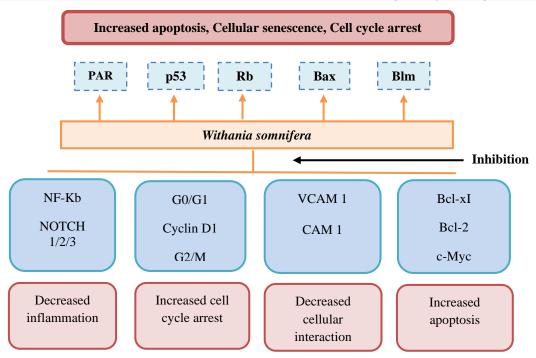


Figure 5: Anti-tumour activity of Withania somnifera25

An analysis stated that WS contains a lot of withanone (WN), which is an active anticancer component26. In a review, numerous plants for their ability to treat different ailments were examined and it was concluded that an extract from WS leaves has considerable potential for treating three different malignancies, including ovary, breast, and lung cancers²⁷. By administering WS root extract to cancer trial participants, it was investigated that the fatigue brought on by chemotherapy in breast cancer patients²⁸. The results of a full trial that spanned a few years showed that WS has the potential to help cancer patients live better lives and recover from the weariness imposed on by their disease. A prior study evaluated the anticancer effects of methanolic and aqueous extracts of WS against breast cancer cell lines (MCF-7) using the MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. In-vitro extract concentrations ranged from 2.5µg/ml to 25µg/ml. The results demonstrated that all plant extracts suppressed breast cancer cell proliferation in a dose-dependent manner. The methanolic and aqueous extracts of WS have stronger anticancer activity, with IC50 values of 14.20 and 17.00 μg/ml, respectively²⁹.

3. Weight loss activity

The adaptogenic effects of WS, may help in encouraging the weight loss when used with other dietary supplements for reducing weight²⁹. A chemical known as an adaptogen aids in reducing dietary changes brought on by stress. People who either overeat or undereat as a result of environmental stress, may find WS to be beneficial. Additionally, it could aid in enhancing metabolism and eliminating gastrointestinal abnormalities. Since it contains natural antioxidants, it could enhance general health and encourage more effective fat burning. Research on the root extract of WS has demonstrated a strong effect for reducing stress and stress-induced eating, which may subsequently result in weight reduction. In a recent study, it was found that obese people with high stress level, who took 300 mg of WS root extract twice daily for eight consecutive weeks experienced significant improvements in body weight, hormone levels related to stress and the dramatic drop in stress-related feeling and eating³⁰.

4. Memory enhancing activity

Learning can be defined as a behaviour change brought on by experience that enables someone to adjust to current living instances³¹. It is a method by which the brain accumulates new knowledge about the activities happening in the environment³². Memory is a fundamental mental ability. Without memory, humans are only capable of rudimentary reflexes and stereotyped behaviours. It is the ability to store and recall feelings, impressions and ideas³³. As a result, one of the topics in neuroscience that has received the most attention is learning and memory.

WS plant has the ability to bind to calcium, which makes it a potential therapeutic candidate for treating Alzheimer's illness and memory related issues³⁴. Acetylcholinesterase and butylcholinesterase are known to be dose-dependently inhibited by withanoloids. According to reports, WS root extract may have a positive impact because of its GABA mimic action. After consuming it for seven days, its components and the metabolites promote the development of nerves. Axonal, dendritic and synaptic losses as well as memory problems brought on by amyloid peptide A were shown to be mitigated in mice by continuous oral treatment of withanoside IV6. Withanoside IV was converted into sominone in mice after oral dosing, resulting in significant recovery of neurites and synapses, increased dendritic and axonal outgrowth and synapse formation. After withanoside IV treatment was ceased, the effects remained for at least 7 days. These results suggest that withanoside IV and sominone, a derivative, may be clinically useful as anti-dementia drugs.

5. Antioxidant activity

The brain and nervous system are more vulnerable to free radical damage than other tissues because they contain a high concentration of lipids and iron, both of which are known to be crucial in the formation of reactive oxygen species¹². Oxygen radicals damage the nervous system that can cause normal ageing and neurodegenerative illnesses including, Parkinson's, epilepsy, schizophrenia, Alzheimer's and other conditions. It can also contribute to neuronal death in cerebral ischemia. To identify anti-oxidant activity, the main free-radical scavenging enzymes i.e., catalase (CAT), superoxide dismutase

ISSN: 2250-1177 [150] CODEN (USA): JDDTAO

(SOD) and glutathione peroxidase (GPx) are utilised. The decreased activity of these enzymes causes harmful oxidative free radicals to build up and cause neurodegenerative damage. Increased antioxidant activity and a protective impact on neural tissue would be represented by an increase in the levels of these enzymes³⁵. WS contain antioxidant phytochemicals such as polyphenols, sitoindosides VII–X, withaferin A and

glycowithanolides which helps in maintaining and increasing the activity of these enzymes³⁶. A dose-dependent rise in all enzymes was seen after receiving active glycowithanolids of WS once daily for 21 days. This suggests that WS have a brain-related anti-oxidant impact. Fig. 6 displays the anti-oxidant properties of *Withania somnifera*.

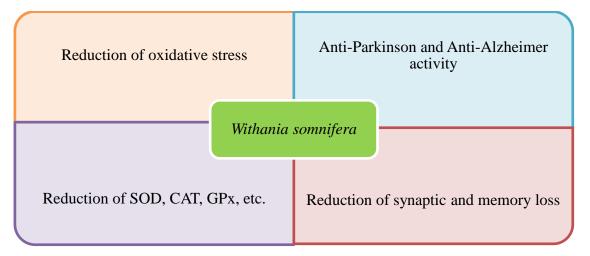


Figure 6: Anti-oxidant activities of Withania somnifera21

The impact of an aqueous solution of WS root extract on stress-related lipid peroxidation (LPO) in mice and rabbits was examined by observing the rise in the level of LPO in previous research. A rise in lipid peroxidation was stopped by oral treatment of WS extract (100 mg/kg)³⁷.

6. Anti-inflammatory activity

Human skin is composed of multiple layers having different components such as keratinocytes. Keratinocytes are also a significant source of inflammatory mediators including the interleukin (IL) and tumour necrosis factor (TNF) families38. An inappropriate inflammatory response may result from the overproduction of pro-inflammatory molecules. Therefore, these inflammatory mediators can be suppressed by possible anti-inflammatory drugs³⁹. The roots of WS are useful in treating scabies, leucoderma and ulcers. Additionally, they have been used topically to treat wounds and relieve swelling⁴⁰. In humans, roots extracts may increase the activity of natural killer cells which fight against infections⁴¹. WS tea was found to boost the activity of natural killer cells, which may be related to several tea constituents' effects on cytokine release⁴². According to a study, applying WS root extract topically to the skin may modify the expression of cytokines.

7. Anti-microbial activity

The discovery of antibiotics in the early 20th century provided progressively important tools to combat bacterial diseases⁴³. Antibiotics can occasionally have negative side effects on the host, such as increased sensitivity, weakened immunity and allergic responses⁴⁴. In this context, naturally occurring medicinal plants with active components that exhibit antibacterial action may offer a large study field. Plant-based antimicrobials have a huge medicinal promise. In previous research, many Gram-negative bacteria were suppressed by extracts of WS using agar well diffusion assay, demonstrating its anti-microbial potential. These bacteria included *Citrobacter freundii, Salmonella typhi, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa*, etc.⁴⁵. WS flavonoids have an extremely strong anti-fungal activity against *Candida albicans*⁴⁶.

8. Anti-ageing activity

Shortening of telomeres is considered as the main factor that increase the rate of ageing of cells and also promotes the degeneration process⁴⁷. With each DNA replication, the telomeres get noticeably shorter, eventually reaching an extremely short length. Telomerase is a major enzyme which plays role in the protection of ends of chromosomes and repair from shortening during DNA duplication, consequently prevent the catastrophic loss of DNA and promote the maintenance of healthy functioning of cell⁴⁸. DNA damage or telomere shortening can be caused by two basic factors.

- (i) Exogenous factors include bad food and lifestyle, radiation, environmental pollutants and mental stress⁴⁹.
- (ii) Endogenous factors include chemical instability (removing impurities), chronic inflammation, spontaneous mistakes during DNA replication, maintenance and oxidative stress.

Natural remedies and conventional medications with the ability to postpone or halt ageing are being looked for due to the limited efficacy of conventional therapies as anti-ageing modulators. Chemical constituents found in roots of WS may significantly increase telomerase activity, thereby provide protection against telomere loss and potentially delay aging. WS claim to arrest degenerative changes, facilitate healthy ageing and have the capacity to rejuvenate cells and tissues^{50,51}. Anti-aging properties of root powder extract have been found to increase the longevity of *Caenorhabditis elegans* roundworms by 20%⁵².

9. Anti-arthritic effect

The analgesic effect of WS calms the neurological system's pain reflex⁵³. Its potent anti-arthritic qualities are well established and known; in addition, it has been proven to be useful as an analgesic and antipyretic⁵⁴. The constituents like withaferin A and 3- β -hydroxy-2, 3-dihydrowithanolide F, known to have anti-inflammatory properties, are used as anti-arthritis compounds to treat osteoarthritis⁵⁵. WS (1000 mg/kg/oral administration) significantly reduced pain in a rat with thermal analgesia brought on by the hot plate method. The second hour after delivery, WS's highest analgesic efficacy was measured at

ISSN: 2250-1177 [151] CODEN (USA): JDDTAO

78.03%. Pretreatment with paracetamol (100 mg/kg, ip) and analysis of the analgesic action revealed that prostaglandin and 5-hydroxytryptamine, two pain mediators, were involved. Cyproheptadine considerably increased the analgesic efficacy of WS, but paracetamol had little effect, indicating that serotonin, rather than prostaglandins, is involved in the analgesic activity of WS⁶.

10. Cardiovascular protection

WS has positive effects on the heart and circulation system, which may contribute to its efficacy as a natural remedy for cardioprotective effect⁵⁶. Increased endogenous antioxidants, preservation of the myocardial antioxidant state and significant restoration of the majority of the altered haemodynamic parameter can all be linked to its cardioprotective effects.

Dogs and frogs were used to study how WS affected their cardiovascular and pulmonary systems $^{12}\!.$ Dogs subjected to the alkaloids from WS experienced persistent bradycardia, hypotension and respiratory excitement. The research found that the autonomic ganglion inhibiting action was solely accountable for the hypovolemic impact, however a depressive action on the upper cerebral centres also had an impact. The canine brain stem's vasomotor and pulmonary areas were stimulated by the alkaloids of WS. Dog's cardio-inhibitory behaviour appears to be a consequence of immediate cardio depressant effect and ganglion plugging. In isolated hypodynamic and normal frog heart, the early, predominately short-lived cardio-depressant effects of the alkaloids were followed by a moderate, long-lasting cardiotonic effect. In different research, an elevation in left ventricular end-diastolic pressures, a decrease in heart rate and a left ventricular rate of maximum positive and negative pressure changes were used to diagnose left myocardial damage⁵⁷.

11. Anti-Parkinsonian activity

Parkinson's disease is a chronic ailment that impairs the nervous system's ability to manage both the body's physical functions and the neurological system. Parkinson's disease (PD) is the second most common neurodegenerative illness after Alzheimer's, affecting 1% of persons by the age of 65 and 4-5% by the age of $85^{58,59}$. Parkinson's disease has a fundamental cause that may be traced to the death of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain 60 . This loss ultimately results in a decrease in the amount of dopamine. Age, genetics and environmental stressors are only a few of the factors that might affect the onset and progression of this disease 61 .

6-Hydroxydopamine (6-OHDA) is one of the most often utilised rat models for Parkinson's illness The literature is loaded with proof that 6-OHDA triggers oxidative stress in order to cause its hazardous symptoms. WS extract has been found to have antiparkinsonian advantages because of its potent, antiperoxidative, free radical quenching antioxidant properties in diverse clinical situations. In a study, the WS extract was given orally to rats as a pretreatment for three weeks. 6-OHDA was administered intravenously into right striatum on day 21, whereas the control group was given placebo. Rats were tested for neurodevelopmental function three weeks after the injections of 6-OHDA and killed five weeks later in order to assess the levels of lipid peroxidation, reduced levels of glutathione, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase (GPX), superoxide dismutase (SOD) catalase activity, catecholamine content, tyrosine hydroxylase expression and dopaminergic D2 receptor binding. WS extract significantly reversed all these parameters in a dose dependent manner⁶².

12. Male infertility

WS aids in sustaining male fertility. The aphrodisiac root extract raises the levels of the sex hormones cortisol and testosterone. Moreover, it raises sperm concentration, sperm motility and semen volume. For the treatment of leucorrhoea brought on by endometritis and puerperal backache, the powdered plant is combined with ghee, sugar and milk⁶³.

Conclusion

The medicinal plant *Withania somnifera* is mostly found in North America and India. In Indian medical systems, it has several clinical uses. It is a significant source of several medicinally and pharmacologically significant compounds, including withaferins, sitoindosides and numerous practical alkaloids. This herbal supplement is a rejuvenator of both physical and mental health due to its many health advantages. In addition to being useful as an anti-tumor, anti-inflammatory, anti-microbial, anti-arthritic and anti-aging agent, it also helps to preserve the body's strength so that it can withstand stress. It has also been found to be considerably beneficial in reducing body weight. Toxicity tests of *Withania somnifera* revealed no harmful or adverse effects, indicating that it may be used safely in the treatment of acute and chronic sick conditions in humans.

Acknowledgements

The financial support from Department of Biotechnology, Ministry of Science and Technology, Govt. of India, to Department of Biotechnology, Himachal Pradesh University, Shimla, India, is thankfully acknowledged.

Declarations

Ethical approval: Not applicable

Competing interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author's contributions: Vibhuti Sharma: Original draft writing and preparation, review and editing, Figures preparation, Conceptualization; Rutika Sehgal: Validation, Visualization, Data curation, Investigation; Reena Gupta: Supervision, Validation

References

- Kulkova J, Kulkov I, Rohrbeck R, Lu S, Khwaja A, Karjaluoto H, Mero J, Medicine of the future: How and who is going to treat us? Futures, 2023; 103097. https://doi.org/10.1016/j.futures.2023.103097
- Sarad S, Sharma A, Kumar N, Distribution, Diversity, Indigenous Use and its Utilization of the Ethno medicinal Flora of Rajouri District, J & K, India, International Journal of Life Sciences and Research, 2017; 3:820-827. https://doi.org/10.21276/ijlssr.2017.3.1.12
- Paul S, Chakraborty S, Anand U, Dey S, Nandy S, Ghorai M, Saha SC, Patil MT, Kandimalla R, Proćków J, Dey A, Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomedical and Pharmacotherapy, 2021; 143:112175. https://doi.org/10.1016/j.biopha.2021.112175 PMid:34649336
- Sengupta P, Agarwal A, Pogrebetskaya M, Roychoudhury S, Durairajanayagam D, Henkel R, Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reproductive Biomedicine Online, 2018; 36:311-326. https://doi.org/10.1016/j.rbmo.2017.11.007 PMid:29277366
- Gaurav H, Yadav D, Maurya A, Yadav H, Yadav R, Shukla AC, Sharma M, Gupta VK, Palazon J (2023). Biodiversity, Biochemical Profiling, and Pharmaco-Commercial Applications of Withania somnifera: A Review. Molecules; 28:1208.

- https://doi.org/10.3390/molecules28031208 PMid:36770874 PMCid:PMC9921868
- Singh N, Bhalla M, de Jager P, Gilca M, An overview on Withania somnifera: a Rasayana (rejuvenator) of Ayurveda. African Journal of Traditional, Complementary, and Alternative Medicines, 2011; 8:208-213. https://doi.org/10.4314/ajtcam.v8i5S.9 PMid:22754076 PMCid:PMC3252722
- 7. Kumar P, Nikhate SP, Raole VV, Bagul A, Pandya R, Kumar S, The critical interpretation on Withania somnifera (Ashwagandha) and its physiological action over human body- A review study, International Journal Botany Studies, 2021; 6:404-406.
- Srivastava MP, Gupta S, Dixit S, Yadav N, Yadav V, Singh H, Kanaujia P and Sharma YK, Withania somnifera (Aswagandha): A wonder herb with multiple medicinal properties, Journal of Pharmacy and Pharmacology, 2018; 4:123-130. https://doi.org/10.31024/ajpp.2018.4.2.5
- Mishra LC, Singh BB, Dagenais S, Scientific basis for the therapeutic use of Withania somnifera. (Ashwagandha): A review. Alternative Medicine Reviews, 2000; 5:334-346.
- Poonam A, Rashmi V, Kirti L, Simultaneous Estimation of Withaferin A and Z-Guggulsterone in Marketed Formulation by RP-HPLC. Journal of Chromatographic Science, 2015; 53:940-944. https://doi.org/10.1093/chromsci/bmu153 PMid:25572656
- 11. Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA, Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective, Iranian Journal of Basic Medical Sciences, 2020; 23:1501-1526. 12. Gupta GL and Rana AC, PHCOG MAG.: Plant Review Withania somnifera (Ashwagandha): A Review, Pharmacognosy Reviews, 2007; 1:129-136.
- 13. Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC, Withania somnifera: progress towards a pharmaceutical agent for immunomodulation and cancer therapeutics. Pharmaceutics, 2022; 14:611. https://doi.org/10.3390/pharmaceutics14030611 PMid:35335986 PMCid:PMC8954542
- 14. Sharma V, Sharma S, Pracheta RP, Withania somnifera: a rejuvenating ayurvedic medicinal herb for the treatment. International Journal of Pharmtech Research, 2011; 3:187-192.
- 15. Verma SK and Kumar A, Therapeutic uses of Withania somnifera (Ashwagandha) with a note on withanolides and its pharmacological actions. Asian Journal of Pharmaceutical and Clinical Research, 2011; 4:1-4.
- 16. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J, Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 2009; 14:2373-2393. https://doi.org/10.3390/molecules14072373 PMid:19633611 PMCid:PMC6255378
- 17. Gupta S, Bansal RN, Sodhi SPS, Brar GK, Malhotra M, Withania somnifera (Ashwagandha) a herb with versatile medicinal properties empowering human physical and mental health, Journal of Pre-Clinical and Clinical Research, 2021; 15:129-133. https://doi.org/10.26444/jpccr/141582
- Dhabhar FS, The short-term stress response-Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Frontiers in neuroendocrinology, 2018; 49:175-192. https://doi.org/10.1016/j.yfrne.2018.03.004 PMid:29596867 PMCid:PMC5964013
- Dwivedi D, Thanwar M, Gharia AK, Study of phytochemical active compounds in extract of Withania somnifera. Rasayan Journal of Chemistry, 2015; 8:522-526.
- 20. Singh G, Sharma PK, Dudhe R, Singh S, Biological activities of Withania somnifera, Annals of Biological Research 2010, 1:56-63.
- 21. Mandlik DS and Namdeo AG, Pharmacological evaluation of Withania somnifera highlighting its healthcare claims, safety, and toxicity aspects. Journal of Dietary Supplements, 2021;18:183-226. https://doi.org/10.1080/19390211.2020.1741484 PMid:32242751

- 22. Singh N, Herbs The Life of Man, Need Pharmaco-clinical Studies for their Scientific Validation - Relevance of Modern Methods of Pharmacological Studies to Traditional Medicine. Lucknow: Department of Pharmacology & Therapeutics, C.S.M. Medical University, Scientific Convention Centre, 2008; 37-43.
- 23. Lopresti AL, Smith SJ, Malvi H, Kodgule R, An investigation into the stress- relieving and pharmacological actions of a Withania somnifera (Ashwagandha) extract: A randomized, double-blind, placebo-controlled study. Medicine, 2019; 98:e17186. https://doi.org/10.1097/MD.0000000000017186 PMid:31517876 PMCid:PMC6750292
- 24. [24] Hsu JH, Chang PM, Cheng TS, Kuo YL, Wu AT, Tran TH, Yang YH, Chen JM, Tsai YC, Chu YS, Huang TH, Huang CF, Lai JM, Identification of Withaferin A as a potential candidate for anticancer therapy in non-small cell lung cancer. Cancers, 2019; 11:1003. https://doi.org/10.3390/cancers11071003 PMid:31319622 PMCid:PMC6678286
- Mehta V, Chander H and Munshi A, Mechanisms of Anti-Tumor Activity of Withania somnifera (Ashwagandha). Nutrition Cancer, 2020; 73:1-13. https://doi.org/10.1080/01635581.2020.1778746 PMid:33949906
- 26. Vaishnavi K, Saxena N, Shah N, Singh R, Manjunath K, Uthayakumar M, Kanaujia SP, Kaul SC, Sekar K, Wadhwa R, Differential activities of the two closely related withanolides, withaferin A and withanone: Bioinformatics and experimental evidences. PLoS One, 2012; 7. https://doi.org/10.1371/journal.pone.0044419 PMid:22973447 PMCid:PMC3433425
- Manoharan S and Kaur J, Anticancer, antiviral, antidiabetic, antifungal and phytochemical constituents of medicinal plants. American Journal of PharmTech Research, 2013; 3:149-169.
- 28. Biswal BM, Sulaiman SA, Ismail HC, Zakaria H, Musa KI, Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy induced fatigue and quality of life in breast cancer patients Integrated Cancer Therapies, 2013; 12:312-322. https://doi.org/10.1177/1534735412464551 PMid:23142798
- 29. Latifa NAA, Sayed AQ, Sehbanul I, Manas KS, Evaluation of anticancer activity of Withania somnifera I. and Tribulus terrestris L. on human breast cancer cells in-vitro, Research Journal of Pharmacy and Technology, 2023; 16(7):3079-2. https://doi.org/10.52711/0974-360X.2023.00506
- 30. Choudhary D, Bhattacharyya S, Joshi K, Body weight management in adults under chronic stress through treatment with Withania somnifera root extract: a double-blind, randomized, placebocontrolled trial. Journal of Evidance Based Complementary and Alternative Medicine, 2017; 22:96-106. https://doi.org/10.1177/2156587216641830 PMid:27055824 PMCid:PMC5871210
- 31. Buss DM, Greiling H, Adaptive individual differences, Journal of Personality, 1999; 67:209-243. https://doi.org/10.1111/1467-6494.00053
- 32. Vijayalakshmi, Adiga S, Bhat P, Chaturvedi A, Bairy KL, Kamath S, Evaluation of the effect of Ferula asafoetida Linn. Gum extract on learning and memory in Wistar rats. Indian Journal of Pharmacology, 2012; 44:82-87. https://doi.org/10.4103/0253-7613.91873 PMid:22345876 PMCid:PMC3271546
- Okano H, Hirano T, Balaban E, Learning and memory. Proceedings of National Academy of Sciences, 2000; 97:12403-12404. https://doi.org/10.1073/pnas.210381897 PMid:11035781 PMCid:PMC34060
- 34. Choudhary MI, Nawaz SA, ul-Haq Z, Lodhi MA, Ghayur MN, Jalil S, Riaz N, Yousuf S, Malik A, Gilani AH, Withanolides a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochemical and Biophysical Research Communications, 2005; 334:276-87. https://doi.org/10.1016/j.bbrc.2005.06.086 PMid:16108094
- 35. Bhattacharya SK, Satyan KS, Chakrabarti A, Effect of Trasina, an Ayurvedic herbal formulation, on pancreatic islet superoxide dismutase activity in hyperglycaemic rats, Indian Journal of Experimental Biology, 1997; 35:297-299.

- 36. Abdelfattah EM, Aimad A, Bourhia M, Chebbac K, Salamatullah AM, Soufan W, Nafidi HA, Aboul-Soud MAM, Ouahmane L, Bari A, Insecticidal and antifungal activities of chemically-characterized essential oils from the leaves of Withania frutescens L. Life, 2022; 12:88 https://doi.org/10.3390/life12010088 PMid:35054481 PMCid:PMC8780511
- 37. Vasavan SS, Sivanesan S, Jagadesan V, Antiperoxidative effect of Withania somnifera on lipid peroxidation and antioxidant capacity in the serum of nandrolone decanoate treated rats. Research Journal of Pharmacy and Technology, 2021; 14:1065-1068. https://doi.org/10.5958/0974-360X.2021.00191.8
- 38. Juránová J, Franková J and Ulrichová J, The role of keratinocytes in inflammation. Journal of Applied Biomedicines, 2017; 15:169-179.

https://doi.org/10.1016/j.jab.2017.05.003

- 39. Tang SC, Liao PY, Hung SJ, Ge JS, Chen SM, Lai JC, Hsiao YP and Yang JH, Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin. Journal of Dermatological Sciences, 2017; 86:238-248. https://doi.org/10.1016/j.jdermsci.2017.03.004 PMid:28330776
- Bungau S, Vesa CM, Abid A, Behl T, Tit DM, Purza AL, Pasca B, Todan LM, Endres L, Withaferin A-A promising phytochemical compound with multiple results in dermatological diseases. Molecules, 2021; 26:2407. https://doi.org/10.3390/molecules26092407 PMid:33919088 PMCid:PMC8122412
- 41. Samadi NZ, Shahraki MR, Ahmadvand H, Nourabadi D and Nakhaei A, Protective effects of Withania somnifera root on inflammatory markers and insulin resistance in fructose-fed rats. Reports of Biochemistry and Molecular Biology 2015; 3:62-66.
- 42. Bhat J, Damle A, Vaishnav PP, Albers R, Joshi M and Banerjee G, In vivo enhancement of natural killer cell activity through tea fortified with Ayurvedic herbs. Phytotherapy Research, 2010; 24:129-135. https://doi.org/10.1002/ptr.2889 PMid:19504465
- 43. Kapoor A, Kaur, G, Kaur R, Antimicrobial activity of different herbal plants extracts: a review. World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4:422-459.
- 44. Monroe S and Polk R, Antimicrobial use and bacterial resistance. Current Opinion in Microbiology, 2000; 3:496-501. https://doi.org/10.1016/S1369-5274(00)00129-6 PMid:11050449
- 45. Subbu LS, Chelladurai G, Suresh B, In vitro studies on medicinal plants used against bacterial diabetic foot ulcer (BDFU) and urinary tract infected (UTI) causing pathogens. Journal Parasitic Diseases, 2016; 40:667-673. https://doi.org/10.1007/s12639-014-0555-y PMid:27605764 PMCid:PMC4996168
- 46. Javadian F, Sepehri Z, Saeidi S, Hassanshahian M, Antifungal effects of the extract of the Withania somnifera on Candida albicans. Advanced Herbal Medicine, 2021; 3:31-37.
- 47. Blackburn EH, Switching and signaling at the Telomere, Cell, 2001; 106:661-673. https://doi.org/10.1016/S0092-8674(01)00492-5 PMid:11572773
- 48. Greiderd CW and Blackburn EH, Identification of a specific Telomere terminal transferase activity in Tetrahymena extracts, Cell, 1985; 43:405-413. https://doi.org/10.1016/0092-8674(85)90170-9 PMid:3907856
- 49. Shammas MA, Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 2011; 14:28-34. https://doi.org/10.1097/MCO.0b013e32834121b1 PMid:21102320 PMCid:PMC3370421

- 50. Balasubramani SP, Venkatasubramanian P, Kukkupuni SK, Patwardhan B, Plant-based rasayana drugs from ayurveda, Chinese Journal of Integrative Medicine, 2011; 17:88-94. https://doi.org/10.1007/s11655-011-0659-5 PMid:21390573
- Sharma R, Amin H, Rasayana Therapy: Ayurvedic contribution to improve quality of life. World Journal of Pharmaceutical Research, 2015: 4:23-33.
- 52. Kumar R, Gupta K, Saharia K, Pradhan D, Subramaniam JR, Withania somnifera root extract extends lifespan of Caenorhabditis elagans. Annals of Neurosciences, 2013; 20:13-16. https://doi.org/10.5214/ans.0972.7531.200106 53. Twaij HAA, Elisha EE, Khalid RM, Analgesic studies on some Iraqi medicinal plants; International Journal of Crude Drug Research, 1989; 27:109-112.

https://doi.org/10.3109/13880208909053947

- 54. Sabina E, Chandel S, Rasool MK, Evaluation of analgesic, antipyretic and ulcerogenic effect of Withaferin A. International Journal of Integrated Biology, 2009; 6:52-56.
- 55. Meena LK, Gupta AK, Patel J, Khan MY, Kumar S, Medicinal plants in India: importance and cultivation. Narendra Publishing House: Delhi, India, 2020; 6: pp. 81-94.
- 56. Khalil HM, Mahmoud DB, El-Shiekh RA, Bakr AF, Boseila AA, Mehanna S, Naggar RA, Eliwa HA, Antidepressant and Cardioprotective Effects of Self-Nanoemulsifying Self-Nanosuspension Loaded with Hypericum perforatum on Post-Myocardial Infarction Depression in Rats. American Association of Pharmaceutical Scientists, 2022; 23:243. https://doi.org/10.1208/s12249-022-02387-6 PMid:36028598
- 57. Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S, Gupta SK, Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic and Clinical Pharmacology and Toxicology, 2004; 94:184-190. https://doi.org/10.1111/j.1742-7843.2004.pto940405.x PMid:15078343
- Wagner H, Norr H, Winterhoff H, Plant adaptogens, Phytomedicine, 1994; 1:63-76. https://doi.org/10.1016/S0944-7113(11)80025-5 PMid:23195818
- 59. Singh B, Saxena AK, Chandan BK, Gupta DK, Bhutani KK, Anand KK, Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots of Withania somnifera Dun. Phytotherapy Research, 2001; 15:311-318. https://doi.org/10.1002/ptr.858 PMid:11406854
- 60. Singh B, Chandan BK, Gupta DK, Adaptogenic activity of a novel withanolide -free aqueous fraction from the roots of Withania somnifera Dun. (Part II). Phytotherapy Research, 2003; 17:531-536. https://doi.org/10.1002/ptr.1189 PMid:12748992
- 61. Aslam S, Raja NI, Hussain M, Iqbal M, Ejaz M, Ashfaq D, Fatima H, Shah MA, Rehman AU, Ehsan M, Current Status of Withania somnifera (L.) Dunal: An Endangered Medicinal Plant from Himalaya. American Journal of Plant Sciences, 2017; 8. https://doi.org/10.4236/ajps.2017.85076
- 62. Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F, Neuroprotective effects of Withania somnifera on 6hydroxydopamine Induced Parkinsonism in rats. Human and Experimental Toxicology, 2005; 24:137-147. https://doi.org/10.1191/0960327105ht509oa PMid:15901053
- 63. Moharana D, Bahadur V, Rout S, Prusty AK, Sahoo RK, Ashwagandha: The miracle ginseng. Food Scientific Reports, 2020; 1:37-42